基于裂纹闭合模型的三维裂纹疲劳扩展分析
三维裂纹扩展数值预报方法研究

三维裂纹扩展数值预报方法研究三维裂纹扩展数值预报方法是对裂纹扩展过程进行模拟和预测的一种重要研究内容。
裂纹扩展是材料疲劳、断裂等失效过程中的关键问题,对于材料的寿命预测和安全评估具有重要意义。
通过建立合适的数学模型和数值方法,可以准确地模拟和预测裂纹扩展过程,为工程实践提供技术支持。
在三维裂纹扩展数值预报方法研究中,需要考虑裂纹的形态、尺寸和扩展路径等因素,以更准确地模拟裂纹扩展过程。
目前,常用的三维裂纹扩展数值方法包括有限元方法、扩展有限元方法、位错力学方法等。
这些方法可以根据裂纹扩展的特性和材料本身的力学性质,来模拟裂纹的扩展行为和预测裂纹的发展方向。
有限元方法是一种常用的三维裂纹扩展数值预报方法,通过建立材料和结构的有限元模型,可以对裂纹扩展过程进行精确的模拟。
例如,采用XFEM(扩展有限元法)可以在有限元网格上自动插入和拓展裂纹,实现对裂纹扩展路径和形态的准确模拟。
此外,位错力学方法可以通过模拟晶格位错的运动和相互作用,来研究裂纹扩展时的位错活动和应变能释放过程。
除了数值方法,还需要考虑裂纹扩展数值预报方法的验证和应用。
针对不同材料和加载条件,需要进行实验验证和案例分析,来验证数值模拟的准确性和可靠性。
同时,将三维裂纹扩展数值预报方法应用于实际工程问题中,可以为材料设计和结构安全评估提供重要参考。
总的来说,三维裂纹扩展数值预报方法是一个重要的研究领域,对于材料科学和工程实践具有重要意义。
通过不断的理论研究和技术创新,可以提高裂纹扩展数值预报方法的准确性和可靠性,为实际工程问题的解决提供技术支持。
希望未来能够进一步深入研究三维裂纹扩展数值预报方法,推动材料科学和工程技术的发展。
FRANC3DV4微动疲劳、三维裂纹扩展和损伤容限分析软件

FRANC3D V7.4微动疲劳、三维裂纹扩展和损伤容限分析软件新一代FRANC3D(FRacture ANalysis Code for 3D)是美国FAC公司开发的新一代裂纹分析软件,用来计算微动疲劳裂纹萌生寿命(包括裂纹萌生位置和起裂方向)以及工程结构在任意复杂的几何形状、载荷条件和裂纹形态下的三维裂纹扩展和寿命。
FAC公司(Fracture Analysis Consultants, Inc.)成立于1988年,起源于国际权威的断裂力学研究机构-康奈尔大学断裂工作组,与美国军方和政府组织长期进行项目合作研究和软件联合开发。
FRANC3D是由FAC公司联合美国空军研究实验室(AFRL)、NASA马歇尔太空飞行中心、美国海军航空系统司令部(NAVAIR)及波音、普惠等公司开发的新一代裂纹分析软件,是目前全球最专业、最流行的任意三维裂纹扩展分析与损伤容限评估软件。
FRANC3D的工作流程FRANC3D采用有限元法计算断裂力学参数和任意三维裂纹扩展,与ANSYS、ABAQUS、NASTRAN 等有接口。
其工作流程如下图所示:FRANC3D的工作流程FRANC3D的功能及特点参数化裂纹库FRANC3D具备参数化裂纹库,可引入任意形状的初始裂纹:●零体积缺陷(裂纹)✓椭圆形/圆形裂纹(包括埋藏裂纹)✓穿透型单裂纹前缘裂纹✓穿透型双裂纹前缘裂纹✓长条形浅表裂纹✓圆形周向裂纹(内环、外环)✓跑道型裂纹✓用户自定义平面/近似平面内任意形状裂纹✓用户自定义空间非平面任意三维裂纹●空腔(模拟材料中的气孔、夹渣、缩孔、缩松等)●引入多重裂纹●从外部文件读入裂纹数据自适应网格划分FRANC3D采用自适应网格重新划分技术来引入和更新三维裂纹网格,并采用网格划分模板保证裂纹尖端高质量的网格,是公认的同类软件中计算精度最高的断裂力学软件。
裂纹尖端高质量的网格裂纹尖端使用1/4节点的奇异单元裂纹尖端局部网格对称来减少离散误差裂纹区域网格自动细化以保证足够的精度裂纹面划分粗大的网格以减少单元数量利用M-积分计算断裂力学参数FRANC3D默认采用M-积分来计算应力强度因子,分可分别计算出各向同性和各向异性材料中KI、KII、KIII的结果,能考虑温度、裂纹面接触、裂纹面牵引及残余应力等因素的影响。
裂隙岩体三维裂纹动态扩展规律与破断机制

裂隙岩体三维裂纹动态扩展规律与破断机制裂隙岩体是一种由裂隙网络构成的岩体,裂隙在岩体的形成过程中起着重要的作用。
裂纹动态扩展规律和破断机制是研究裂隙岩体力学行为的关键点,对于地质灾害的预测和防治具有重要意义。
本文将从裂纹动态扩展规律和破断机制两个方面进行探讨。
裂纹动态扩展规律是指在外界作用下,裂纹在岩体中发展和扩展的规律。
一般来说,裂纹动态扩展规律可以分为线性和非线性两种情况。
在线性规律下,裂纹的扩展速度与应力强度因子呈线性关系,即扩展速度正比于应力强度因子。
而在非线性规律下,裂纹的扩展速度与应力强度因子不再呈线性关系,而是随着应力强度因子的增大而增大。
裂纹的动态扩展规律受到多种因素的影响,如岩性、裂隙类型和应力状态等。
其中,岩体的质地和裂隙的形态是决定裂纹动态扩展规律的重要因素之一。
此外,裂纹动态扩展还与岩体的环境条件有关,如温度、湿度等。
这些因素的综合作用决定了裂纹的扩展速度和方向。
破断机制是指在裂纹动态扩展过程中,岩体受到应力作用下的破坏机理。
破断机制可以分为韧性破断和脆性破断两种情况。
在韧性破断中,岩体具有一定的延性,即在受到应力作用下能够发生可逆变形。
而在脆性破断中,岩体则具有较低的延性,受到应力作用后很快发生不可逆变形并形成破碎。
破断机制的选择与岩体的物质性质和应力条件有关。
例如,在高温高压条件下,岩体的韧性破断机制更为显著,而在低温低压条件下,岩体的脆性破断机制则更加明显。
除此之外,破断机制还与裂隙的性质有关。
当裂隙的密度较大,且分布较均匀时,岩体更容易发生脆性破断。
裂纹动态扩展规律和破断机制研究的意义不仅在于理解岩体力学行为的基本规律,还可为工程实践提供理论支持和技术指导。
通过研究裂纹动态扩展规律,可以预测岩体在不同应力状态下的破坏行为,进而为地质工程的设计和施工提供依据。
同时,通过研究破断机制,可以针对岩体的特点开发出相应的防治措施,减少地质灾害的发生。
总之,裂隙岩体裂纹动态扩展规律和破断机制的研究对于理解岩体的力学行为、预测和防治地质灾害具有重要意义。
任意三维裂纹扩展分析

任意三维疲劳裂纹扩展分析1.前言在工程实际中,真实的构造总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在其服役荷载远低于容许强度的情况下就发生了破坏。
实际工程构造在经受长时间多因素综合作用下,产生变形、裂纹等缺陷,从而导致整个构造的失效。
构造的失效主要由疲劳引起,其最终失效形式即为断裂,有大约80%以上的工程构造的断裂与疲劳有关,由疲劳引起的巨大经济损失及灾难性的后果不胜枚举。
我们通常不能仅仅因为某个构件出现了裂纹就简单的认为该构件不平安或不可靠,尤其是对于大型设备的重要构件,因为这将使企业消耗高昂的本钱。
对于出现的裂纹,以往多采用以下几种处理方法:一是对出现裂纹的构件进展更换,这对于含裂纹但仍能工作的构件是一个巨大的浪费。
二是强行停顿使用进展维修,这样会带来巨大的经济损失;三是冒险继续使用,但这样会带来巨大风险,甚至会造成人员伤亡。
所以,人们更想知道,出现的裂纹是否会在既定载荷〔包括疲劳载荷在内的任意载荷〕下扩展成不平安或失效的临界尺寸,因此,出现了疲劳裂纹扩展分析。
疲劳裂纹扩展分析是采用断裂力学的理论和方法对含裂纹等缺陷构件的失效过程进展分析,以评估产品的平安性和可靠性,可以进展损伤容限评估和剩余寿命预测等,已经在化工机械、飞行器、核工业等各个工程领域得到了广泛应用,并得到了世界各国政府及学术机构的重视。
2.疲劳裂纹扩展分析软件在工程实践中,疲劳裂纹扩展分析已成为评估产品性能、改进产品设计和提高服役寿命的一个重要工具。
目前,疲劳裂纹扩展分析主要有解析法和数值法这样两种方法,下面分别介绍这两种方法。
1〕解析法解析法主要依据相应的标准和经历公式,将复杂的三维问题简化为二维问题,并对复杂的裂纹形状和荷载状态进展简化,然后用经历的方法对裂纹平安性进展评估。
但对于大量构造复杂的工程实际问题却无能为力,况且其简化后的分析准确度及是否真实逼近服役情况也值得探讨。
目前,工程上有几款基于解析法而开发的裂纹扩展分析软件,它们主要应用于航空标准构造的裂纹扩展分析,包括DARWIN、NASGRO、AFGROW等。
ALOF系统-新一代三维疲劳裂纹扩展分析软件

ALOF系统-新一代三维疲劳裂纹扩展分析软件ALOF全称为Analyses Laboratory of Fracture,意为一个面向疲劳断裂过程的仿真实验室。
它以断裂力学为基础,对含缺陷构件进行模拟分析,为断裂失效分析专家提供科学数据和判断。
ALOF采用目前世界上最先进的裂纹扩展计算技术(扩展有限元技术XFEM和虚节点多边形有限元法VNM),由数位具有机械工程和计算力学专业背景的留洋博士、中外籍教授团队历时四年开发而成。
目前,ALOF软件被由洞力公司开展专业的研发、市场推广与商业化运作。
ALOF可以准确预测静载荷或疲劳载荷作用下裂纹行为,确定工程结构损伤容限,为完整性与耐久性分析提供依据,进而指导制定装备的维护方案。
2006年以来,ALOF分析的可靠性已经在广泛的工程实践和学术研究中得到了证实,为中国首款三维裂纹建模和扩展分析软件。
众所周知,3D裂纹扩展的有限元模拟一直是工程界的一个难题,其困难主要有两个。
一、裂纹扩展后物体的边界形状发生改变,必须重新建立CAD和CAE模型;二、裂纹尺寸相对较小而尖端的应力场却非常奇异,一般的网格密度无法得到可靠的结果。
个别软件虽然通过裂纹修正网格的方式实现了简单形状(结构化网格)产品的裂纹扩展,但因仅接受六面体网格,无法处理复杂形状的结构。
ALOF采用XFEM 技术和VNM两项关键技术,克服了3D裂纹扩展的两个难题,真正实现了复杂工程结构和复杂形状裂纹的全自动高效模拟计算。
ALOF是目前市场上的商业软件中,唯一一个使用了XFEM技术和VNM技术模拟裂纹扩展与预测疲劳寿命的软件。
ALOF具有强大的完全独立的可视化建模器、内核求解器以及后处理器,而且提供了与主流CAD、CAE软件的接口,不但可以进行传统的弹塑性分析,也可以进行二维、三维的裂纹扩展模拟。
ALOF的典型应用领域:高速列车核工业航空宇航国防军工能源动力化工机械工程机械船舶海洋土木结构……ALOF应用举例:任意形状的无缺陷产品预测疲劳寿命和检修周期;任意形状含缺陷产品安全性评估和剩余寿命的计算;任意工业结构及装备中裂纹尺寸进行参数化研究;确定给定寿命下的最大裂纹尺寸;确定给定裂纹张开面积(COA)下的最大裂纹尺寸;失效事故裂纹扩展过程的追溯;……模型生成:导入任意形状的CAD模型;导入任意形状的裂纹曲面;一键式生成疏密合理的二维、三维网格;导入其他CAE软件的网格和计算结果;基于ALOF专有的VNM技术,在裂纹扩展前缘自适应加密;高效的网格松弛技术,保证裂纹分析时较小的单元量;高效直观的材料、荷载建模器。
宏观力学不均质焊接接头疲劳裂纹扩展及裂纹闭合的研究

宏观力学不均质焊接接头疲劳裂纹扩展及裂纹闭合的研究引言疲劳裂纹是工程材料中常见的问题之一,尤其是在焊接接头中。
宏观力学不均质性是导致焊接接头疲劳裂纹扩展的主要原因之一。
本文将探讨宏观力学不均质焊接接头疲劳裂纹扩展的机理,并研究裂纹闭合对疲劳寿命的影响。
疲劳裂纹扩展机理疲劳裂纹扩展是由于材料受到交变载荷的影响,在应力集中区域产生微小裂纹,并随着加载次数的增加逐渐扩展。
在焊接接头中,由于宏观力学不均质性,接头处的应力分布不均匀,导致了疲劳裂纹的扩展。
疲劳裂纹扩展的机理可以分为以下几个阶段: 1. 萌生阶段:在应力集中区域,由于材料强度不均匀,微小的裂纹开始萌生。
2. 成长阶段:裂纹逐渐扩展,裂纹尖端处应力集中,导致裂纹扩展速率加快。
3. 稳定阶段:裂纹扩展速率趋于稳定,成长速率与裂纹尖端处的塑性区面积成正比。
4. 最终破坏:裂纹扩展到一定长度后,材料强度不足以承受载荷,导致接头破坏。
焊接接头的宏观力学不均质性焊接接头的宏观力学不均质性主要体现在以下几个方面: 1. 材料的力学性能不均匀:焊接过程中,由于加热和冷却过程的影响,接头材料的力学性能在不同位置存在差异。
2. 应力集中:焊接接头由于几何形状的限制,容易导致应力集中的区域,进一步加剧了力学性能的不均匀性。
3. 残余应力:焊接过程中,由于热膨胀和冷却引起的温度变化,接头产生了残余应力,进一步影响了力学性能的均匀性。
裂纹闭合对疲劳寿命的影响裂纹闭合是指在应力加载过程中裂纹两侧的表面受到压缩力的作用,导致裂纹尖端处的应力减小或消失。
裂纹闭合可以通过增加接头的残余应力、材料表面处理等方法来实现。
裂纹闭合对疲劳寿命的影响主要有以下几个方面: 1. 延缓裂纹扩展:裂纹闭合可以减小裂纹尖端处的应力,降低裂纹扩展速率,从而延缓疲劳寿命。
2. 减小应力集中:裂纹闭合可以减小应力集中的区域,增加了接头的强度和耐久性。
3. 影响疲劳裂纹的形态:裂纹闭合可以改变疲劳裂纹的形态,使其更加平缓,减小了应力集中的程度。
最新09--裂纹扩展与疲劳裂纹扩展

KP f (a)
f(a)C C(a(a))PC daMf(a)Pda
裂纹扩展稳定性分析
• 即得:
• 通常 Ca ,0 因此:
K aT
f(a) C(a)Pf(a)P C(a)CM
K a
K a
关于裂纹扩展的分析
•
考虑一个尺寸为a 0 的裂纹,随着外加载
荷P(或位移u)的逐渐增加,应力强度因
K
子K 逐渐增大,当K 达到K C 时(B点),裂纹 开始启裂。
• 在对应的加载条件L下,随着裂纹尺寸
的变化,K
a 随之变化,如果
K a
L
则Ka该R
裂纹在扩展一个微小的尺寸后即停止扩
Kc
C B
a
o
b
➢对于这样的材料,裂纹 K 一 旦达到K I C 就很容易发生失稳
扩展,除非K a 随着裂纹的长
大,逐渐减小。对于很脆的材 料(如玻璃)以及在平面应变 条件下的高强低韧金属,作为 一次近似,通常可以采用上图 所示的这种关系。
K
➢对于大多数材料,在裂纹尖端都存在 着多种不同的细观损伤机制,如细观尺
裂纹扩展,必须满足:
• 即一个裂K纹扩K展R,a其应力强
dK R da
Байду номын сангаас
K a
L
dK R da
dK R da
稳定性扩展 随遇扩展 失稳扩展
度因子必须达到当前状态下 的临界应力强度因子。
具体的加载条件,可以是载荷控 制的加载,也可以是位移控制的
加载,或是介于上述两者之间的
某一加载条件。
• 在位移控制加载条件下,K a 曲线的斜率总是负值, 因此,按照裂纹扩展的稳定性条件,裂纹的扩展 总是稳定的。
疲劳与断裂力学的研究与应用——访北京航空材料研究院原总工程师吴学仁研究员

疲劳与断裂力学的研究与应用——访北京航空材料研究院原总工程师吴学仁研究员谷雨【期刊名称】《航空制造技术》【年(卷),期】2016(000)018【总页数】2页(P24-25)【作者】谷雨【作者单位】【正文语种】中文:您对断裂力学的权函数法进行了长期的深入研究,所建立的二、三维裂纹应力强度因子权函数求解方法在国际断裂界具有重要影响。
目前该方法在航空领域获得了哪些实际应用?伴随着近年来航空新材料和新结构的出现,该方法又面临哪些挑战与机遇?吴学仁:在材料和结构的疲劳断裂与损伤容限分析中,需要解决的一个关键问题是复杂载荷条件下裂纹尖端应力强度因子K的求解,但能够用数学弹性力学理论导出K的精确解的情况是极其有限的。
尽管当前用有限元等数值方法求解裂纹体的K不存在技术困难,但与无裂纹情况相比,裂纹体K的求解具有特殊性:一是裂纹尖端应力应变场的奇异性;二是用有限元法解裂纹问题不但要有丰富经验,而且要对不同裂纹长度重复建模计算,大量耗费人机资源。
所以寻求高效可靠的应力强度因子解法是断裂力学工程应用必须解决的关键之一。
权函数法的核心是把影响K的两个因素进行变量分离,权函数仅代表裂纹体的几何特性及边界条件划分而与载荷无关,因而具有独特优势。
只需要通过对权函数和无裂纹体假想裂纹面的应力分布的乘积的积分,就能够高效地(高于有限元法几个数量级)解得任意载荷下不同裂纹长度的高精度K值和其他力学参量。
由于只有极少数理想的裂纹几何才存在权函数的精确解,工程中的大量裂纹问题必须求助于权函数的高精度近似解,这里的关键是建立各类裂纹体的权函数封闭解的推导方法。
1991年我和导师卡尔森完全基于自己的理论推导与计算结果,撰写了国际上第一部关于断裂力学权函数法的专著并在英国出版Weight Functions and Stress Intensity Factor Solutions (X-R Wu and A J Carlsson, Pergamon Press, Oxford, 1991)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据模拟的结果发现,随着拉弯载荷中弯曲载荷所占比例的上升, 表面裂纹在深度方向和表面方向上的扩展速度下降,疲劳裂纹扩 展寿命上升,当表面裂纹穿透平板厚度时,裂纹的最终长度上升。 对于特定的拉弯组合载荷,不同初始形状比的半椭圆表面裂纹的 最终形状比均趋于一个固定值,这与纯弯曲载荷下得到的结果一 致。
基于裂纹闭合模型的三维裂纹疲劳扩 展分析
航空结构中存在大量的三维形式裂纹,如角裂纹,表面裂纹等。 对含有三维裂纹的结构进行疲劳裂纹扩展分析和疲劳寿命预测 在飞机结构损伤容限设计中至关重要。
然而,谱载荷下三维裂纹的疲劳扩展及寿命预测至今未能得到很 好的解决,原因在于用于进行疲劳扩展分析以及寿命预测的材料 疲劳性能参数均是根据标准疲劳实验数据获得的,而实际三维裂 纹尖端的三维应力状态不同于标准试验件中穿透裂纹尖端的应 力状态,因此现有的材料疲劳性能数据不能直接应用于三维裂纹 疲劳扩展及疲劳寿命分析。因此,本文基于三维疲劳断裂理论, 对三维疲劳裂纹扩展做了以下工作:1.基于有限元软件ABAQUS计 算了含穿透直裂纹有限宽度平板裂尖的应力强度因子,并得到了 裂尖应力强小,大大方便了在实际工程 结构中使用该模型。三维条带屈服模型考虑裂纹闭合效应,同时 能够考虑载荷间的相互影响,因此能够用于计算变幅载荷或谱载 荷下裂纹的疲劳扩展。
3.基于三维条带屈服模型提出了一个三维裂纹扩展模型,分析了 纯弯曲载荷下半椭圆表面裂纹的疲劳扩展和扩展过程中裂纹形 状演化规律,并将该结果与试验结果进行了对比。分析发现尽管 表面裂纹的初始形状比不同,但在裂纹扩展过程中裂纹的形状比 趋于一个固定值,且纯弯曲载荷和拉伸载荷下都存在该现象。
4.根据第四章提出的三维裂纹扩展模型,分析了不同初始形状比 的半椭圆表面裂纹在不同拉弯组合载荷作用下的疲劳扩展行为, 并预测了相应的疲劳裂纹扩展寿命。将基于三维裂纹扩展模型 模拟得到的半椭圆表面裂纹在纯弯曲和纯拉伸载荷下的扩展行 为和已有文献中的试验结果进行了对比,两者吻合较好,说明了 该模型能够有效预测拉伸、弯曲以及拉弯组合载荷下半椭圆表 面裂纹的疲劳扩展行为。
标准疲劳试验得到的裂纹扩展速率曲线依赖于试样厚度和应力 比。为了得到只和材料本身相关的疲劳性能参数,采用疲劳裂纹 闭合模型中提出的有效应力强度因子的概念,对不同试样厚度、 不同应力比下的裂纹扩展曲线进行处理,将这些曲线统一到同一 条曲线上,从而得到只和材料本身相关的疲劳性能参数。
对2.3 mm厚的2024-T3铝合金试样在应力比分别为0.05和-1的情 况下的疲劳裂纹扩展进行了预测,并分析了应力比和试样厚度对 疲劳裂纹扩展的影响。2.根据三维疲劳断裂理论和条带屈服模 型,采用三维条带屈服模型计算裂纹闭合效应。