食品化学第二章 水

合集下载

食品化学第二章水知识点总结

食品化学第二章水知识点总结

食品化学第二章水知识点总结第二章水分2.1食品中的水分含量和功能2.1.1水分含量?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。

动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67%不同部位水分含量不同:皮肤60 ~ 70%;肌肉和器官脏70 ~ 80%;骨骼12-15%植物中水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量食物的含水量(%)卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能2.2.1水在生物体中的功能1。

稳定生物大分子的构象,使它们表现出特定的生物活性2。

体内化学介质使生化反应顺利进行。

营养物质,代谢载体4。

热容量大,体温调节5。

润滑。

此外,水还具有镇静和强有力的作用。

护眼、降血脂、减肥、美容2.2.2水的食物功能1。

食品成分2。

展示颜色、香气、味道、形状和质地特征3。

分散蛋白质、淀粉并形成溶胶4。

影响新鲜度和硬度5。

影响加工。

它起着饱和和膨胀的作用。

它影响2.3水的物理性质2.3.1水的三态1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下)的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数数,都明显较高。

*原因:水分子具有三维氢键缔合,1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。

实际应用:是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。

水的沸点与气压成正比。

食品化学:水分

食品化学:水分



第二节 水和冰的性质和结构
一、水和冰的物理性质
部分氢化物的物理性质 氢化物 CH4 NH3 H2S H2O HF 熔点(℃) -184 -78 -86 0 -92 沸点(℃) -161 -33 -61 100 19 蒸发热( J/mol) 9210960 23027400 18673128 40821300 30144960
92
90 87 87
香蕉
鸡 肉 面包
75
70 65 35
奶油
稻米、面 粉 奶粉 酥油
16
12 4 0
表1 食 奶油 乳酪 鲜奶油 乳粉 液体乳制品 冰淇淋和冰糕 鳄梨 豆(青刀豆) 浆果 柑橘 黄瓜 干水果 新鲜水果(可食部分) 豆类(干) 马铃薯 红薯 芹菜、萝卜 品 水分含量 (%) 15 40~75 60~70 4 87~91 65 65 67 81~90 86~89 96 ≤ 25 90 10~12 78 69 79




在大多数新鲜食品中,水是最重要的成分,若希望 长期贮藏这类食品,只要采取有效的贮藏方法控制 水分就能够延长保藏期。 无论采用普通方法脱水或是低温冷冻干燥脱水,食 品和生物材料的固有特性都会发生很大的变化, 都无法使脱水食品恢复到它原来状态(复水或解 冻)。 因此研究水和食品的关系是食品科学的重要内容之 一,对食品的储藏有重要的意义。

三、水的缔合作用

水分子中的氧原子电负性大, O—H键的 电子对强烈的偏向氧原子一边,使氢原子 带有部分正电荷。 氢原子无内层电子,几乎是一个裸露的质 子,极易与另一个水分子中的氧原子的孤 对电子通过静电引力形成氢键。
温 0℃ 0.99984 1.793×10-3 75.64×10-3 0.6113 4.2176 0.5610 1.3×10-7 87.90

食品化学 2水分

食品化学 2水分

食 品 中 水 分 的 存 在 形 式
1、结合水
化合水,又称组成水
是指与非水物质结合得最牢固并构成非水 物质整体的那些水。
在-40℃下不结冰 无溶解溶质的能力 与纯水比较分子平均运动为0
不能被微生物利用
食 品 中 水 分 的 存 在 形 式
邻近水(单分子层水) 是指处在非水组分亲水性最强的基团周围的 第一层位置,与离子或离子基团缔合的水。
这些离子大多为负离子和大的正离子 如:K+, Rb+, Cs+, NH4+, Cl-, Br-I-,NO3-,BrO3,IO3-,ClO4-等。 结果:粘度变小,流动性增加
离子对水的净结构的影响
水 与 离 子 基 团 的 相 互 作 用
②净结构形成效应:溶液比纯水具有较低的流动性。
一些离子有助于水形成网状结构 这些离子大多是电场强度大,离子半径小的离子。 如:Li+, Na+, Ca2+, Ba2+,Mg2+, Al3+,F,OH-
结晶大分子的亲水基团间的距离是与纯水中最邻近两 个氧原子间的距离相等。
如果在水合大分子中这种间隔占优势,这将会促进第一 层水和第二层水之间相互形成氢键。
在生物大分子的 两个部位或两个大 分子之间可形成由 几个水分子所构成 的“水桥”。
木瓜蛋白酶中的三分子水桥
水 与 非 极 性 物 质 的 相 互 作 用
结果:粘度增加,流动性变小
水与具有形成氢键能力的中性基团(亲水性溶 质)的相互作用 水能与某些基团, 例如羟基、氨基、 羰基、酰氨基和亚 氨基等极性基团, 发生氢键键合。
共价键 H2O-离子 H2O-H2O H2O-亲水性溶质 键的强度

【中国海洋大学食品化学】第二章_水(1)

【中国海洋大学食品化学】第二章_水(1)

从左图可以看出,每
个水分子能够缔合另 外4个水分子(配位数 为4),即1,2,3和 W',形成四面体结构。
第二章 水
4
2、水的结构
纯水是具有一定结构的液体。液体水的结构与冰的结构的区别在于 它们的配位数和二水分子之间的距离(下表) 。
水与冰结构中水分子之间的配位数和距离
配位数
O—H…O距离
冰(0℃)
干基表示:水分占食品干 物质质量的百分数。
湿基表示:水分占含水食 品总质量的百分数。
第二章 水
20
2、水分活度(aw)
水分活度的定义可用下式表示:
式中p为某种食品在密闭容器中达到平衡状态时 的水蒸汽分压;
po为在同一温度下纯水的饱和蒸汽压。
在数值上,食品水分活度等同于空气的平衡相 对湿度:
第二章 水
R(水合)+ R(水合)→ R2(水合)+H2O
R为非极第性二基章团水
13
疏水相互作用( Hydrophobic interaction)示意图
当水与非极性基团接触时,为减少水与非极性实体的界面面 积,疏水基团之间进行缔合,这种作用成为疏水相互作用。Βιβλιοθήκη (A)(B)第二章 水
14
(2)、笼状水合物(Clathrate hydrates)
第二章 水
28
低水分含量范围食品的水分吸着等温线
等温线区间Ⅱ的水包括区间I的水加 上区间Ⅱ内增加的水(回吸作用),区间 Ⅱ增加的水占据固形物表面第一层的剩 余位置和亲水基团周围的另外几层位置, 这一部分水叫做多分子层水。多分子层 水主要靠水-水和水-溶质的氢键键合作 用与邻近的分子缔合,流动性比体相水 稍差,其蒸发焓比纯水大,相差范围从 很小到中等程度不等,主要取决于水与 非水组分的缔合程度。区间Ⅱ显得比较 平坦,其吸附量的大小取决于水蒸气压、 原始水分和温度。这种水大部分在-40℃ 时不能结冰。

食品化学02第二章 水

食品化学02第二章 水

第二章 水
第一节 引言 第二节 水和溶质的相互作用
一 宏观水平
持水力(water holding capacity): 由分子(通常是以低浓度存在的大分子)构
成的基体通过物理方式截留大量水而阻止水渗出 的能力。
第二节 水和溶质的相互作用
一 宏观水平 二 分子水平
溶质和水的混合同时改变了溶质和水的性质 亲水溶质会改变邻近水分子的结构和流动性。 水会改变亲水溶质的反应性,甚至改变其结构。
二 分子水平
① 化合水 是与非水物质结合的最牢固的水,这些水是构成非水物
质结构的一部分。 ② 邻近水
处于非水组分亲水性最强的基团周围的第一层位置。是 水与离子或偶极缔合的这部分水。 ③ 多层水
占据邻近水剩余的位置和邻近水外层的几个水层,少量 水在-40℃可结冰,可溶解极少量的溶质。
二 分子水平
1 结合水: 2 体相水:具有类似纯水的性质,易结冰,能作
(P0-P)/ P0=n2/(n1+n2) P:食品在密闭容器中达到平衡时,水的蒸汽压 P0:同温度下纯水的饱和蒸汽压。 n1:溶剂的摩尔数 n2:溶质的摩尔数 上式仅适用理想溶液,电解质溶液误差很大。
第三节 水分活度与食品的稳定性
一 水分活度(Water Activity) 二 水分活度与温度的关系
键,形成四面体结构些不寻常的 性质?例如,高沸点.
由于每个水分子具有相同数目的氢 键供体和受体部位,它们可以形成
三维氢键,因此,每个水分子最多
2 水密度在4℃左右变化的原因?
能与其它4个水分子形成氢键,形成 四面体结构。
3 一些溶质溶于水后,为何水 的流动性会发生变化?
4 在中等至高水分含量食品中反 应速度随Aw提高而下降的原因 可能是?

食品化学 梁文珍主编-适合高职高专教育-中国农业大学出版社-第二章水分第三节水和非水组分的相互作用

食品化学 梁文珍主编-适合高职高专教育-中国农业大学出版社-第二章水分第三节水和非水组分的相互作用

根据食品中水与非水物质之间的相互关系,可 以把食品中的水分作不同的类型(如下页图)。
构成水 定义:与非水物质呈紧密结合状态的水
特点:非水物质必要的组分, -40度部结冰, 无溶剂能力,不能被微生物利用; 定义:处于非水物质外围,与非水物质 邻近水 呈缔合状态的水; 特点:-40度不结冰,无溶剂能力,不 能被微生物利用; 定义:处于邻近水外围的,与邻近水以氢 键或偶极力结合的水; 多层水 特点:有一定厚度 (多层 ), -40度基本不结 冰,溶剂能力下降,可被蒸发; 单分子层 水, 0.5%
c.结合水不易结冰,由于这种性质使得植物的种子 和微生物的孢子得以在很低的温度下保持其生命力; 而多汁的组织在冰冻后细胞结构往往被体相水的冰 晶所破坏,解冻后组织不同程度的崩溃; d.结合水不能作为可溶性成分的溶剂,也就是说丧 失了溶剂能力; e.体相水可被微生物所利用,结合水则不能。
四、水与溶质的相互作用
结合水
食品 中水 的存 在形 式
自由水
5%
滞化水
定义 被组织中的显微结构或亚显微结构或膜滞留的水 特点 不能自由流动,与非水物质没关系
毛细管水
定义 由细胞间隙等形成的毛细管力所系留的水 特点 物理及化学性质与滞化水相同
自由流动水
定义 以游离态存在的水 特点 可正常结冰,具有溶剂能力,微生物可利用
三、结合水和自由水二者的比较

在生物大分子的两个 部位或两个大分子之 间可形成由几个水分 子所构成的“水桥”。
3、水与疏水基团的相互作用
1、疏水相互作用 疏水水合(Hydrophobic hydration):向水中添加 疏水物质时,由于它们与水分子产生斥力,从而 使疏水基团附近的水分子之间的氢键键合增强, 使得熵减小,此过程成为疏水水合。

食品化学 第二章 水分

食品化学 第二章 水分

18种同位素变体 量极少
水分子的缔合作用
一个水分子可以和周围四个水分子缔合, 形成三维空间网络结构。
2015年10月25日
第二章 水分
水分子缔合的原因:
H-O键间电荷的非对称分布使H-O键具
有极性,这种极性使分子之间产生引力. 由于每个水分子具有数目相等的氢键 供体和受体,因此可以在三维空间形成 多重氢键. 静电效应.
R(水合的)+R(水合的)→R2(水合 偶极-疏水性物质 疏水相互作用ΔG<0 的)+水
2015年10月25日
疏水水合ΔG>0
第二章 水分
1、水与离子和离子基团的相互作用
类 型 实 例 作用强度 (与水-水氢键比)
偶极-离子
水-游离离子 较大 水-有机分子上的带电基团 (离子水合作用)
水-蛋白质NH 水-蛋白质CO 水-侧链OH 水+R→R(水合的) R(水合的)+R(水合的)→R2 (水合的)+水

水分含量不是一个腐败性的可靠指标
水分活度Aw 水与非水成分缔合强度上的差别 比水分含量更可靠,也并非完全可靠

与微生物生长和许多降解反应具有相关性
第二章 水分
2015年10月25日
第四节
f Aw f0 f p f 0 po
差别1%
2015年10月25日
水分活度
f ——溶剂(水)的逸度 f0——纯溶剂(水)的逸度 逸度:溶剂从溶液逃脱的趋势
p Aw po
严格
p Aw po
第二章 水分
仅适合理想溶液
RVP,相对蒸汽
第四节
水分活度
一、定义: 指食品中水的蒸汽压和该温度下纯水 的饱和蒸汽压的比值
Aw=P/P0

食品化学总结_2

食品化学总结_2

第二章,水水-溶质相互作用一、 与离子和离子基团的相互作用(P15)当食品中存在离子或可解离成离子或离子基团的盐类物质时,产生偶极-离子相互作用,可以固定相当数量的水。

随着离子种类及所带电荷的不同,与水之间的相互作用也有所差别。

大致可以分作两类:1、有助于水分子网状结构的形成,水溶液的流动性小于水,如:Li +、Na +、H 3O +、Ca 2+、Ba 2+、Mg 2+、Al 3+、OH -等。

2、能阻碍水分子之间网状结构的形成,其溶液的流动性比水大,此类离子如:K+、Rb+、Cs +、NH 4+、C l-、B r-、I -、NO -3、BrO -3等;二、水与具有氢键形成能力的中性基团(亲水性溶质)的相互作用许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等中的极性基团,如羟基、羧基、氨基、羰基等,均可与水分子通过氢键相互结合。

水与溶质之间的氢键键合比水与离子之间的相互作用弱。

三、 水与非极性物质的相互作用非极性的分子通常包括烃类、稀有气体、脂肪酸、氨基酸和蛋白质的非极性基团等。

疏水水合作用 疏水相互作用 疏水基团还能和水形成笼形水合物。

四、水与双亲分子的相互作用双亲分子包括脂肪酸盐、蛋白脂质、糖脂、极性脂类和核酸。

双亲分子在水中形成胶团。

食品中水的存在状态根据食品中水分的存在状态,可以把食品中的水分作不同的类型(如下页图)。

结合水,自由水(体相水)之间很难作截然的划分,其主要的区别在于:a.结合水的量与食品中所含极性物质的量有比较固定的关系。

b.结合水的蒸汽压比自由水低得多。

c.结合水不易结冰(冰点约-40℃)。

食品中水的存在形式构成水定义:与非水物质呈紧密结合状态的水特点:非水物质必要的组分,-40度部结冰,无溶剂能力,不能被微生物利用;邻近水定义:处于非水物质外围,与非水物质呈缔合状态的水;特点:-40度不结冰,无溶剂能力,不能被微生物利用;多层水定义:处于邻近水外围的,与邻近水以氢 键或偶极力结合的水;特点:有一定厚度(多层),-40度基本不结 冰,溶剂能力下降,可被蒸发;单分子层水,0.5%5%结合水自由水被组织中的显微结构或亚显微结构或膜滞留的水滞化水不能自由流动,与非水物质没关系毛细管水由细胞间隙等形成的毛细管力所系留的水物理及化学性质与滞化水相同自由流动水以游离态存在的水可正常结冰,具有溶剂能力,微生物可利用定义特点定义特点定义特点d.结合水不能作为溶质的溶剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水在食品中的重要作用
a.水是食品的重要组成成分,是形成食品加工工艺考虑的 重要因素;
某些代表性食品的含水量
食品名称 水分% 食品名称 水分% 食品名称 水分%
番茄 莴苣 卷心菜 啤酒 柑橘 苹果汁
95 95 92 90 87 87
牛奶 马铃薯 香蕉 鸡 肉 面包
87 78 75 70 65 35
果酱 蜂蜜 奶油 稻米面粉 奶粉 酥油
1、与离子或离子基团的相互作用 当食品中存在离子或可解离成离子或离子基团 的盐类物质时,这些物质由于在水中可以溶解而且 解离出带电荷的离子,因而可以固定相当数量的水。 例如食品中的食盐和水之间的作用。
Na+
Cl-
随着离子种类的变化及所带电荷的不同,与水之 间的相互作用也有所差别。大致可以分作两类: 阻碍水分子之间网状结构的形成 其溶液的流动性比水大,此类离子如:K+、Rb+、 Cs+、NH+4、Cl-、Br-、I-、NO-3、BrO-3等。
出现冰晶时温度迅速回升到0℃
一般食品的结晶
低共熔点结晶
一般食品中的水均是溶解了其它可溶性成分所形成 的溶液,因此其结冰温度均低于0℃。把食品中水完全 结晶的温度叫低共熔点,大多数食品的低共熔点在55~-65℃之间。
冷藏食品一般不需要如此低的温度,如我国冷藏食 品的温度一般定为-18℃,这个温度离低共熔点相差甚多, 但已使大部分水结冰,且最大程度的降低了其中的化学 反应。
第二章 水
主要内容
• • • • • • • 第一节 第二节 第三节 第四节 第五节 第六节 第七节 引 言 水、冰的结构和性质 食品中水与非水组分之间相互作用 食品中水的存在状态 水分活度 水与食品的稳定性 分子移动性与食品稳定性
第一节


• 生物体系的基本成分包括:蛋白质、碳水 化合物、脂质、核酸、维生素、矿物质和 水。 • 水是最普遍存在的组分,占50%~90%。 • 是其它食品组分的溶剂。
四、水、冰的物理特性与食品质量关系 a.水的熔点、沸点比质量和组成相近的分子高
如甲烷的b.p:-162℃ ,m.p:-183℃ ,而水在 0.1MPa下b.p:100℃ ,m.p:0℃ ,这些特性将对食 品加工中的冷冻和干燥过程产生很大的影响。
b.水在冻结时体积增加 水的密度较低,水在冻结时体积增加,表现出异 常的膨胀行为,这会使得含水的食品在冻结的过程中 其组织结构遭到破坏。
有助于水分子网状结构的形成
其溶液的流动性小于水,此类离子一般为离子 半径小、电场强度大或多价离子,如:Li+、Na+、 H3O+、Ca2+、Ba2+、Mg2+、Al3+、OH-等。
2、与具有氢键键合能力的中性分子或基团的相互作用
H H H H O O O H H H H O H O H H H O H O H H O
H H O H
由于水分子之间除了通过氢键结合外,还有极 性的作用力,因此水分子之间的缔合数可能大于 4。
• 水分子缔合的原因有哪些?
• 氢键 • 静电效应 • H-O键的极性
在通常情况下,水有三系: 在气态下,水分子之间的缔合程度很小,可看作以自由 的形式存在。 在液态,水分子之间有一定程度的缔合,几乎没有游离 的水分子,由此可理解为什么水具有高的沸点。 在固态也就是结冰的状态下,水分子之间的缔合数是4, 每个水分子都固定在相应的晶格里,这也是水的熔点高的原 因。
28 20 16 12 4 0
b.水分含量、分布和状态对于食品的结构、外观、 质地、风味、新鲜程度会产生极大的影响; c.是引起食品化学变化及微生物作用的重要原因, 直接关系到食品的贮藏特性。
水与食品加工的关系
• 大多数食品加工的单元操作都与水有关。
干燥、浓缩、冷冻、水的固定。
• 复水、解冻没有完全成功。 • 了解水在食品中的存在形式是掌握食品加 工和保藏技术原理的基础。
食品所含溶质的种类和数量可以影响冰晶的数 量、大小、结构、位置和取向。一般有4种类型,即 六方形、不规则树状、粗糙球状、易消失的球晶。 六方形是多见的、在大多数冷冻食品中重要的 结晶形式。这种晶形形成的条件是在最适的低温冷 却剂中缓慢冷冻,并且溶质的性质及浓度不严重干 扰水分子的迁移。 现代食品冷藏技术中提倡速冻,这是因为速冻 形成的冰晶细小,呈针状,冻结时间短且微生物活 动受到更大限制,从而保证了食品品质。
在冰的晶体结 构中,每个水 和另外4个水 分子相互缔合, O-O之间的最 小距离为 0.276nm,O- O-O之间的夹 角为109°。
纯水的结晶 过冷温度结晶
尽管冰点是0℃,但常并不在0℃结冻,而是出 现过冷状态,只有当温度降低到零下某一温度时才 可能出现结晶(加入固体颗粒或振动可促使此现象 提前出现),把开始出现稳定晶核时的温度叫过冷 温度。
第二节
水、冰的结构和性质
一、水分子的结构
SP3
O H
104.50
H
1.84D
二、水分子的缔合与水的三态
由于水分子的极性及两种组成原子的电负性差 别,导致水分子之间可以通过形成氢键而呈现缔合 状态:
由于每个水分子上有四个形成氢键的位点,因此 每个水分子的可以通过氢键结合4个水分子。
由于水分子之间可以以不同数目和不同形式结 合,因此缔合态的水在空间有不同的存在形式, 如:
水的黏度与水分子之间缔合的关系:
水具有一定的黏度是因为水分子在大多数情况下是缔合
的。 水的流动性与水分子之间缔合的关系: 水具有流动性是因为水分子之间的缔合是动态的。当水 分子在很短的时间内改变它们与临近水分子之间的氢键键合 关系时,会改变水的流动性。
三、冰的结构和性质
冰是水分子通过氢键相互结合、有序排列形成的 低密度、具有一定刚性的六方形晶体结构。
c.食品冻结速度比解冻速度快 水的热导率较大,然而冰的热导率却是水同温度 下的4倍。这说明冰的热传导速度比非流动水(如动、 植物组织内的水)快得多,水的冻结速度比熔化速度 快得多。 d.冰可以用来降温和冷藏 冰的热扩散速度是水的9倍,因此在一定的环境 条件下,冰的温度变化速度比水大得多。
第三节 食品中水与非水组分之间的相互作用
相关文档
最新文档