人教版数学七年级上册有理数加法
有理数的加法七年级数学人教版上册

(2)4+(-6)=_______;
A.1 ℃ B.3 ℃
知识点2 异号两数相加
2.气温由-2 ℃上升3 ℃后是
()
6.下表记录的是今年长江某一周内的水位变化情况,这一周的上周
末的水位已达到警戒水位(正号表示水位比前一天上升,负号表示水位比
前一天下降).
星期
一
二
三
四
五
六
水位变化/米 +0.2 +0.8 -0.4 +0.2 +0.3 -0.2
第一章 有理数
有理数的加减法
第1课时 有理数的加法(1)
有理数的加法法则 (1)同号两数相加,取相同的___符__号___,并把__绝__对__值____相加. (2)异号两数相加,取绝对值__较__大____的加数的符号,并用较大的 绝对值减去较小的绝对值. 互为相反数的两个数相加得___0__. (3)一个数同0相加,仍得这个数.
___-__2_5__,于是可得(-40)+(+15)=___-__2_5__.
3.计算(-2)+(-3)的结果是
(A )
A.-5
B.-1
C.1
D.5
知识点1 同号两数相加 例1 计算: (1)(-2)+(-11); (2)(+20)+(+12);
(3)-112+-23.
4.计算: (1)(-0.9)+(-2.7);
(7)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 学法指导必须与教学改革同走进行,协调开展,持之以恒。我们在数学教学的同时应关于理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
2.海平面的高度为0 m.一艘潜艇从海平面先下潜40 m,再上升
15 m,此时潜艇在水下25 m处.把上升记为正,下潜记为负,于是下 潜40 m可记作-40,上升15 m可记作___+__1_5__,水下25 m处可记为
有理数的加法人教版七年级数学上册课件

重难易错
8. 总结:运算中的简便方法(优先相加) (1)相反数结合法[如题 7(1)]; (2)同分母分数凑整法[如题 7(2)]; (3)凑整法(如题 4); (4)同号结合法(如题 3).
三级检测练
一级基础巩固练
9. 计算: (1)22+(-5)+12+(-7); (2)(-12)+8+(-22)+12.
解:(1)原式=[22+12]+[(-5)+(-7)] =34+(-12)=22. (2)原式=(-12)+12+8+(-22)=0+8+ (- 22)=8+(-22)=-14.
(2)原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)] =(-10)+0=-10.
二级能力提升练
(2)通过表格可得, +0.2+0.8+(-0.4)+0.2+0.3+(-0.2)=0.9(m). 答:与上周周末相比,本周周末长江的水位上
升了,上升了0.9 m.
三级拓展延伸练
14. 如图,从左到右在每个小格子中填入一个整 数,使得其中任意三个相邻格子中所填整数之 和都相等. 若前 m 个格子中所填整数之和是 1 684,则 m 的值可以是( B )
(1)本周哪一天长江的水位最高?位于警戒水位之 上还是之下?
(2)与上周周末相比,本周周末长江的水位是上升 了还是下降了?上升了或下降了多少?通过计算 说明.
解:(1)计算每天的水位得, 周一:+0.2,周二:+0.2+0.8=+1, 周三:+1+(-0.4)=+0.6, 周四:+0.6+0.2=+0.8, 周五:+0.8+0.3=1.1, 周六:1.1+(-0.2)=+0.9. 答:本周五水位最高,高于警戒水位1.1 m之上.
人教版七年级数学上册有理数的加减法.1有理数的加法第1课时 有理数的加法法则

2.计算: (1)3+(+5)=____8; (-7)+(-4)=____-__1_1_; (2)4+(-12)=_____-__8_; 13+(-5)=____;8 (3)0+(-6)=_____-_;6 (-5)+5=____.0
3.(202X·湖州)计算(-20)+16的结果是( A) A.-4 B.4 C.-202X D.202X 4.(202X·呼和浩特)互为相反数的两个数的和为( A) A.0 B.-1 C.1 D.2 5.(202X·温州)计算(+5)+(-2)的结果是( C) A.7 B.-7 C.3 D.-3
七年级数学上册(人教版)
第一章 有理数
1.3 有理数的加减法
1.3.1 有理数的加法 第1课时 有理数的加法法则
有理数加法法则: (1)同号两数相加,取___相__同___的符号,并把绝对值_相__加____; (2)绝对值不相等的异号两数相加,取绝对值__较__大____的加数的符号,并 用较大的绝对值___减__去___较小的绝对值.互为相反数的两个数相加得____, 即0若a,b互为相反数,则a+b=____; 0 (3)一个数同0相加,仍得__这__个__数____,即a+0=__a__.
练习.计算: (1)(-7)+(-4)=____-__1_1_; (2)3+(-12)=_-__9_;
(3)7+(-7)=___0_.
知识点一:有理数加法法则 1.(1)+4与2的和的符号取__+__号; (2)-4与-2的和的符号取_-___号; (3)+4与-2的和的符号取_+___号; (4)-4与2的和的符号取_-___号;
D.-3
14.若x的相反数是3,|y|=5,则x+y的值为( D ) A.-8 B.2 C.8或-2 D.-8或2 15.若|a+b|=|a|+|b|,则a,b的关系是( D ) A.a,b的绝对值相等 B.a,b异号 C.a+b的值是非负数 D.a,b同号或至少有一个为0
七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?
东
解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5
﹢
﹦
__
)
–7
–9
(
﹢
3
–5
﹢
﹢
﹦
__
–7
–9
(
)
(3)
8
–4
﹢
﹦
__
)
–6
–2
(
﹢
8
–4
﹢
﹢
﹦
__
–6
–2
人教版七年级数学上册1.3.1有理数的加法(教案)

5.通过有理数加法的学习,培养学生的逻辑思维能Байду номын сангаас和解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言进行表达与交流的能力,通过有理数加法的学习,增强数学表达和逻辑推理的素养。
2.激发学生的数学抽象思维,提高对有理数概念及其加法法则的理解,培养数学抽象和模型构建的核心素养。
人教版七年级数学上册1.3.1有理数的加法(教案)
一、教学内容
人教版七年级数学上册1.3.1有理数的加法,主要包括以下内容:
1.掌握有理数的定义,了解有理数的分类(正有理数、负有理数、零)。
2.学习有理数的加法法则,包括同号相加、异号相加、零与任何有理数相加的情况。
3.能够运用有理数加法法则解决实际问题,进行数值计算。
3.培养学生运用数学知识解决实际问题的能力,将加法运算与生活实际相结合,提升数学应用和问题解决的素养。
4.培养学生的数据分析和逻辑推理能力,通过有理数加法运算的训练,提高数据处理和推理的素养。
5.培养学生的团队合作意识,在小组讨论和互助学习中,增强合作交流与批判性思考的能力。
三、教学难点与重点
1.教学重点
五、教学反思
在今天的有理数加法教学中,我发现学生们对于有理数的概念和加法法则的理解整体上是积极的。他们对于正有理数、负有理数的分类能够较快掌握,但在异号相加的规则上,尤其是绝对值的处理上,还存在一些困难。这让我意识到,在讲解这部分内容时,需要更加细致和具体。
我尝试通过生活实例引入有理数加法,如温度变化、收支情况等,学生们对这些例子很感兴趣,能够更好地将数学与实际联系起来。但在实际操作中,我发现在将问题抽象为数学运算这一步骤上,学生们还是显得有些吃力。这可能是因为他们还没有形成将实际问题转化为数学模型的思维方式。
初中数学人教版七年级上册有理数的加法

-3
-5
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
-8
两次运动后小球从起点向左运动了8米,记 作-8米。
写成算式是: (-5)+(-3)=-8
尝试总结同号两数相加的法则
(+5)+(+3)=+8 (-5)+(-3)=-8
和的符号是怎么来的呢?
和的绝对值与两个加数 的绝对值有什么关系?
你认为哪一种情况比较复杂?
例1 计算
(1)(-3) + (- 9)
(2)(-4.7) + 3.9
解:
(1)(-3) + (- 9) = - ( 3 + 9 ) =-12
↓
↓
↓
同号两数相加 取相同符号 并把绝对值相加
(2)(-4.7) + 3.9 = - ( 4.7 – 3.9) =-0.8
异号两数相加 取绝对值较大 用较大的绝对值
根据以上两个算式能否尝试总结同号两数相加的法则?
结论:同号两数相加,取相同符号,并把绝对值相加。
如果小球先向右运动5米,再向左运动3米,
那么两次运动的最后结果是什么?
-3 +5
-5 -4 -3 -2 -1 0 1 2 3
+2
45
两次运动后小球从起点向右运动了2米,
写成算式就是:(+5)+(-3)=+2
(2) 4+(-6); (4) (-3)+3;
(6) (-14)+4;
(8) 0+(-9).
3.用“>”或“<”填空:
(1) 如果a>0,b>0,那么a+b__>__0;
(2) 如果a<0,b<0,那么a+b__<__0; (3) 如果a>0,b<0,|a|>|b|,那么a+b_>___0; (4) 如果a>0,b<0, |a|<|b|,那么a+b_<___0;
人教版初中七年级上册数学课件 《有理数的加减法》课件(第一课时有理数加法)

分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展
人教版数学七年级上册《有理数的加法》教学设计1

人教版数学七年级上册《有理数的加法》教学设计1一. 教材分析人教版数学七年级上册《有理数的加法》是学生在学习有理数的基础知识后,进一步探究有理数运算的第一节内容。
本节课的主要内容是有理数的加法法则,通过加法法则的学习,使学生能够熟练地进行有理数的加法运算。
教材从简单的加法运算开始,逐步引导学生探究有理数加法的规律,从而让学生理解并掌握有理数加法法则。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数轴有一定的了解。
但是,对于有理数的加法运算,学生可能还存在一些困惑,例如对于相反数的概念,以及如何判断两个有理数相加的结果是正数还是负数。
因此,在教学过程中,需要引导学生回顾和巩固有理数的基本概念,同时通过实例让学生理解和掌握有理数的加法法则。
三. 教学目标1.知识与技能目标:让学生理解和掌握有理数的加法法则,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过实例分析,培养学生观察、思考、归纳的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.重点:有理数的加法法则。
2.难点:理解并掌握有理数加法法则,能够灵活运用到实际问题中。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的加法法则。
2.利用数轴辅助教学,使学生更直观地理解有理数的加法运算。
3.采用分组讨论法,培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.准备相关课件,展示有理数的加法运算实例。
2.准备数轴,方便学生直观地理解有理数的加法运算。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题引出有理数的加法运算,例如:“小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?”通过这个问题,引导学生思考有理数的加法运算。
2.呈现(10分钟)利用课件展示有理数的加法运算实例,引导学生观察和分析这些实例,让学生尝试总结有理数加法的基本规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究
知识点1 例 计算16+(-25)+24+(-35). 解: 16+(-25)+24+(-35) =16+24+[(-25)+ (-35)] =40+(-60) =-20.
新知探究 知识点1 填一填:(1) 3+(-5)= -2 ; (-5)+3= -2 . (2) 13+(-9)= 4 ; (-9)+13= 4 . (1)比较以上各组两个算式的结果,每组两个算式有什么特征? (2)小学学的加法交换律在有理数的加法中还适用吗?
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
有理数
1.3.1 有理数的加法
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升 人教版-数学-七年级上册
知识回顾 有理数的加法法则:
确定类型 同号
异号(绝对值不相 等)
异号(互为相反数)
定符号 取相同符号 取绝对值较大 的加数的符号
绝对值 相加
相减
结果是0
与0相加
仍是这个数
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算.
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究 知识点1 加法结合律: 在有理数的加法中,三个数相加,先把前两个数相加,或者 先把后两个数相加,和不变. 用字母表示为: (a+b)+c=a+(b+c).
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究 知识点1 加法结合律: 在有理数加法中,两个数相加,交换加数的位置,和不变. 用字母表示为:a+b=b+a.
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
再计算总计超过多少千克: 905.4-90×10=5.4.
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究
知识点1
91 91 91.5 89 91.2
91 91 91.5 89 91.2
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
91.3 88.7 88.8 91.8 91.1
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究
知识点1
91 91 91.5 89 91.2
解法1:先计算10袋小麦的总重量: 91.3 88.7 88.8 91.8 91.1 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4;
课堂导入
为了防止水土流失,保护环境,某县从 2013 年起开始实施植树 造林,其中 2013 年完成 786 亩,2014 年完成 957 亩,2015 年 完成 1 214 亩,2016 年完成 1 543 亩.该县从 2013 年到 2016 年 一共完成植树造林多少亩?看谁算得又对又快!
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究 知识点1 填一填:(1) [3+(-5)]-(-7)= 5 ; 3+[(-5)-(-7)]= 5 . (2) [8+(-4)]+(-6)= -2 ; 8+[(-4)+(-6)]= -2 . (1)比较以上各组两个算式的结果,每组两个算式有什么特征? (2)小学学的加法结合律在有理数的加法中还适
+ (−6).
解: + 1 + + 1 + 6 + − 3 + − 5 + (−6)
91.3 88.7 88.8 91.8 91.1
解法2:每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负 数,10袋小麦对应的数为+1,+1,+1.5,-1,+1.2,+1.3,-1.3, -1.2,+1.8,+1.1. 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1 =[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究 知识点1
例 每袋小麦的标准重量为 90 千克,10 袋小麦称重记录如图所 示,与标准重量比较,10 袋小麦总计超过多少千克或不足多少 千克?10 袋小麦的总重量是多少?
“同号结合法”进行有理数的加法运算 在多个有理数相加时,若既有正数又有负数,可将所有的正数结合在一起, 所有的负数结合在一起,分别相加,再进行计算.这种方法可减少异号两数 相加的次数,达到简化运算的目的.
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究 知识点1
1.有理数的加法运算律不但适用于两个数或三个数相加,而且适用于三个以 上有理数相加. 2.利用有理数的加法交换律时,要适当加括号,如-6.6+2+(-3.4)=2+( -6.6) +( -3.4). 3.灵活运用加法运算律,能使运算过程简化,通常有以下规律: ①互为相反数的两数先相加; ②符号相同的数先相加; ③分母相同的数先相加; ④相加能得到整数的数先相加; ⑤带分数相加时,先拆成整数和分数,再利用加法运算律相加.
=5.4. 90×10+5.4=905.4. 答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
人教版数学七年级上册 第一章有理数-1.3.1加法(共22张 PPT)
新知探究
跟踪训练
计算:
+1
4
+
+1
8
+6+
−3