反激变换器工作原理

合集下载

双管反激变换器电路解说

双管反激变换器电路解说

双管反激变换器電路解說
1、电路拓扑图
2、电路原理
其变压器T1起隔离和传递储存能量的作用,即在开关管Q1、Q2开通时Np储存能量,开关管Q1、Q2关断时Np向Ns释放能量,同时Np的漏感将通过D2、D3返回给输入,可省去RCD漏感尖峰吸收电路。

在输出端要加由电感器Lo和两Co电容组成一个低通滤波器。

输出回路需有一个整流二极管D1(最好使用恢复时间快的整流管)。

3、工作特点
a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd (Vs:输入电压;Vd:D2、D3的正向压降,),D2、D3必须是快恢复管(当然用超快恢复管更好)。

b、在反激开始时,储存在原边Np的漏电感的能量会经D2、D3反馈回输入,系统能量损失会小,效率高。

c、在与单端反激变换器相比,无需RCD吸收电路;功率器件可选择较低的耐压值;功率等级也会很大。

d、在轻载时,如果在“开通”周期储存在变压器的原边绕组显得过多的能量,那么在“关断”周期会将过多的能量能量反馈到输入。

e、两个调整管工作状态一致,我没有调试过这样电路,根据调试过的半桥和双管正激的电路经验,下管的波形会优于上管的波形,在调试过程中只要观察下管波形即可(具体可到“调试经验”中详见)。

我个人建议在大功率等级电源中不可选用此种电路。

4、变压器计算
设计方法据参考书籍,与单端反激变换器变换器相同。

但变压器漏电感必须小,可以减小D2、D3上的能量损耗,同时增加电源的效率。

详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会反激式开关电源是一种高效能、高频率的变换器,可以将输入直流电压转换为符合要求的输出电压,这一特性使其被广泛应用于电子设备、通讯设备等领域中。

其工作原理可以简单地概括为:利用脉冲反转的方式将输入电压变成貌似交流的信号,再利用变压器调节电压和电流,得到输出电压。

1. 输入脉冲变换反激式开关电源的输入电压通常是一个直流电源,输入电压首先通过全桥整流电路将输入的交流电流变为直流电流,也就是通过一个矩形波将输入电压转换为反向的脉冲信号,并抵消了电源电阻,使电源的输出电压更为稳定。

2. 电源管理器接下来,脉冲信号被送入电源管理器。

电源管理器可以分别实现过压、过流、过电压等保护,并且可以调整输出电压。

对于负载变化或输入电压波动引起的输出电压变化,反激式开关电源可以通过均衡控制电路,降低输出电压的乱跳程度,保持它的稳定性。

3. MOSFET开关接下来,反激式开关电源的信号被送入MOSFET开关,通过开关管的控制电压,使MOSFET管的开关状态取反,从而产生带有相反极性的脉冲信号。

开关管的控制信号交调宽度调制,通过控制开关管的开关时间比,使得输出电压得以调节。

4. 变压器脉冲信号至此已经变成了一定的频率和脉宽的交变电压,接下来需要利用变压器进一步转换电压和电流。

变压器是反激式开关电源的关键组成部分,主要由绕组、铁芯和绝缘材料构成。

绕组和铁芯的性质决定了变压器的工作原理:通过磁场的感应作用,在输出端产生一个转换后的电压。

5. 输出电路最后,输出电路使用整流电路,将由变压器产生的交流电压转换为直流电压。

整流电路可以采用单相整流电路或三相整流电路,通过各种电子元件将交流电转换为直流电,以供电子设备使用。

以上就是反激式开关电源的工作原理的介绍。

总的来说,反激式开关电源的优点在于其高效能、可靠性和稳定性,可以为电子设备提供高质量的能源。

PWM单端反激式变换器电路原理分析

PWM单端反激式变换器电路原理分析

To f Ip Is 单端反激式变换器工作原理1 单端反激式变换器电路原理分析l 单端反激式变换器的特点单端反激式变换器又称电感储能式变换器,工作原理如图所示,当开关管Q1被PWM 脉冲激励而导通时,直流输入电压施加到高频变压器T 的初级绕组上,此时NP 相当于一个纯电感,流过NP的电流线性上升,电源能量以磁能形式存储在电感中,次级整流二极管D1截止,输出电容C 给负载供电。

(电能转换为磁能)当开关管Q1截止时,由于电感电流不能突变,初级绕组两端电压极性反向, 次级绕组上的电压极性颠倒使D1导通, 初级储存的能量传送到次极,提供负载电流,同时给输出电容充电。

(磁能换为电能)单端反激式变换器通常采用加气隙来增大可工作的磁场强度H ,减少剩余磁感应强度;当反激式变换器处于连续工作模式时,气隙可有效防止磁芯饱和,因而可增大电源的输出功率,减少变压器磁芯损耗,进一步提高开关频率。

一、调制1.定义: 利用某一种电压或波形的改变,去控制另一种电压或波形发生某种形式的改变。

2.调制方式:利用电压的改变,去控制另一种波形的改变,最后达到能控制输出电压的改变,同时能控制输出电压稳定的一种技术措施。

3.脉冲宽度调制方式(PWM:(Pulse Width Modulation):①是输入电压的变化,使输出脉冲宽度发生变化的一种方式。

②开关管工作周期T是固定不变的。

③输出电压的改变和稳定,就是控制开关管调整饱和导通的时间来实现的。

④脉宽式开关电源都是降压式的变换器,但采用变压器隔离的开关电源,可以改变初级与次级绕组匝数比,来决定输出电压是升压还是降压。

⑤占空比的比值就是电压比的比值,占空比的变化范围:0∽1。

2.交流共模滤波电感的结构和工作原理①定义:是在一个磁心上的两个匝数相等的绕组中再电流方向上的不同,就能起到共模滤波电感的作用。

②模式:1.差模输入:就是在共模滤波器的两个输入端口,所输入电压是有差别的一种输入模式。

(完整word版)反激电路

(完整word版)反激电路

一、 单端反激变换器1、单端反激变换器的原理图如下:i 1i 2V o+-2、工作原理单端反激变换器主要用在250W 以下的电路中,其中的变压器既有变压器的作用,也有电感的作用其有两种工作方式:一是完全能量转换方式,即电感电流断续工作模式;二是不完全能量转换方式,即电感电流连续工作模式。

工作过程:当Tr 导通时,电源电流流过变压器原边,i1增加,其变化为11//L V dt di s =,而副边由于二极管D 的作用,i2为0,变压器磁心磁感应强度增加,变压器储能;当Tr 关断时,原边电流迅速降为0,副边电流i2在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//L V dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。

3、工作波形工作波形如下:连续工作模式: 断续工作模式:V g -V 2i 1i 2V Trt4、电压增益(1) 连续工作模式下的电压增益:理想状态下,由副副边绕组在一个周期中的伏秒值为0可得:s o s s T D V T nD V )1(11-= (1-1)故可得电压增益为:111D D nV V M s o -==(1-2) 而在实际中,由于变压器存在一次绕组内阻r1,二次绕组内阻r2,故可得:s o s s T D r I V T nD r I V )1)(()(122111--=- (1-3)而 o I I =2 (1-4)221/n r r = (1-5)o o s o o D nI D V I V I //11==(为计算方便,设Do=(1-D1)) (1-6)故将(1-4)(1-5)(1-6)代入(1-3)可得)1)((2121--==os o o s o D D nV r I D DnV V M (1-7) (2)断续工作模式下的电压增益:由面积相等可得式:2/2s p s o T D I T I ∆= (1-8)由s p o s s T D V T D nV =1可得V g-V 2i 1i 2V Trto s p V D nV D /1= (1-9)而 112/nL T D V I s s =∆ (1-10) 将(1-9)(1-10)代入(1-8)可得:1112L V D V T D V I o s s s o =(1-11)临界连续时,即可以看作连续又可以看作断续,此时:111D D nV V s o -=,所以临界连续电流为:112)1(nL D T D V I s s oc -=(1-12)当D=1/2时取最大值,为:18nL T V I ss ocm =(1-13) 将(1-13)代入(1-11),可得断续工作模式下的电压增益为:oocm s o I DI nV V M 214== (1-14)二、 双管反激变换器1、双管反激变换器原理图如下:V o+-2、工作原理当功率大于200W 的时候,不宜采用单端反激电路,可采用双管反激电路。

交错并联反激变换器效率_解释说明以及概述

交错并联反激变换器效率_解释说明以及概述

交错并联反激变换器效率解释说明以及概述引言部分应包括如下内容:1.1 概述:交错并联反激变换器是一种常见的非隔离型直流-直流(DC-DC)变换器电路拓扑结构,广泛应用于电子设备中。

该变换器可以有效降低开关损耗和电感元件的尺寸,提高整体效率和功率密度。

因此,研究和优化交错并联反激变换器的效率具有重要意义,并且已成为当前电力电子领域的热门研究方向。

1.2 文章结构:本文章共分为五个部分:引言、交错并联反激变换器效率解释说明、交错并联反激变换器效率提高方法、实验研究与案例分析以及结论与展望。

在引言部分,我们将介绍和概述交错并联反激变换器效率相关的背景信息,并简要描述了本文各个部分的内容和组织结构。

1.3 目的:本文旨在探讨交错并联反激变换器效率问题,并介绍影响其效率的因素及改进方法。

通过实验研究和案例分析,我们将评估不同策略对效率的影响,并对未来交错并联反激变换器的发展前景和研究方向进行展望。

本文的目标是为电力电子领域研究人员和工程师提供参考和指导,以提高交错并联反激变换器在实际应用中的效率和性能。

以上是引言部分内容的详细描述,请根据需要进行调整和修改。

2. 交错并联反激变换器效率解释说明:2.1 交错并联反激变换器原理交错并联反激变换器是一种高效率的功率转换电路,常用于直流-直流(DC-DC)转换应用中。

它由多个单相半桥或全桥拓扑的模块组成,这些模块以交错的方式连接在一起。

该电路通过将输入电压周期性地切断和恢复,将储存在磁场中的能量传输到输出端。

2.2 效率的定义与计算方法在交错并联反激变换器中,功率转换效率是衡量其性能好坏的重要指标。

功率转换效率定义为输出功率与输入功率之比。

计算方法可以通过测量输出功率和输入功率,并使用以下公式进行计算:效率= (输出功率/ 输入功率) * 1002.3 影响交错并联反激变换器效率的因素交错并联反激变换器的效率受多个因素影响。

其中主要包括以下几点:a) 开关损耗:开关元件(如MOSFET或IGBT)在切换过程中会产生一定的损耗,这会降低整体效率。

电源拓扑结构介绍----正激和反激

电源拓扑结构介绍----正激和反激

TX2
* ***
36 V2 IRF530 R2 C2
TX1
D1N4148
* ***
36 V1 R1 C1
R1 C1
***
***
Q2
(a)Q导通
2012-10-31
(b) Q关断
(C) Q关断,电 20 流断续
3. 反激变换器的工作原理分析
下面讨论flyback工作在电流连续模式下的工作原理:
2012-10-31
5
2012-10-31
2. 带复位绕组的正激变换器的工作原理分析
正激变换器的主要理论波形
2012-10-31 6
下面讨论电感电流连续时forward变换器的工作原理:
1. 模态1 [对应于图 (a)] 在t=0时,Q1导通,Vin通过Q1 加 在原边绕组W1上,因此铁芯磁化,铁芯磁通Ø增加:
在t=Ton时,铁芯磁通Ø的增加量为Vin/W1*D*Ts。 那么副边绕组W2上的电压为:Vw2=W2/W1*Vin=Vin/K12。 式中,K12=W1/W2是原边与副边绕组的匝比。
此时,整流二极管D1 导通,续流二极管D2截止,滤波电
感电流iL1线性增加,这与buck变换器中开关管Q1导通时一样, 只是电压为Vin/K12。
2. 模态2 [对应于图 (b)] 在Ton时刻,关断Q1, 原边绕组和副边绕组中没有电流流过,此时变压器 通过复位绕组进行磁复位,励磁电流iM从复位绕组 W3经过二极管D3回馈到输入电源中去。那么复位 绕组上的电压为:Vw3=-Vin;原边绕组上的电压为: Vw1=-K13*Vin;副边绕组上的电压为:Vw2=-K23*Vin。
D2 D1N4148 C1
R1
Q1
W3

单端反激变换器分析及仿真_赵敏

单端反激变换器分析及仿真_赵敏

科技信息2014年第1期SCIENCE&TECHNOLOGYINFORMATION0引言开关稳压电源核心部分是直流变换器,以内部功率损耗小、转换效率高、体积小、重量轻的优点被广泛应用。

高频功率场效应管的采用,以及新型拓扑技术和集成更多控制和监视功能的小型PWM 集成芯片的出现大大减小了电源的体积。

开关稳压电源工作频率基本在50KHZ 以上,是线性稳压电源工作频率的1000倍以上,使得开关电源滤波效率大大提高。

随着电子技术和应用的迅速发展,开关稳压电源在仪器仪表、计算机、通信、医疗仪器等方面得到了越来越多的广泛应用,发挥了不可取代的巨大作用。

按功率开关的连接方式划分,开关稳压电源分为单端正激式开关电源电路、单端反激式开关电源电路、推挽式开关电源电路。

本文采用单端反激式开关稳压电源电路并在电感电流连续导电模式工作,同时采用高性能固定频率电流模式控制器UC3842驱动开关管,并通过电流电压反馈网络使得输出更精准。

在理论分析同时通过仿真软件saber 进行了验证。

1反激变换器工作原理图1反激变换器图2工作于连续模式原理图下的电感电流如图1所示电路的工作原理如下。

该电路输出接负反馈闭环的采样电压Vom 与参考电压比较,产生的误差信号控制Q1的导通时间,是输出采样电压在负载变化和输入电压变化时跟随参考电压变化。

图中所示变压器为反激变换器类型。

Q1导通时初级绕组就有电流通过,Np 的电压恒定,其电流线性上升,设二极管导通压降为1V,斜率为d i /d t =(V dc -1)/L p 。

在导通之前初级电流上升达到I p =(V dc -1)T on /L p ,L p 为初级励磁电感,整流二极管D1由于反向偏置而截止,因此次级绕组中没有电流I s 通过,初级绕组耦合到次级绕组的能量以磁能形式存在次级绕组中,能量为E =L p (I p )22°当Q1截止时变压器感应的电压与输入电压正好相反,使得二极管正向偏置导通,储存在次级绕组中的磁能以电能形式释放给负载电路,在Q1关断瞬间,次级电流幅值为I s =I p (N p /N m )。

反激变换器dcm模式公式推导

反激变换器dcm模式公式推导

反激变换器dcm模式公式推导反激变换器(flyback converter)是一种常见的开关电源拓扑结构之一,其工作原理基于电感储能和开关器件的周期性开关。

当反激变换器处于离散(DCM)模式时,输入电压和输出电压之间的关系可以通过以下公式进行推导:1. 设定以下符号和参数:- $V_{in}$:输入电压- $V_{out}$:输出电压- $D$:开关周期内开关器件导通时间比例(占空比)- $T$:开关周期- $D_{max}$:开关器件最大导通时间比例- $L$:电感器- $C$:输出电容- $N$:变压器变比- $f_s$:开关频率- $V_c$:电容器电压(很小时,近似等于$V_{out}$)- $i_L$:电感器电流2. 离散(DCM)模式下,开关周期分为两个阶段:- Tonic(升压)阶段:开关器件导通,电感器储能- Fly(负载释放)阶段:开关器件关断,电感器释放能量给负载3. 在Tonic阶段,电感器电流的变化率为:$\frac{di_L}{dt} = \frac{V_{in} - V_c}{L}$4. 在Fly阶段,电感器电流的变化率为:$\frac{di_L}{dt} = \frac{-V_c}{L}$5. 因为电感器电流在升压阶段和负载释放阶段之间变化,所以我们可以将Tonic阶段中的电流变化时间分为两个阶段:- $t_{on,1}$:电压从0到$V_c$的时间- $t_{on,2}$:电压从$V_c$下降到0的时间6. 根据电感器电流变化率的方程,我们可以得到:$\frac{di_L}{dt}=\begin{cases}\frac{V_{in}-V_c}{L},&0\leq t\leq t_{on,1}\\\frac{-V_c}{L},&t_{on,1}\leq t \leq (t_{on,1}+t_{on,2})\\\end{cases}$7. 针对两个阶段的电流变化率方程,我们可以对其进行积分得到电感器电流的表达式:$i_L(t)=\begin{cases}\frac{V_{in}}{L}t,&0\leq t \leq t_{on,1} \\\frac{V_{in}}{L}t_{on,1} -\frac{V_c}{L}(t-t_{on,1}),&t_{on,1}\leq t\leq (t_{on,1}+t_{on,2}) \\\end{cases}$8. 在Fly阶段的t时刻,电感器电流$i_L(t)$降为0,因此:$\frac{V_{in}}{L}t_{on,1} - \frac{V_c}{L}(t_{on,1}+t_{on,2}) = 0$推导得到:$t_{on,1} = \frac{V_c}{V_{in}}(t_{on,1}+t_{on,2})$9. 在Tonic阶段的电感器电能变化为:$E_{L,1} = \frac{1}{2}L(i_L(t_{on,1})^2 - 0^2) = \frac{1}{2}L(\frac{V_{in}}{L}t_{on,1})^2 =\frac{1}{2}\frac{V_{in}^2}{L}t_{on,1}^2$10. 在Fly阶段的电感器电能变化为:$E_{L,2} = \frac{1}{2}L(0^2 - (-\frac{V_c}{L}(t_{on,1}+t_{on,2}))^2 =\frac{1}{2}\frac{V_c^2}{L}(t_{on,1}+t_{on,2})^2$11. 根据能量守恒的原理,Tonic阶段的能量改变和Fly阶段的能量改变之和应等于0:$E_{L,1} + E_{L,2} = \frac{1}{2}\frac{V_{in}^2}{L}t_{on,1}^2 +\frac{1}{2}\frac{V_c^2}{L}(t_{on,1}+t_{on,2})^2 = 0$12. 根据上述能量守恒的方程,我们可以解出$t_{on,1}$和$t_{on,2}$的关系:$(V_{in}^2)t_{on,1}^2 + (V_c^2 + 2V_{in}V_c)t_{on,1}t_{on,2} + (V_c^2)t_{on,2}^2 = 0$13. 这是关于未知数$t_{on,1}$和$t_{on,2}$的二次方程,可以使用求根公式求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激变换器工作原理
反激变换器(Flybacktransformer)是一种单端、双边输出电源设备,主要用于小功率应用,如电源电路、转换器等。

反激变换器利用磁性回线(flyback)及反激自动调节稳定输出电压。

它可以有效
地克服占空比的变化所导致的输出变化,常用于交流至直流的转换中。

反激变换器是一种单端变换器,其输入由一个线圈和一个驱动电路组成,输出主要来自另一个线圈,由一个具有反激特性的电感和一个二极管构成。

在反激变换器中,输入电压由控制电路引入,依照变换器的结构进行控制,通过控制电路的控制信号,使输入的电流在负载和反馈电路的反馈信号的变化中不断调整,在调节过程中,反激变换器采用了一个反激特性的电感为主体,它可以有效的平衡负载电流,从而实现稳定的工作电流。

反激变换器的控制电路可以采用多种方式来实现,其中最常用的就是半桥调制和三端稳压控制,这也是现在电源模块中最常采用的控制方式。

这两种控制方式都可以通过控制电路的调制以及二极管的操作,将输入的AC电压转换为输出的直流电压,使输出电流与负载的
变化保持一致,从而保证了输出电压的稳定性。

另外,反激变换器还可以采用多种方式进行改进和改进,以节约能源和提高性能,例如采用永磁驱动、多路控制等技术。

其中,永磁驱动可以缩短变换器内部损耗时间,提高输出电压变化速率;而多路控制可以更有效的利用电流,使变换器的效率更高。

以上就是反激变换器的工作原理,它是当今电子设备中应用最广
泛的电源设备,可以有效提高电源的效率和稳定性,同时能够节省电能,从而节约成本。

总的来说,反激变换器的优点极其明显,它提供了一个简单而又有效的方法,用于交流至直流的转换,为电子设备的应用发挥了重要作用。

相关文档
最新文档