弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)
辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。
弧长、扇形、及圆锥侧面积

弧长、扇形面积及圆锥侧面积教学目标1. 理解弧长和扇形面积公式,并会计算弧长和扇形的面积.2. 经历探索弧长及扇形面积计算公式的过程,感受转化、类比的数学思想,培养学生的探索能力.3. 了解母线的概念,掌握圆锥的侧面积计算公式,并会应用公式解决问题.4. 经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.5. 通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系.教学重点1. 经历探索弧长及扇形面积、圆锥侧面积计算公式的过程.2. 掌握弧长及扇形面积计算公式,会用公式解决问题.教学难点弧长及扇形面积、圆锥侧面积计算公式的推导过程.教学内容:知识结累:1.弧长的计算公式: .2.扇形面积的计算公式:S 扇形= = 。
课前练习:1.扇形的圆心角为120°,半径为6,扇形的弧长2.一扇形的弧长为π12,圆心角为120°,扇形的面积3. 一个扇形的弧长是π24,面积是π240,扇形的圆心角例题解析:例1.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为( )A .B .C .D .过手练习:1.如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD 和扇形A 1D 1C 1,使A 1D 1=AD ,D 1C 1=DC ,正方形面积为P ,扇形面积为Q ,那么P 和Q 的关系是( )A .P <QB .P=QC .P >QD .无法确定2.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A.πB.2πC.D.4π3.如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为()A.B.C.D.例2.如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.( +1)cm2C.1cm2D.cm2过手练习:=()1.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影A.πB.2πC. D.π2.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是()A.B.C.D.3.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为______.课堂检测:1.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2 2.如图,是某公园的一角,∠AOB=90°,的半径OA长是6米,点C是OA 的中点,点D在上,CD∥OB,则图中草坪区(阴影部分)的面积是()A.(3π+)平方米B.(π+)平方米C.(3π+9)平方米D.(π﹣9)平方米知识结累:圆锥的侧面积公式:S侧面积= 。
弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略(解析版)-初中数学

弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略【考点导航】目录【典型例题】【考点一已知圆心角的度数,求弧长】【考点二已知弧长,求圆心角的度数】【考点三求某点的弧形运动路径长度】【考点四已知圆心角的度数或弧长,求扇形的面积】【考点五求图形旋转后扫过的面积】【考点六求弓形的面积】【考点七求其他不规则图形的面积】【考点八求圆锥的侧面积与底面半径】【考点九求圆锥侧面展开图的圆心角】【考点十圆锥侧面上最短路径问题】【过关检测】22【典型例题】【考点一已知圆心角的度数,求弧长】1(2023秋·江苏·九年级专题练习)已知扇形的半径为3cm ,圆心角为150°,则该扇形的弧长为cm .【答案】52π/2.5π【分析】直接利用弧长公式进行计算即可.【详解】解:∵L =n πr180,扇形的半径为3cm ,圆心角为150°,∴扇形的弧长L =150π×3180=52π,故答案为:52π.【点睛】本题主要考查了弧长公式的应用,熟练掌握弧长公式:L =n πr180是解题的关键.【变式训练】1(2023·浙江湖州·统考一模)一个扇形的半径为4,圆心角为90°,则此扇形的弧长为.【答案】2π【分析】利用弧长公式进行计算即可.【详解】解:弧长为=90180π×4=2π;故答案为:2π【点睛】本题考查求弧长.熟练掌握弧长公式,是解题的关键.2(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.【考点二已知弧长,求圆心角的度数】1(2023·黑龙江哈尔滨·统考三模)一个扇形的面积为10π,弧长为10π3,则该扇形的圆心角的度数为.【答案】100°/100度【分析】根据弧长和扇形面积关系可得S =12lR ,求出R ,再根据扇形面积公式求解.【详解】∵一个扇形的弧长是10π3,面积是10π,∴S =12lR ,即10π=12×10π3R ,解得:R =6,∴S =10π=n π×62360,解得:n =100°,故答案为:100°.【点睛】本题考查了扇形面积的计算;弧长的计算.熟记公式,理解公式间的关系是关键.【变式训练】1(2023·江苏镇江·统考二模)扇形的弧长为6π,半径是12,该扇形的圆心角为度.【答案】90【分析】设此扇形的圆心角为x °,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x °,由题意得,12πx180=6π,解得,x =90,故答案为:90.【点睛】本题考查的是弧长的计算,掌握弧长的公式l =n πr180是解题的关键.2(2023·浙江温州·校考三模)若扇形半径为4,弧长为2π,则该扇形的圆心角为.【答案】90°/90度【分析】设扇形圆心角的度数为n ,根据弧长公式即可得出结论.【详解】解:设扇形圆心角的度数为n ,∵扇形的弧长为2π,∴n π×4180°=2π,∴n =90°.故答案为:90°.【点睛】本题考查的是扇形的面积公式,熟记扇形的面积公式及弧长公式是解答此题的关键.【考点三求某点的弧形运动路径长度】1(2023秋·云南昭通·九年级校联考阶段练习)如图,在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A OB ,其中点A 与点A 对应,点B 与点B 对应.如果A -4,0 ,B -1,2 .则点A 经过的路径长度为(含π的式子表示)【答案】2π【分析】A 点坐标为已知,求出OA 长度,再利用弧长公式l =n πr180求解即可.【详解】解:∵A -4,0如图,由题意A 点以原点O 旋转中心旋转了90°∴点A 经过的路径AA的长度=90⋅π×4180=2π故答案为:2π.【点睛】本题考查图形的旋转、弧长等知识点,需要熟练掌握弧长计算公式.【变式训练】1(2023·湖南郴州·统考中考真题)如图,在Rt △ABC 中,∠BAC =90°,AB =3cm ,∠B =60°.将△ABC 绕点A 逆时针旋转,得到△AB C ,若点B 的对应点B 恰好落在线段BC 上,则点C 的运动路径长是cm (结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.2(2023·广东东莞·校考一模)如图,△ABC 和△A B ′C ′是两个完全重合的直角三角板,∠B =30°,斜边长为12cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,则点A ′所转过的路径长为cm .【答案】2π【分析】根据三角形内角和和含30度的直角三角形三边的关系得到∠A =60°,AC =12AB =6cm ,再根据旋转的性质得CA ′=CA ,于是可判断△CAA ′为等边三角形,所以∠ACA ′=60°,然后根据弧长公式计算弧AA ′的长度即可.【详解】∵∠ACB =90°,∠B =30°,AB =12cm ,∴∠A =60°,AC =12AB =6cm ,∵三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上,∴CA ′=CA ,∴△CAA ′为等边三角形,∴∠ACA ′=60°,∴弧AA ′的长度=60°π×6180°=2πcm ,即点A ′所转过的路径长为2πcm .答案为:2π.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了弧长公式.【考点四已知圆心角的度数或弧长,求扇形的面积】1(2023·江苏·九年级假期作业)已知扇形的圆心角为80°,半径为3cm ,则这个扇形的面积是cm 2.【答案】2π【详解】根据扇形的面积公式即可求解.【分析】解:扇形的面积=80π×32360=2πcm 2 .故答案是:2π.【点睛】本题主要考查了扇形的面积公式,熟练掌握扇形面积公式是解题的关键.【变式训练】1(2023·黑龙江哈尔滨·哈尔滨市第十七中学校校考模拟预测)一个扇形的弧长是8πcm ,圆心角是144°,则此扇形的面积是.【答案】40π【分析】设该扇形的半径为rcm ,然后根据弧长公式计算半径,然后根据扇形面积公式计算即可.【详解】解:设该扇形的半径为rcm ,由题意得:144πr180=8π,解得:r =10,S 扇形=12lr =12×8π×10=40π,故答案为:40π.【点睛】本题主要考查弧长计算公式及扇形面积计算公式,熟练掌握弧长计算公式和扇形面积计算公式是解题的关键.2(2023·海南海口·海师附中校考三模)如图,正五边形ABCDE 的边长为4,以顶点A 为圆心,AB 长为半径画圆,则图中阴影部分的面积是.【答案】245π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【详解】解:∵正五边形的外角和为360°,∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°-72°=108°,∵正五边形的边长为4,∴S 阴影=108⋅π×42360=245π,故答案为:245π.【点睛】本题考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【考点五求图形旋转后扫过的面积】1(2023·河南安阳·统考一模)如图,将半径为1,圆心角为60°的扇形OAB 绕点A 逆时针旋转36°,得到扇形OAB,则AB扫过的区域(即图中阴影部分)的面积为.【答案】π10【分析】结合已知条件及旋转性质,根据面积的和差可得S 阴影=S 扇形BAB,然后利用扇形面积公式计算即可.【详解】∵OA =OB =1,∠AOB =60°,∴△AOB 为等边三角形,∴AB =OA =1,由旋转性质可得,∠OAO =∠BAB =36°,S △AOB =S △AO B,则S 阴影=S 扇形BAB+S △AOB -S 扇形AOB +S 扇形AO B-S △AO B,=S 扇形BAB,=36π×12360,=π10,故答案为:π10.【点睛】此题考查了扇形的面积及旋转性质,结合已知条件将阴影部分面积转化为扇形的面积是解题的关键.【变式训练】1(2022春·四川德阳·九年级校考阶段练习)如图,将△ABC 绕点C 顺时针旋转120°得到△A B C ,已知AC =3,BC =2,则线段AB 扫过的图形(阴影部分)的面积为.【答案】5π3/53π【分析】由于将△ABC 绕点C 旋转120°得到△A B C ,可见,阴影部分面积为扇形ACA ′减扇形BCB ′,分别计算两扇形面积,在计算其差即可.【详解】解:从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是120°,所以阴影面积=大扇形面积-小扇形面积=120π×32-22 360=53π【点睛】本题考查了扇形面积的计算和阴影部分的面积,将阴影部分面积转化为两扇形面积的查是解题的关键.2(2022秋·山东烟台·九年级统考期末)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =8,将△ABC 绕点A 按逆时针方向旋转到△A B C 的位置,使C 、A 、B 三点在同一条直线上,则直角边BC 扫过的图形面积为.【答案】16π【分析】根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,因此直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,因为S △ABC=S △ABC ,因此S =S 扇形BAB-S 扇形CAC ,代入数值即可求得答案.【详解】解:根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,△ABC ≌△AB C ,所以直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,由于S △ABC=S △ABC ,所以S =S 扇形BAB -S 扇形CAC =120°×π×82360°-120°×π×42360°=64π3-16π3=16π,故答案为:16π.【点睛】本题考查了轨迹问题,关键是根据旋转的性质,找出BC 扫过的面积构成,利用扇形的面积公式计算即可.【考点六求弓形的面积】1(2023·云南昆明·昆明八中校考模拟预测)如图,在扇形OAB 中,∠AOB =90°,OA =6,则阴影部分的面积是.【答案】9π-18【分析】利用扇形的面积减去三角形的面积,即可得解.【详解】∵OA =OB =6,∠AOB =90°,∴S 阴=S 扇形OAB -S △AOB =90π×62360-12×6×6=9π-18.故答案为:9π-18.【点睛】本题考查求阴影部分的面积.熟练掌握割补法求面积,是解题的关键.【变式训练】1(2023·山东泰安·统考二模)如图C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,则阴影部分的面积是【答案】23π-3【分析】设AB 的中点为O ,连接OD ,OC ,用扇形COD 的面积减去△COD 的面积即可得出结果.【详解】解:设AB 的中点为O ,连接OD ,OC ,∵C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,∴OD =OC =2,∠DOB =90°,∠COB =2∠BAC =30°,∴∠DOC =∠DOB -∠COB =60°,∴△COD 为等边三角形,∴CD =OD =OC =2,过点O 作OE ⊥CD ,则:CE =12CD =1,∴OE =OC 2-CE 2=3,∴阴影部分的面积=S 扇形COD -S △COD =60π×22360-12×2×3=23π-3;故答案为:23π-3.【点睛】本题考查求弓形的面积,同时考查了圆周角定理,等边三角形的判定和性质.将阴影部分的面积转化为扇形的面积减去三角形的面积,是解题的关键.2(2023·河南周口·校联考三模)如图,在△ABC 中,BC =BA =4,∠C =30°,以AB 中点D 为圆心、AD 长为半径作半圆交线段AC 于点E ,则图中阴影部分的面积为.【答案】4π3-3【分析】连接DE ,BE ,然后根据已知条件求出∠ABE =60°,AE =23,从而得到∠ADE =120°,最后结合扇形的面积计算公式求解即可.【详解】解:如图,连接DE ,BE .∵AB 为直径,∴∠BEA =90°.∵BC =BA ,∴∠BAC =∠BCA =30°,∴∠ABE =60°,BE =12AB =2,AE =3BE =32AB =23,∵BD =DE ,∴△BDE 是等边三角形,∴∠ADE =120°,∴阴影部分的面积=S 扇形DAE -S △ADE=120π×22360-12S △ABE=120π×22360-12×12×23×2=4π3-3=4π3-3.故答案为:4π3-3.【点睛】本题考查阴影部分面积计算问题,涉及到扇形面积计算,等边三角形的判定与性质,直径所对的圆周为直角等,掌握扇形面积计算公式是解题关键.【考点七求其他不规则图形的面积】1(2023春·河南漯河·九年级校考阶段练习)图1是以AB 为直径的半圆形纸片,AB =8,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 向右平移至扇形O A C ,如图2,其中O 是OB 的中点,O C 交BC于点F ,则图中阴影部分的面积为.【答案】8π3-23【分析】根据题意和图形,利用勾股定理,可以求得O F 的长,再根据图形,可知阴影部分的面积=扇形COB 的面积∽△OO F 的面积-扇形OFC 的面积,计算即可.【详解】解:连接OF ,由题意可得,OB =4,OO =2,∠OO F =90°,∴∠OFO =30°,∴∠O OF =60°,∴O F =23,∴阴影部分的面积是:90π×42360-2×232-30×π×42360=8π3-23,故答案为:8π3-23.【点睛】本题考查扇形面积的计算、平移的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式训练】1(2023·河南信阳·统考一模)如图,正五边形ABCDE 的边长为1,分别以点C ,D 为圆心,CD 长为半径画弧,两弧交于点F ,图中阴影部分的面积为.(结果保留π)【答案】32-π15【分析】连接CF ,DF ,由CF =DF =CD =1,得∠FCD =∠FDC =60°,求出∠FCD =∠FDC =60°,根据公式求出S 扇形BCF ,S 正△CFD ,S 扇形CDF ,即可得到阴影面积.【详解】如图,连接CF ,DF ,由题意,得∠BCD =(5-2)×180°5=108°,∵CF =DF =CD =1,∴∠FCD =∠FDC =60°,∴∠BCF =108°-60°=48°,∴S 扇形BCF =48π×12360=2π15,S 正△CFD =34×12=34,S 扇形CDF =60π×12360=π6,∴S 阴影BCF =2π15+34-π6=34-π30,∴S 阴影=34-π30 ×2=32-π15,故答案为:32-π15.【点睛】此题考查了求不规则图形的面积,扇形面积公式,正多边形的性质,正确理解图形面积的计算方法连接辅助线是解题的关键.2(2023·河南南阳·统考模拟预测)如图,在矩形ABCD 中,AD =2,AB =1,以D 为圆心,以AD 长为半径画弧,以C 为圆心,以CD 长为半径画弧,两弧恰好交于BC 上的点E 处,则阴影部分的面积为.【答案】12【分析】如图,连接DE ,根据勾股定理,得DE =2,根据阴影部分的面积S 1为:扇形AED 的面积减去S 2,根据S 2的等于扇形DCE 的面积减去S 3,即可求解.【详解】解:连接DE ,如图:∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,AB =DC =1,∵EC =DC =1,∴∠CDE =45°,∴∠ADE =45°,∴扇形DAE 的面积为:45π×2 2360=π4,∵S 2=S 扇形DCE -S 3=90π×12360-12×1×1=π4-12,∴阴影部分的面积为:S 1=S 扇形ADE -S 2=π4-π4-12 =12.故答案为:12.【点睛】本题考查矩形的性质,扇形的面积,三角形面积,解题的关键是掌握扇形的面积公式,矩形的性质.【考点八求圆锥的侧面积与底面半径】1(2023·全国·九年级专题练习)若圆锥的底面圆半径为2,母线长为5,则该圆锥的侧面积是.(结果保留π)【答案】10π【分析】根据圆锥的底面圆半径为2,母线长为5,直接利用圆锥的侧面积公式求出即可.【详解】解:根据圆锥的侧面积公式:πrl=π×2×5=10π,故答案为:10π.【点睛】本题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.【变式训练】1(2023春·云南昭通·九年级统考期中)若圆雉的侧面积为12π,底面圆半径为3,则该圆雉的母线长是.【答案】4【分析】根据圆锥的侧面积=πrl,列出方程求解即可.【详解】解:∵圆锥的侧面积为12π,底面半径为3,3πl=12π.解得:l=4,故答案为:4.【点睛】本题考查了圆锥的侧面积,解题关键是熟记圆锥的侧面积公式,列出方程进行求解.2(2023·广东梅州·统考一模)若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为cm2.(结果保留π)【答案】12π【分析】根据圆锥的侧面积公式计算即可.【详解】解:∵圆锥的底面半径为3cm,母线长为4cm,∴圆锥的侧面积为12×2×3π×4=12πcm2.故答案为:12π.【点睛】本题主要考查了圆锥的侧面积,属于简单题,熟练掌握扇形面积公式是解题关键.3(2023·江苏·九年级假期作业)已知圆锥侧面展开图圆心角的度数是120°,母线长为3,则圆锥的底面圆的半径是.【答案】1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=120×π×3180,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得2πr=120×π×3180,解得r=1.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4(2023·浙江衢州·统考二模)某个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则这个圆锥的底面半径为cm.【答案】2【分析】把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【详解】解:设此圆锥的底面半径为rcm,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=120π×6180,r=2故答案为2.【点睛】此题考查了圆的周长和圆弧长的计算,熟练掌握它们的计算公式是解题的关键.【考点九求圆锥侧面展开图的圆心角】1(2022秋·广东惠州·九年级校考阶段练习)已知圆锥的底面圆半径是2,母线长是4,则圆锥侧面展开的扇形圆心角是.【答案】180°/180度【分析】根据圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】解:∵圆锥底面半径是2,∴圆锥的底面周长为4π,设圆锥的侧面展开的扇形圆心角为n°,∴nπ×4180=4π,解得:n=180,∴圆锥侧面展开的扇形圆心角是180°.故答案为:180°.【点睛】本题考查求圆锥侧面展开图的圆心角.掌握圆锥的侧面展开图的弧长等于圆锥的底面周长是解题的关键.【变式训练】1(2023·江苏·九年级假期作业)已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为,圆锥侧面展开图形的圆心角是度.【答案】15π216【分析】根据圆锥的侧面积公式S侧=πrl即可求解该圆锥的侧面积;结合弧长公式求出圆锥侧面展开图形的圆心角即可.【详解】解:圆锥的侧面积S侧=π×3×5=15π,圆锥的底面周长L=2π×3=6π,扇形圆心角=180×6ππ×5=216°.故答案为:15π,216.【点睛】本题主要考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.2(2023·江苏·九年级假期作业)若要制作一个母线长为9cm,底面圆的半径为4cm的圆锥,则这个圆锥的侧面展开图的圆心角度数是.【答案】160°/160度【分析】利用圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系计算,即可求解.【详解】解:设这个圆锥的侧面展开图的圆心角的度数是n,根据题意得:2π×4=n π×9180,解得n =160,即这个圆锥的侧面展开图的圆心角是160°,故答案为:160°.【点睛】本题考查了圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系,明确圆锥的底面圆的周长=扇形的弧长是解答本题的关键.【考点十圆锥侧面上最短路径问题】1(2023秋·山东东营·九年级东营市胜利第一初级中学校考期末)如图,已知圆锥底面半径为20cm ,母线长为60cm ,一只蚂蚁从A 处出发绕圆锥侧面一周(回到原来的位置A )所爬行的最短路径为cm .(结果保留根号)【答案】603【分析】把圆锥的侧面展开得到圆心角为120°,半径为60的扇形,求出扇形中120°的圆心角所对的弦长即为最短路径.【详解】解:圆锥的侧面展开如图:过S 作SC ⊥AB ,∴AC =BC设∠ASB =n °,即:2π×20=n π×60180,得:n =120,∴∠ASC =60°∴AC =AS ×sin ∠ASC =60×32=303∴AB =2AC =603,故答案为:603.【点睛】本题考查了圆锥侧面展开图的圆心角,特殊角的锐角三角函数值,将圆锥中的数据对应到展开图中是解题的关键.【变式训练】1(2023春·黑龙江齐齐哈尔·九年级校联考期中)如图,AB 是圆锥底面的直径,AB =6cm ,母线PB=9cm .点C 为PB 的中点,若一只蚂蚁从A 点处出发,沿圆锥的侧面爬行到C 点处,则蚂蚁爬行的最短路程为.【答案】932/923【分析】先画出圆锥侧面展开图(见解析),再利用弧长公式求出圆心角∠APA 的度数,然后利用等边三角形的判定与性质、勾股定理可得AC =932,最后根据两点之间线段最短即可得.【详解】画出圆锥侧面展开图如下:如图,连接AB 、AC ,设圆锥侧面展开图的圆心角∠APA 的度数为n °,因为圆锥侧面展开图是一个扇形,扇形的弧长等于底面圆的周长,扇形的半径等于母线长,所以n π×9180=2π×3,解得n =120,则∠APB =12APA =60°,又∵AP =BP =9,∴△ABP 是等边三角形,∵点C 为PB 的中点,∴AC ⊥BP ,CP =12BP =92,在Rt △ACP 中,AC =AP 2-CP 2=932,由两点之间线段最短可知,蚂蚁爬行的最短路程为AC =932,故答案为:932.【点睛】本题考查了圆锥侧面展开图、弧长公式、等边三角形的判定与性质等知识点,熟练掌握圆锥侧面展开图是解题关键.2(2022秋·重庆沙坪坝·八年级重庆八中校考期中)如图1,一只蚂蚁从圆锥底端点A 出发,绕圆锥表面爬行一周后回到点A ,将圆锥沿母线OA 剪开,其侧面展开图如图2所示,若∠AOA =120°,OA =3,则蚂蚁爬行的最短距离是.【答案】3【分析】连接AA ′,作OB ⊥AA ′于点B ,根据题意,结合两点之间线段最短,得出AA ′即为蚂蚁爬行的最短距离,再根据三角形的内角和定理得出∠OAB =30°,再根据直角三角形中30°所对的直角边等于斜边的一半,得出OB =32,再根据勾股定理,得出AB =32,再根据三线合一的性质,得出AB =A ′B ,再根据线段之间的数量关系,得出AA ′=3即可解答.【详解】解:如图,连接AA ′,作OB ⊥AA ′于点B ,∴AA ′即为蚂蚁爬行的最短距离,∵OA =OA ′,∠AOA ′=120°,∴∠OAB =30°,在△OAB 中,OB ⊥AA ′,∠OAB =30°,∴OB =12OA =12×3=32,∴AB =OA 2-OB 2=3 2-32 2=32,在△AOA ′中,OA =OA ′,OB ⊥AA ′,∴AB =A ′B ,∴AA ′=2AB =2×32=3.∴蚂蚁爬行的最短距离为3.故答案为:3【点睛】本题考查了圆锥侧面上最短路径问题、三角形的内角和定理、直角三角形的特征、勾股定理、三线合一的性质等知识点,正确作出辅助线、构造等腰三角形和直角三角形是解题的关键.【过关检测】一、单选题1(2023·黑龙江哈尔滨·哈尔滨市第四十七中学校考模拟预测)一个扇形的半径是4cm ,圆心角是45°,则此扇形的弧长是()A.πcmB.2πcmC.4πcmD.8πcm 【答案】A【分析】根据弧长公式进行计算即可.【详解】解:由题意得,扇形的半径为4cm,圆心角为45°,故此扇形的弧长为45π×4180=πcm,故选:A.【点睛】此题考查了扇形弧长的计算,属于基础题,解答本题的关键是熟练掌握弧长计算公式,难度一般.2(2023·浙江温州·校联考三模)已知圆锥的底面半径为4,母线长为5,则圆锥的侧面积为() A.8π B.10π C.12π D.20π【答案】D【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解.【详解】解:根据题意可得:圆锥的侧面积为:π×4×5=20π,故选:D.【点睛】本题考查了圆锥的侧面积展开图公式,解题的关键是掌握圆锥的侧面积的计算公式:圆锥的侧面积=π×底面半径×母线长.3(2023秋·江苏·九年级专题练习)如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A B C的位置.若BC的长为7.5cm,那么顶点A从开始到结束所经过的路径长为()A.10πcmB.103πcmC.15πcmD.20πcm【答案】A【分析】顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径的圆弧,旋转的角度是180°-60°=120°,所以根据弧长公式可得.【详解】解:在含有30°角的直角三角板ABC中,∠ACB=60°,BC=7.5cm,∴∠ACA =120°,AC=2BC=15cm,∴120π×15180=10πcm,故选:A.【点睛】本题考查弧长公式,解题的关键是弄准弧长的半径和圆心角的度数.4(2023秋·江苏·九年级专题练习)如图,在扇形AOB中,∠AOB=90°,半径OA=3,将扇形AOB沿过点B的直线折叠,使点O恰好落在AB上的点D处,折痕为BC,则阴影部分的面积为()A.3π-332B.9π4-33 C.π-34D.3π-34【答案】B【分析】连接OD ,由折叠的性质可得CD =CO ,BD =BO ,∠DBC =∠OBC ,从而得到△OBD 为等边三角形,再求出∠CBO =30°,从而得出OC =3,进行得出S △BOC =332,最后由△BOC 与△BDC 面积相等及S 阴影=S 扇形AOB -S △BOC -S △BDC ,进行计算即可得到答案.【详解】解:如图,连接OD ,,根据折叠的性质,CD =CO ,BD =BO ,∠DBC =∠OBC ,∴OB =BD =OD ,∴△OBD 为等边三角形,∴∠DBO =60°,∴∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB ⋅tan ∠CBO =3×33=3,∴S △BOC =12OB ⋅OC =332,∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB -S △BOC -S △BDC =14π×32-332-332=94π-33,故选:B .【点睛】本题主要考查了等边三角形的判定与性质、折叠的性质、扇形面积的计算-求不规则图形的面积,添加适当的辅助线,得到S 阴影=S 扇形AOB -S △BOC -S △BDC 是解题的关键.5(2023·辽宁抚顺·统考一模)如图1是一块弘扬“社会主义核心价值观”的扇面宜传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =3m ,OB =1.5m ,则阴影部分的面愁为()A.4.25πm 2B.25πm 2C.3πm 2D.2.25πm 2【答案】D【分析】根据S 阴影=S 扇形DOA -S 扇形BOC 计算即可.【详解】S 阴影=S 扇形DOA -S 扇形BOC =120π×9360-120π×94360=2.25πm 2故选:D .【点睛】本题考查的是扇形面积的计算,掌握扇形的面积公式S =n πR 2360是解题的关键.二、填空题6(2023·福建福州·福建省福州第一中学校考模拟预测)圆锥母线长l =8,底面圆半径r =2,则圆锥侧面展开图的圆心角θ是.【答案】90°/90度【分析】根据弧长公式,弧长与圆锥底面圆的周长相等,建立等式计算即可.【详解】∵圆锥母线长l =8,底面圆半径r =2,圆锥侧面展开图的圆心角θ,∴2πr =θπl180,∴θ=360×2×π8π=90°,故答案为:90°.【点睛】本题考查了圆锥的侧面展开,弧长公式,熟练掌握展开的特点,牢记弧长公式是解题的关键.7(2023秋·河北唐山·九年级统考期末)如图,半圆O 的直径AB =6,弦CD =3,AD的长为34π,则BC的长为.【答案】5π4【分析】由题意可知:△OCD 是等边三角形,从而可求出弧CD 的长度,再求出半圆弧的长度后,即可求出弧BC 的长度.【详解】解:连接OD 、OC ,∵CD =OC =OD =3,∴△CDO 是等边三角形,∴∠COD =60°,∴CD 的长=60⋅π×3180=π,又∵半圆弧的长度为:12×6π=3π,∴BC =3π-π-3π4=5π4.故答案为:5π4【点睛】本题考查圆了弧长的计算,等边三角形的性质等知识,属于中等题型.8(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.9(2023·吉林长春·校联考二模)如图,AB 是⊙O 的直径,AB =4,点C 在⊙O 上(点C 不与A 、B 重合),过点C 作⊙O 的切线交AB 的延长线于点D ,连接AC .若∠D =45°,则BC的长度是(结果保留π)【答案】π2/12π【分析】连接OC ,根据切线的性质,得出∠OCD =90°,再根据三角形的内角和定理,得出∠DOC =45°,即∠BOC =45°,再根据圆的基本概念,得出OB =2,再根据弧长公式,计算即可.【详解】解:如图,连接OC ,∵CD 是⊙O 的切线,∴CD ⊥OC ,。
1.9 弧长和扇形的面积,圆锥的侧面展开图 课件(湘教版九年级下)

已知一个半径为r的圆,如何求它的一段圆弧的长度呢? 我知道圆周长c=2r,其中 r是圆的半径,求圆弧长 我还不会.
1.由于在同一个圆中,相等的圆心角所对的弧相等,因此:1° 的圆心角所对弧长为
1 2 πr 360
2.从第1小题的结论可以得出:n°的圆心角所对的弧长l为
O
·
1°
l
1 2 πr 360 n _______ .
277 π 3.2 277 3.14 3.2 解: l (cm) 180 180
A
O ·
B
义务教育课程标准实验教科书 SHUXUE 九年级下
湖南教育出版社
3.4
弧长和扇形的面积,圆锥的侧
说一说
在同一个圆中,如果圆心角相等,那么它们所对的弧相等吗?
相等
这是根据圆的什么对称性得出的结论?
根据圆的旋转对称性
探究
如图,这是茶叶罐的密封盖上的一个图案. 这个图案的上部和下部都是圆弧你能想办法求出上部圆弧的长度吗?
40°的圆心角所对的弧长20.9cm
如图,对于茶叶罐的密封盖上的这个图案. 作出上部圆弧的圆心; 量出上部圆弧的半径; 量出上部圆弧所对的圆心角的度数; 求出上部圆弧的弧长.
练习
如图是一个闹钟正面的内、外轮廓线.内轮廓线由 一段圆弧和一条弦AB组成,圆心为O,半径为3.2cm, 圆心角∠AOB=83°,求内轮廓线的圆弧长度.
n°
R
半径为r的圆中,n°的圆心角所对的弧长l为:
n nπr l 2 πr 360 180
在求弧长的公式中,关键是根据圆的什么对称性?
已知圆O的半径为30cm,求40°的圆心角所对的弧长 (精确到0.1cm)
解:
圆弧长和扇形的面积圆锥的侧面展开图

2023圆弧长和扇形的面积圆锥的侧面展开图CATALOGUE 目录•圆弧长和扇形的面积•圆锥的侧面展开图•从圆弧长和扇形的面积看圆锥的侧面展开图01圆弧长和扇形的面积圆弧长的正投影长度等于圆心角的大小根据圆的周长公式 C=2πr,圆弧长的公式为 L=C/θ,其中θ为圆心角的大小若已知圆弧所在圆的半径为r,则圆弧长的计算公式为 L=θr扇形的面积是指扇形所占圆心角大小和半径平方的比值若已知扇形的半径为r,圆心角的大小为θ,则扇形的面积计算公式为 S=1/2θr^2若已知扇形的半径为r,则扇形的面积计算公式为S=πr^2/360°•圆弧长和扇形的面积有着密切的联系,若已知扇形的半径为r,圆心角的大小为θ,则扇形的面积与圆弧长的关系为 S=1/2θr^2=1/2Lr,其中L为圆弧长圆弧长和扇形面积的关系02圆锥的侧面展开图圆锥的侧面展开图是扇形圆锥的侧面展开图由一个圆心角和弧长组成圆心角是扇形的角度,弧长是扇形的半径圆锥的侧面展开图定义圆锥的侧面展开图的画法确定圆锥的母线和圆心角画出扇形的弧长标注出扇形的角度和弧长计算圆锥的表面积求圆锥的侧面积圆锥的侧面展开图的应用03从圆弧长和扇形的面积看圆锥的侧面展开图圆锥侧面展开图是扇形,其圆弧长度等于圆锥底面圆的周长。
扇形的半径等于圆锥母线长,扇形的圆心角等于圆锥底面圆的圆心角。
圆锥的侧面展开图与圆弧长的关系圆锥侧面展开图面积等于扇形面积,即 S=1/2 × 圆弧长 × 半径。
当圆锥母线长和底面圆半径确定时,圆锥侧面展开图面积与底面圆周长成正比。
圆锥的侧面展开图与扇形面积的关系圆锥的侧面展开图的应用实例展示制作圆锥通过圆锥的侧面展开图,可以制作圆锥,只需要将扇形分成若干份,然后按照顺序折叠即可。
计算圆锥体积和表面积通过圆锥的侧面展开图,可以计算出圆锥的表面积和体积,只需要将扇形面积相加即可。
设计旋转体通过圆锥的侧面展开图,可以设计旋转体,只需要将扇形分成若干份,然后按照顺序旋转即可。
中考复习弧长和扇形面积公式知识精讲

初三数学弧长和扇形面积公式知识精讲一. 本周教学内容:弧长和扇形面积公式、圆锥的侧面积和全面积教学目的1. 使学生掌握弧长和扇形面积公式、圆锥及其特征,使学生掌握圆锥的轴截面图及其特点。
2. 使学生掌握弧长和扇形面积公式、圆锥侧面展开图的画法及侧面积计算公式。
3. 使学生比较熟练地应用弧长和扇形面积公式、圆锥的基本性质和轴截面解决有关圆锥表面积的计算问题。
4. 培养学生空间观念及空间图形与平面图形的相互转化思想,培养学生空间想象能力和计算能力。
教学重点和难点:教学重点是弧长和扇形面积公式,圆锥及其特征,圆锥的侧面积计算难点是圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系教学过程1. 圆周长:r2Cπ=圆面积:2r Sπ=2. 圆的面积C与半径R之间存在关系R2Cπ=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是360R2π。
n °的圆心角所对的弧长是180Rn π 180Rn π=∴l P 120*这里的180、n 在弧长计算公式中表示倍分关系,没有单位。
3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。
发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。
4. 在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角为n °的扇形面积是: R 21360R n S 2l =π=扇形(n 也是1°的倍数,无单位)5. 圆锥的概念观察模型可以发现:圆锥是由一个底面和一个侧面围成的。
其中底面是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。
如图,从点S 向底面引垂线,垂足是底面的圆心O ,垂线段SO 的长叫做圆锥的高,点S 叫做圆锥的顶点。
锥也可以看作是由一个直角三角形旋转得到的。
也就是说,把直角三角形SOA绕直线SO旋转一周得到的图形就是圆锥。
第37讲 弧长、扇形面积、圆锥的侧面积与全面积

燕
图 3
( 3) 圆 的 面 积 公 式
S 一 本 讲 内 容 与 生 活 联 系 比 较 紧 密 , 此 是 中 因
( ) 径 为 , 圆 心 角 为 。 4半 . , 的 扇 形 面 积 S 一 自 , 半
考 的 一 个 热 点 内 容 .题 型 以 填 空 和 选 择 为 主 ,
() 剩 下 的 三块 余 料 中 , 否 从 第 ③ 块 2在 能
图 6 1 — 图 6 2 —
余 料 中剪 出 一 个 圆 作 为 底 面 与 此 扇 形 围 成 一 个 圆 锥 ? 请 说 明理 由 ; () oo 的 半径 R( 3当 R> O 为 任 意 值 时 , )
、
图形 的面 积 .而 这 个 不 规 则 图 形 的 面 积 又 等 于
中点 ,
’ . .
A
’ L且
以 c为圆心 的÷个 圆的面积减去△D D的面 0
.
EF 是 弓 形 的 高 .
2
一
AE— l AB
. EF
o
积 . Rt D 中 , 在 △ Co OD 一 4 OC一 2 DC一 , ,
的面积 为 : cn . rZ
分 析 : 结 OB, 点 。 作 OE上 AB, 足 连 过 垂
为 E , AB 于 F , 图 7 3 交 如 — .
由垂 径 定 理 , 知 : 可 一 F - 分橛: 。 i 阴影部分面积等于以0为圆 B 心 D为 E是 A 中点, B F是 . 一 , 一 /一■ 弧的扇形面积减去 ̄D 、 D O - O 、E围成的禾规则 - E
・
.
半径是 1 是底 面 圆周 上一点 , 点 A 出发绕 一 从
初三数学扇形面积公式、圆柱、圆锥侧面展开图人教版知识精讲

初三数学扇形面积公式、圆柱、圆锥侧面展开图人教版【本讲教育信息】一. 教学内容:教学内容:扇形面积公式、圆柱、圆锥侧面展开图扇形面积公式、圆柱、圆锥侧面展开图[学习目标][学习目标] 1. 掌握基本概念:正多边形,正多边形的中心角、半径、边心距以及平面镶嵌等。
掌握基本概念:正多边形,正多边形的中心角、半径、边心距以及平面镶嵌等。
2. 扇形面积公式:扇形面积公式:S n R lR 扇==p 236012n 是圆心角度数,是圆心角度数,R R 是扇形半径,l 是扇形中弧长。
是扇形中弧长。
3. 圆柱是由矩形绕一边旋转360360°形成的几何体,侧面展开是矩形,长为底面圆周长,°形成的几何体,侧面展开是矩形,长为底面圆周长,宽为圆柱的高宽为圆柱的高S rh 圆柱侧=2p r底面半径底面半径 h h 圆柱高圆柱高 4. 圆锥侧面积圆锥侧面积 圆锥是由直角三角形绕一直角边旋转360360°形成的几何体。
°形成的几何体。
°形成的几何体。
侧面展开是扇形,扇形半径是圆锥的母线,弧长是底面圆周长。
侧面展开是扇形,扇形半径是圆锥的母线,弧长是底面圆周长。
5. 了解圆柱由两平行圆面和一曲面围成,明确圆柱的高和母线,它们相等。
了解圆柱由两平行圆面和一曲面围成,明确圆柱的高和母线,它们相等。
6. 了解圆锥由一个曲面和一个底面圆围成,明确圆锥的高和母线,知道可以通过解高、母线、底面半径所围直角三角形,解决圆锥的有关问题。
母线、底面半径所围直角三角形,解决圆锥的有关问题。
7. 圆柱圆柱 圆柱的侧面展开图是两邻边分别为圆柱的高和圆柱底面周长的矩形。
圆柱的侧面积等于底面周长乘以圆柱的高。
如图所示,若圆柱的底面半径为r ,高为h ,则:S rh 侧=2p ,S S S rh r r h r 表侧底=+=+=+22222p p p ()。
8. 圆锥圆锥 圆锥是由一个底面和一个侧面组成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)
【学习目标】
1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积
的计算公式,并应用这些公式解决问题;
2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;
3. 能准确计算组合图形的面积.
【要点梳理】
要点一、弧长公式
半径为R的圆中
360°的圆心角所对的弧长(圆的周长)公式:
n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)
要点诠释:
(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;
(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;
(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.
要点二、扇形面积公式
1.扇形的定义
由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
2.扇形面积公式
半径为R的圆中
360°的圆心角所对的扇形面积(圆面积)公式:
n°的圆心角所对的扇形面积公式:
要点诠释:
(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,
即;
(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.
(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;
(4)扇形两个面积公式之间的联系:.
要点三、圆锥的侧面积和全面积
连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.
圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则
圆锥的侧面积2
360
l S rl ππ=扇n =, 圆锥的全面积.
要点诠释:
扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.
【典型例题】
类型一、弧长和扇形的有关计算
1.如图(1),AB 切⊙O 于点B ,
OA=AB=3,弦BC∥OA,则劣弧BC 的弧长为( ).
A
.3 B
.2
C .π
D .32π
图(1)
【答案】A.
【解析】连结OB 、OC ,如图(2)
则0OBA ∠︒=9,
,0A ∠︒=3,0AOB ∠︒=6,
由弦BC ∥OA 得60OBC AOB ∠∠=︒=,
所以△OBC 为等边三角形,0BOC ∠︒=6.
则劣弧BC
,故选A. 图(2) 【总结升华】主要考查弧长公式:
.
举一反三:
【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到
0.1mm)。