三图像的平滑与锐化
图像的平滑与锐化

昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。
2、掌握图像滤波的基本定义及目的。
3、理解空间域滤波的基本原理及方法。
4、编程实现图像的平滑与锐化。
[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值的方法。
(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。
再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。
中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。
二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。
图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理姓名:***学号:************专业:计算机应用技术1.1理论背景现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。
一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。
图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。
空间域处理是在图像本身存在的二维空间里对其进行处理。
而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。
在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。
1.2介绍算法图像平滑算法:线性滤波(邻域平均法)对一些图像进行线性滤波可以去除图像中某些类型的噪声。
领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。
领域平均法是空间域平滑噪声技术。
对于给定的图像()j i f,中的每个像素点()nm,,取其领域S。
设S含有M个像素,取其平均值作为处理后所得图像像素点()nm,处的灰度。
用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。
领域S的形状和大小根据图像特点确定。
一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。
如S 为3×3领域,点(m,n)位于S 中心,则()()∑∑-=-=++=1111,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1,1,1, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =,即方差变小,说明噪声强度减弱了,抑制了噪声。
数字图像处理- 图像平滑与锐化

数字图像处理
7
数字图像处理
8
巴特沃斯滤波器
通带波动下的切比雪夫滤波器
阻带波动下的切比雪夫滤波器
数字图像处理
椭圆函数滤波器
9
数字图像处理
10
数字图像处理
11
数字图像处理
12
数字图像处理
13
涉及4种图像初始、中间或最终结果,和三个主要 处理步骤。
图像结果包括原始图像、原始变换域、滤波后的变换域 和滤波后的图像; 处理步骤包括傅里叶正变换、低通滤波和傅lt; complex > CImageProcessing::Low_pass_filter( CTArray< complex > original_signal ) { long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal; } 21 数字图像处理
图像锐化算法实现

算法原理:通过将图像分解成多个频带,对每个频带进行滤波处理,再合并处理后的频带得到 锐化图像。
算法特点:能够更好地保留图像细节,提高图像清晰度,适用于各种类型的图像。
算法步骤:频带分解、滤波处理、频带合并、锐化图像。
算法应用:广泛应用于图像处理领域,如医学影像、遥感图像、安全监控等。
算法原理:根据图像局部特性自适 应调整滤波器系数,以提高图像边 缘清晰度
优点:对噪声具有较好的鲁棒性, 能够自适应地处理不同场景下的图 像锐化
添加标题
添加标题
常用实现方法:Laplacian、 Unsharp Masking等
添加标题
添加标题
适用场景:适用于各种类型的图像, 尤其适用于存在噪声和模糊的图像
图像锐化的实现步 骤
将彩色图像转换为灰度图像 增强图像对比度 突出图像边缘信息 减少图像数据量,加速处理速度
边缘检测是图像 锐化的重要步骤, 通过检测图像中 的边缘信息,可 以对图像进行清 晰化处理。
常见的边缘检测 算法包括Sobel、 Prewitt、Canny 等,这些算法通 过不同的方式检 测图像中的边缘 信息。
在边缘检测之后, 通常需要进行阈 值处理,将边缘 信息与阈值进行 比较,保留重要 的边缘信息,去 除不必要的噪声。
经过边缘检测和 阈值处理后,可 以对图像进行锐 化处理,使其更 加清晰。
对图像进行滤波处理,去除噪声和干扰 选择合适的滤波器,如高斯滤波器、中值滤波器等 对滤波后的图像进行锐化处理,增强边缘和细节 可根据实际需求选择不同的滤波器和参数,以达到最佳效果
对图像进行滤波处理,去除噪声 对图像进行边缘检测,突出边缘信息 对图像进行对比度增强,提高图像的清晰度 对图像进行细节增强,增强图像的纹理和细节信息
浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。
能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。
也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。
滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。
⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。
1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。
特征:压缩像素值变化较⼤的图像的动态范围。
举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。
1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。
⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。
1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。
优点:形式可以是任意复杂的。
1.4.1.对⽐度拉伸:扩展图像的动态范围。
1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。
1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。
1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。
作为⾃适应对⽐度增强⼯具,功能强⼤。
1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。
在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。
1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。
图像锐化报告

一,实验目的。
1、掌握图像锐化的主要原理和常用方法2、掌握常见的边缘提取算法3、利用C#实现图像的边缘检测二,实验原理。
图像锐化就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。
图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。
而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。
图像边缘锐化的基本方法:微分运算,梯度锐化,边缘检测。
微分运算微分运算应用在图像上,可使图像的轮廓清晰。
微分运算有:纵向微分运算,横向微分运算,双方向一次微分运算。
单向微分运算双向微分微分运算作用:相减的结果反映了图像亮度变化率的大小。
像素值保持不变的区域,相减的结果为零,即像素为黑;像素值变化剧烈的区域,相减后得到较大的变化率,像素灰度值差别越大,则得到的像素就越亮,图像的垂直边缘得到增强。
梯度锐化: 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使边缘变得清晰。
梯度锐化常用的方法有:直接以梯度值代替;辅以门限判断;给边缘规定一个特定的灰度级;给背景规定灰度级;根据梯度二值化图像。
边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。
大多数是基于方向导数模板求卷积的方法。
将所有的边缘模板逐一作用于图像中的每一个像素,产生最大输出值的边缘模板方向,表示该点边缘的方向,如果所有方向上的边缘模板接近于零,该点处没有边缘;如果所有方向上的边缘模板输出值都近似相等,没有可靠边缘方向。
数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理一、实验容和要求1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。
二、实验软硬件环境PC机一台、MATLAB软件三实验编程及调试1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸程序如下:I=imread('kids.tif');J=imadjust(I,[0.2,0.4],[]);subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);subplot(2,2,3),imhist(I);subplot(2,2,4),imhist(J);②直方图均衡程序如下:I=imread('kids.tif');J=histeq(I);Imshow(I);Title('原图像');Subplot(2,2,2);Imshow(J);Title('直方图均衡化后的图像') ;Subplot(2,2,3) ;Imhist(I,64);Title('原图像直方图') ;Subplot(2,2,4);Imhist(J,64) ; Title('均衡变换后的直方图') ;③伽马校正程序如下:A=imread('kids.tif');x=0:255;a=80,b=1.8,c=0.009;B=b.^(c.*(double(A)-a))-1;y=b.^(c.*(x-a))-1;subplot(3,2,1);imshow(A);subplot(3,2,2);imhist(A);imshow(B);subplot(3,2,4);imhist(B);subplot(3,2,6);plot(x,y);④log变换程序如下:Image=imread('kids.tif');subplot(1,2,1);imshow(Image);Image=log(1+double(Image)); subplot(1,2,2);imshow(Image,[]);2、空域平滑:box、gauss模板卷积。
图像平滑与锐化处理

图像平滑与锐化处理1 图像平滑处理打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1图1-1 打开Layer Stack对话框在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。
忽略零值,单击OK(如图1-2所示)。
图1-2 Layer Stack对话框设置打开Interpreter>Spatial Enhancement>Convolution对话框。
如图1-3图1-3 打开Convolution对话框在Input File中选择band1.img。
在Output File中选择输出的处理图像,命名为lowpass.img。
在Kernel中选择7*7Low Pass,忽略零值。
单击OK完成图像的增强处理(如图1-4所示)。
图1-4 卷积增强对话框(Convolution)平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。
而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。
图1-5 处理前后的对比为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。
当差小于阈值的时候取原值;差大于阈值的时候取平均值。
这里通过查询得T取4,其表达式为下:g(i,j),当| f(i,j)-g(i,j)|>4G(i,j)=f(i,j),当| f(i,j)-g(i,j)|<=4具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。
先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图1-6,1-7,1-8,1-9,1-10,1-11所示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。
统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。
另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。
假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。
1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。
设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。
除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。
这个假设大体上反映了许多图像的结构特征。
∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。
对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。
模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。
(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。
它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。
在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。
例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。
于是原理的窗口正中的灰度值200就由110取代。
如果200是一个噪声的尖峰,则将被滤除。
然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。
因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。
中值滤波很容易推广到二维的情况。
二维窗口的形式可以是正方形、近似圆形的或十字形的。
在图像增强的具体应用中,中值滤波只能是一种抑制噪声的特殊工具,在处理中应监视其效果,以决定最终是福才有这种方案。
实施过程中的关键问题是探讨一些快速算法。
3.空域低通滤波:从信号频谱角度来看,信号的缓慢变化部分在频率域属于低频部分,而信号的迅速变化部分在频率域是高频部分。
对图像来说,它的边缘以及噪声干扰的频率分量都处于频率域较高的部分,因此,可以采用低通滤波的方法来去除噪声。
而频域的滤波又很容易从空间域的卷积来实现,为此只要适当设计空间域的单位冲激响应矩阵,就可以达到滤除噪声的效果。
下面是几种用于噪声平滑低通卷积模板。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0101*0101041 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111*0101081 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111*21111101 采用有低通性的模板(更多模板参见matlabtoolbox 课件),能够完成对图像的平滑。
4.空域高通滤波:采用有高通性的模板,能够完成对图像的锐化;在模板运算中,模板的权值体现了该位置点的灰度对整个模板运算结果影响的影响度,权值越大,影响越大。
三.实验提示用VC 做实验请参见教材4.7节,注意模板对话框的设计。
1.MATLAB 图像处理工具箱提供了基于卷积的图像滤波函数filter2, filter2的语法格式为:Y = filter2 (h,X)其中Y = filter2(h,X)返回图像X 经算子h 滤波后的结果,默认返回图像Y 与输入图像X 大小相同。
在MATLAB 图像处理工具箱中,提供了medfilt2函数用于实现中值滤波。
Medfilt2函数的语法格式为:B = medfilt2(A) 用3×3的滤波窗口对图像A 进行中值滤波。
B = medfilt2(A,[m n]) 用指定大小为m ×n 的窗口对图像A 进行中值滤波。
2.完成人为的往一幅图像中加入噪声,并通过多次相加求平均的方法消除所加入的噪声。
在MATLAB 中提供了给图像加入噪声的函数imnoiseimnoise 的语法格式为J = imnoise(I,type)J = imnoise(I,type,parameters)其中J = imnoise(I,type)返回对原始图像I 添加典型噪声的有噪图像J。
参数type和parameters用于确定噪声的类型和相应的参数。
主要包括'gaussian' Gaussian white noise'localvar' Zero-mean Gaussian white noise with an intensity-dependent variance'poisson' Poisson noise'salt & pepper' On and off pixels'speckle' Multiplicative noise下面的命令是对图像eight.tif分别加入高斯噪声、椒盐噪声和乘性噪声,其结果如图所示:例:I=imread('eight.tif');J1=imnoise(I,'gaussian',0,0.02);J2=imnoise(I,'salt & pepper',0.02);J3=imnoise(I,'speckle',0.02);subplot(2,2,1),imshow(I),title('原图像');subplot(2,2,2),imshow(J1),title('加高斯噪声');subplot(2,2,3),imshow(J2),title('加椒盐噪声');subplot(2,2,4),imshow(J3),title('加乘性噪声');在上面的例子中使用了一个函数subplot。
其作用就是将多幅图像显示再同一幅图像显示对话框中。
其语法格式为:subplot(m,n,p)其作用就是将一个图像显示对话框分成m行n列,并显示第p幅图像。
在MA TLAB程序语言中,分号的用处为不显示程序运算中的中间结果,这在一定程度上使系统运算的效率增高,因此在不需知道中间结果的情况下,可以用分号作为一个句子的结尾,而不显示该句运算的中间结果。
我们用均值滤波对一幅图像做处理时,往往取不到较理想的效果,可重复做几次。
代数运算中需要有若干幅带有随机噪声的图像数据,在这里我们运用MATLAB中的FOR循环语句来完成产生多幅带有噪声的图像数据及将这些图像数据进行相加运算。
MATLAB中FOR END循环的用法如下:for end循环这种循环允许一组命令以固定的和预定的次数重复,循环的一般形式为:for variable = expressionstatementsend举例如下:例:%一个简单的for循环的例子。
for i=1:10;y(i)=i;end;y%显示y的结果y =12345678910im2double函数,其语法格式为:I2 = im2double(I1)其中I1是输入的图像数据,它可能是unit8或unit16型数据,通过函数的变化输出I2为一个double型数据,这样两图像数据就可以方便的进行相加等代数运算.四.实验内容与要求实验要求设计一个程序完成下列要求:1.读出eight.tif这幅图像,给这幅图像加入椒盐噪声后并与前一张图显示在同一图像窗口中;2.对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;3.运用for循环,将1幅加有噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;4.对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
1.I=imread('eight.tif');I1=imnoise(I,'salt & pepper',0.02);subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(I1)2.I=imread('eight.tif');I1=imnoise(I,'salt & pepper',0.02);h1=[0 0.25 0;0.25 0 0.25;0 0.25 0];h2=[0.125 0.125 0.125;0.125 0 0.125;0.125 0.125 0.125];h3=[0.1 0.1 0.1;0.1 0.2 0.1;0.1 0.1 0.1];J1=imfilter(I1,h1);J2=imfilter(I1,h2);J3=imfilter(I1,h3);subplot(2,2,1),imshow(I1),subplot(2,2,2),imshow(J1);subplo t(2,2,3), imshow(J2);subplot(2,2,4),imshow(J3)3.I=imread('eight.tif');I1=imnoise(I,'salt & pepper',0.02);h=[0.125 0.125 0.125;0.125 0 0.125;0.125 0.125 0.125];for n=1:10;I1=imfilter(I1,h);subplot(5,2,n),imshow(I1);endI=imread('eight.tif');I1=imnoise(I,'salt & pepper',0.02);h=[0.125 0.125 0.125;0.125 0 0.125;0.125 0.125 0.125];for n=1:20;I1=imfilter(I1,h);subplot(4,5,n),imshow(I1);end4.I=imread('eight.tif');I1=imnoise(I,'salt & pepper',0.02);h=[0.125 0.125 0.125;0.125 0 0.125;0.125 0.125 0.125];J1=imfilter(I1,h); J2=medfilt2(I1,[3 3]);figure,subplot(1,3,1),imshow(I1),subplot(1,3,2),imshow(J1); subplot(1,3,3),imshow(J3);。