图像平滑与图像锐化
图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理姓名:***学号:************专业:计算机应用技术1.1理论背景现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。
一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。
图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。
空间域处理是在图像本身存在的二维空间里对其进行处理。
而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。
在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。
1.2介绍算法图像平滑算法:线性滤波(邻域平均法)对一些图像进行线性滤波可以去除图像中某些类型的噪声。
领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。
领域平均法是空间域平滑噪声技术。
对于给定的图像()j i f,中的每个像素点()nm,,取其领域S。
设S含有M个像素,取其平均值作为处理后所得图像像素点()nm,处的灰度。
用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。
领域S的形状和大小根据图像特点确定。
一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。
如S 为3×3领域,点(m,n)位于S 中心,则()()∑∑-=-=++=1111,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1,1,1, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =,即方差变小,说明噪声强度减弱了,抑制了噪声。
数字图像处置图像平滑和锐化

数字图像处理
21
CTArray< plex > CImageProcessing::Low_pass_filter( CTArray< plex > original_signal ){ long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal;}
浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。
能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。
也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。
滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。
⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。
1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。
特征:压缩像素值变化较⼤的图像的动态范围。
举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。
1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。
⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。
1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。
优点:形式可以是任意复杂的。
1.4.1.对⽐度拉伸:扩展图像的动态范围。
1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。
1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。
1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。
作为⾃适应对⽐度增强⼯具,功能强⼤。
1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。
在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。
1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。
数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理一、实验容和要求1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。
二、实验软硬件环境PC机一台、MATLAB软件三实验编程及调试1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸程序如下:I=imread('kids.tif');J=imadjust(I,[0.2,0.4],[]);subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);subplot(2,2,3),imhist(I);subplot(2,2,4),imhist(J);②直方图均衡程序如下:I=imread('kids.tif');J=histeq(I);Imshow(I);Title('原图像');Subplot(2,2,2);Imshow(J);Title('直方图均衡化后的图像') ;Subplot(2,2,3) ;Imhist(I,64);Title('原图像直方图') ;Subplot(2,2,4);Imhist(J,64) ; Title('均衡变换后的直方图') ;③伽马校正程序如下:A=imread('kids.tif');x=0:255;a=80,b=1.8,c=0.009;B=b.^(c.*(double(A)-a))-1;y=b.^(c.*(x-a))-1;subplot(3,2,1);imshow(A);subplot(3,2,2);imhist(A);imshow(B);subplot(3,2,4);imhist(B);subplot(3,2,6);plot(x,y);④log变换程序如下:Image=imread('kids.tif');subplot(1,2,1);imshow(Image);Image=log(1+double(Image)); subplot(1,2,2);imshow(Image,[]);2、空域平滑:box、gauss模板卷积。
图像平滑与锐化处理

图像平滑与锐化处理1 图像平滑处理打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1图1-1 打开Layer Stack对话框在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。
忽略零值,单击OK(如图1-2所示)。
图1-2 Layer Stack对话框设置打开Interpreter>Spatial Enhancement>Convolution对话框。
如图1-3图1-3 打开Convolution对话框在Input File中选择band1.img。
在Output File中选择输出的处理图像,命名为lowpass.img。
在Kernel中选择7*7Low Pass,忽略零值。
单击OK完成图像的增强处理(如图1-4所示)。
图1-4 卷积增强对话框(Convolution)平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。
而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。
图1-5 处理前后的对比为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。
当差小于阈值的时候取原值;差大于阈值的时候取平均值。
这里通过查询得T取4,其表达式为下:g(i,j),当| f(i,j)-g(i,j)|>4G(i,j)=f(i,j),当| f(i,j)-g(i,j)|<=4具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。
先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图1-6,1-7,1-8,1-9,1-10,1-11所示)。
第8章 图像平滑和锐化

因为正态分布的均值为0,所以根据统计数学,均值可以消
除噪声。
精选可编辑ppt
41
在MATLAB图像处理工具箱中,实现中值滤波的函数是
medfilt2,其常用的调用方法如下:
B=medfilt2(A,[m n])
其中A是输入图像,[m,n]是邻域窗口的大小,默认
值为[3,3],B为滤波后图像。
噪声可以理解为“妨碍人们感觉器官对所
接收的信源信息理解的因素”。
精选可编辑ppt
2
噪声来源
数字图像的噪声主要来源于图像的获取和传输过程
图像获取的数字化过程,如图像传感器的质量和
环境条件
图像传输过程中传输信道的噪声干扰,如通过无
线网络传输的图像会受到光或其它大气因素的干扰
精选可编辑ppt
3
图像噪声特点
1. 噪声在图像中的分布和大小不规则
2. 噪声与图像之间具有相关性
3. 噪声具有叠加性
精选可编辑ppt
4
图像噪声分类
一.
按其产生的原因可分为:外部噪声和内部
噪声。
二.
从统计特性可分为:平稳噪声和非平稳噪
声。
三.
按噪声和信号之间的关系可分为:加性噪
声和乘性噪声。
精选可编辑ppt
5
按其产生的原因
外部噪声:指系统外部干扰从电磁波或经电
源传进系统内部而引起的噪声。
内部噪声:
①
由光和电的基本性质所引起的噪声。
②
电器的机械运动产生的噪声。
③
元器件材料本身引起的噪声。
④
系统内部设备电路所引起的噪声。
精选可编辑ppt
6
按统计特性
数字图像处理复习资料

一、填空题(每空1分,共10分)填空题主要是一些常见知识。
三、论述题(每小题8分,共40分)下面的内容包括简答和论述题的部分1.简述线性位移不变系统逆滤波恢复图像原理。
答:设退化图象为g(x,y),其傅立叶变换为G(u,v),若已知逆滤波器为1/H(u,v)则对G(u,v)作逆滤波得F(u,v)=G(u,v)/H(u,v) (2分)对上式作逆傅立叶变换得逆滤波恢复图象f(x,y)f(x,y)=IDFT[F(u,v)]以上就是逆滤波恢复图象的原理。
(2分)若存在噪声,为避免H(u,v)=0,可采用两种方法处理。
(0.5分)①在H(u,v)=0时,人为设置1/H(u,v)的值;②使1/H(u,v)具有低同性质。
即H-1(u,v)=1/H(u,v) 当D≤DH-1(u,v)=0 当D>D(0.5分)2.直方图均衡化。
如果对一幅图像已经用直方图均衡化方法进行了处理,那么对处理后的图像再次应用直方图均衡化,处理结果会不会更好?答:1. 直方图均衡化的基本思想是对原始图像中的像素灰度图做某种映射变换,使变换后图像灰度的概率密度是均匀分布的,即变换后图像是一幅灰度级均匀分布的图像,这意味着图像灰度的动态范围得到了增加,从而可提高图像的对比度。
2.处理结果与处理前结果大致相同,没有太大的变化,只是平均值稍有所变。
3. 图像锐化与图像平滑有何区别与联系?答:区别:图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;(2分)图象平滑用于去噪,对图象高频分量即图象边缘会有影响。
(2分)联系:都属于图象增强,改善图象效果。
(1分)4.什么是中值滤波,有何特点?答:中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波是非线性的处理方法,在去噪的同时可以兼顾到边界信息的保留。
中值滤波首先选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把该窗口中所含的像素点按灰度级的升(或降)序排列,取位于中间的灰度值,来代替该点的灰度值。
图像平滑与图像锐化

图像平滑与图像锐化邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸邻域运算一、实验目的1.巩固对图像增强的认识,明确图像空域处理的类型2.理解图像平滑与图像锐化的概念3.掌握图像模板卷积运算的实现方法4.锻炼编程开发图像处理算法的能力二、实验准备1.了解图像处理点运算和邻域运算的区别2.学习利用模板卷积的方法进行图像邻域运算3.复习均值滤波和中值滤波的原理4.列出常用的模板形式,思考中值滤波要用到的简单排序方法5.分析对比图像平滑和图像锐化模板的差异三、实验内容与步骤1.列出常用的卷积模板2.基于3某3的模板,编写均值滤波的处理程序,处理含有加性高斯噪声和椒盐噪声的图像,观察处理结果3.编写中值滤波程序,处理相同的图像与均值滤波进行比较;改变模板尺寸观察处理结果4.编程实现利用一阶微分算子和二阶拉普拉斯算子进行图像锐化的程序5.对比不同的邻域运算结果,体会图像锐化与图像平滑的区别四、实验报告与思考题1.总结实验内容及步骤方法完成实验报告,报告中要求有关键代码的注释说明及程序运行和图像处理结果2.实验报告中回答以下问题(1)均值滤波和中值滤波分别适用于处理哪类图像?(2)图像平滑和图像锐化所采用的模板有什么不同?(3)邻域运算的模板尺寸对处理结果有什么影响?邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸实验4邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邻域运算
一、实验目的
1.巩固对图像增强的认识,明确图像空域处理的类型
2.理解图像平滑与图像锐化的概念
3.掌握图像模板卷积运算的实现方法
4.锻炼编程开发图像处理算法的能力
二、实验准备
1.了解图像处理点运算和邻域运算的区别
2.学习利用模板卷积的方法进行图像邻域运算
3.复习均值滤波和中值滤波的原理
4.列出常用的模板形式,思考中值滤波要用到的简单排序方法
5.分析对比图像平滑和图像锐化模板的差异
三、实验内容与步骤
1.列出常用的卷积模板
2.基于3×3的模板,编写均值滤波的处理程序,处理含有加性高斯噪声和椒盐噪声的图像,观察处理结果
3.编写中值滤波程序,处理相同的图像与均值滤波进行比较;改变模板尺寸观察处理结果
4.编程实现利用一阶微分算子和二阶拉普拉斯算子进行图像锐化的程序
5.对比不同的邻域运算结果,体会图像锐化与图像平滑的区别
四、实验报告与思考题
1.总结实验内容及步骤方法完成实验报告,报告中要求有关键代码的注释说明及程序运行和图像处理结果
2.实验报告中回答以下问题
(1)均值滤波和中值滤波分别适用于处理哪类图像?
(2)图像平滑和图像锐化所采用的模板有什么不同?
(3)邻域运算的模板尺寸对处理结果有什么影响?
实验4。