MC9S12XS128中文资料
freescale MC9S12P128中文手册

1Chapter1 Device Overview MC9S12P-Family 1.1介绍The MC9S12P 系列单片机是经过优化后有着低成本、高性能、低引脚数的汽车专业级单片机产品,该产品倾向于弥补高端16位单片及产品如MC9S12XS和低端8位单片机产品之间的空缺。
MC9S12P 主要针对于要求使用CAN 或者LIN/J2602通讯接口的汽车应用产品,典型的应用案例包括车身控制器、乘坐人员检测、车门控制、座椅控制、遥控车门开关信号接收器、智能执行器、车灯模块、智能接线器。
The MC9S12P 系列单片机使用了很多MC9S12XS系列单片机相同的功能,包括片内闪存错误纠正代码(ECC)、一个专为数据诊断或者数据存储的单独的数据闪存模块、高速AD转换器和高频调制锁相环(IPLL)有效改善电磁兼容性能。
MC9S12P系列单片机提供的所有16为单片机优点和微处理器效率,同时保持飞思卡尔用户熟悉的8位及16位单片机,低成本,功耗,EMC和高效的代码80针QFP、64针LQFP、40针QFN封装产品,最大限度的与MC9S12尺寸的优点,如同MC9S12XS一样可以无需等待外围设备和内存的状态既可以运行16为带款的寻址,MC9S12P系列单片机主要有XS引脚兼容. I/O口在各种模式下都可以使用,同时具有中断功能的I/O口还可以在停止或等待模式下唤醒。
1.2 芯片特性表一:提供了MC9S12P家庭成员特征摘要,1.P或D寄存器擦除或者编程需要最低总线频率为1MHZ1.2.2 芯片功能• S12 CPU 内核• 高达128 KB具有ECC功能的片上闪存• 4 Kbyte带ECC功能的数据闪存• 高达6 Kb片上静态存储器(SRAM)• 具有内部滤波器的锁相环倍频器(IPLL)• 4–16 MHz 皮尔斯振荡器• 1 MHz内部RC振荡器• 定时器(TIM) 具有16位输入捕捉、输出比较、计数器脉冲累加器功能• 具有8位6通道的脉冲调制模块(PWM)• 10通道12位分辨率的逐次逼近AD转换器• 1个串行通信外部接口(SPI)• 1个支持局域网通讯串行通信(SCI) 模块•一个多可扩展控制器区域网络(MSCAN) 模块(支持CAN 协议2.0A/B)•片上电压调节器(VREG) 可对内部供电及内部电压整流• 自主周期中断(API)1.3 模块特征1.3.1 CPUS12 CPU 是一个高速的16位处理单元:•全16-bit数据通道提供有效的数学运算和高速的数学执行• 包含很多单字节指令,可以有效的利用ROM空间• 宽域变址寻址功能:—采用堆栈指针作为所有变址操作的变址寄存器—除了在自增或自减模式下都可以利用程序计数器作为变址寄存器—使用A\B\D累加器做累加器偏移—自动变址,前递增(++a)、前递减(--a)、后递减(a--)、后递增(a++)(by –8 to +8)1.3.2 带ECC功能的片内闪存• 高达128 Kb程序闪存空间— 32 位数据加7 位ECC (纠错码) 允许单字节纠错和双字节纠错— 512字节擦出扇区空间—自动编程和擦除算法—用户设置读写页面边界—具有可以防止偶然编程或者擦除的保护结构• 4 Kb 数据闪存空间— 16 位数据加6位纠错码允许单字节和双字节纠错功能— 256 字节的擦出扇区空间—自动编程和擦除算法—用户设置读写页面边界1.3.3 片内静态存储器3高达6kb通用RAM1.3.4 外部晶振(XOSC)• 闭环控制皮尔斯晶振频率为4MHZ---16MHZ—振幅增益控制输出电流—低谐波失真信号Signal with low harmonic distortion—低功耗—良好的噪声免疫—无需外部限流电阻—跨导尺寸优化提供良好的振荡器启动保证1.3.5 内部RC晶振(IRC)• 可调的内部参考时钟—频率: 1 MHz—在–40°C to +125°C环境温度范围内调节精度达: 1.5%1.3.6 内部锁相环倍频器(IPLL)—无需外部元件—参考分频器和倍频器提供大变化量的时钟频率—自动带宽控制低频率抖动操作—自动锁定频率—可配置的选项,扩频减少电磁干扰EMC (频率调制frequency modulation) —参考时钟源:–外部4–16 MHz 共振器/晶振(XOSC)–内部RC晶振1 MHz (IRC)1.3.7 系统支撑• 上电复位(POR)• 系统复位发生器• 非法寻址复位•低电压检测中断或复位• 实时中断(RTI)• 计算机正常工作复位(COP) 开门狗—可通过相应窗口设置COP用以采用错误侦测复位通过位操作对闪存进行初始化复位•时钟监控器监控晶振功能正常工作1.3.8 定时器(TIM)• 8通道16位定时器可进行输入捕捉和输出比较• 16-bit带有7位精度预分频器的自由运行计数器•一通道16-bit 脉冲累加器1.3.9 脉冲带宽调制器(PWM)• 6通道8位or 3 通道16-bit脉宽调制器—每个通道都可以对周期和占空比进行编程—中心对齐或者左对齐输出—宽频率范围内可编程逻辑时钟1.3.10 局域网控制器(MSCAN)•速率达1Mbit/s, 满足CAN 2.0 A, B 协议—标准和扩展数据帧— 0–8 字节长度—可编程比特率达1 Mbps•5个FIFO(先进先出)的接收缓冲器•三个内部优先发送缓冲器• 灵活的标识符可编程选通滤波器s:— 2 x 32-bit— 4 x 16-bit— 8 x 8-bit•集成了低通滤波器的唤醒操作• 闭环反馈自检测• CAN 总线监听•总线关闭可通过软件干预或者自动恢复• 16-bit 接收发送信息时钟戳1.3.11 串行通信接口(SCI)•可选择全双工或单工模式•标准的不归零格式•通过可编程脉宽调制选用IrDA 1.4 反转归零格式• 13位波特率可选•可编程字符长度•可编程改变其接收和发送极性for transmitter and receiver•边沿触发接收唤醒•支持LIN总线的间隔检测和传输冲突检测1.3.12 Serial Peripheral Interface Module (SPI) •可配置8- or 16-bit 数据大小•全双工或单线双向•全双工接收和发送• Master or slave 模式•最高位优先or 最低位优先可换• 并口时钟频率相位和极性选择1.3.13 AD转换(ATD)• 10通道12位AD转换器— 3微妙转换时间— 8-/10-/12-位解决方案5—数据结果左对齐或右对齐—停止模式下使用内部晶振作为转换器晶振—低功耗模式下模拟信号比较唤醒—连续转换模式e—多通道扫描•引脚可作为IO口1.3.14 片内电压调节器(VREG)•具有带隙标准的线性电压稳压器• 具有低电压中断功能的低压检测器•上电复位(POR) 电路•低电压复位功能(LVR)•高温传感器1.3.15 背景调试(BDM)• 非插入内存访问指令• 支持在线对片内非易始性存储单元编程1.3.16 调试器(DBG)•64个入口跟踪缓冲器• 三个比较器(A, B and C)—比较器A比较全16位地址总线额16位数据总线—精确寻址和寻址范围比较•两种匹配比较类型—标记位—程序强行置位该类型是在一数学公式出现后一个指令边界可用•四个跟踪模式•四个阶段状态序列发生器stage state sequencer1.4 内部结构框图71.5 引脚图1.6 存储器映像表Table 1-2. Device Register Memory Map注意在表1-2中保留的寄存器空间不分配给任何模块,该寄存器的保留空间是留给以后使用的,对这些保留空间写操作没有任何效果,读该空间返回值都为零。
飞思卡尔MC9S12XS128单片机重点模块讲解

基于飞思卡尔 MC9S12XS128MCU 的模块讲解及测试
安徽工业大学 自动化系 刘昌元 delay(500); if(LED==0x80) LED=0x01; } } 综合以上的两段代码看在 52 单片机和 128 单片机上编程思路基本上没大的区别,唯一的区 别就是 128 单片机有数据方向寄存器来管理 I/O 口。 � 将部分端口做输入口使用,另外一部分端口做输出口使用时:例如我们将 PORTB 的端 口 B7 用来做输入口,B0-B5 口做输出指示,测试代码如下:
�
以端口 A 和端口 B 为例讲解,以上是我截取的技术手册上的,从上来看 A 口和 B 口各 有 8 个口,且 A0-A7;B0-B7 全部作为 GPIO (通用输入输出口 )使用。此处 A 口和 B 口 使用方法是一样的,我姑且就以端口 A 来讲解。 A 口和 B 口作为通用输入输出口使用时我们只需要掌握 4 个寄存器即可。 PORTA (A 口
�
这一点和 51 单片机的 I/O 口有区别,在典型的 51 单片中 P0 口内部没有上拉电阻,但作为 I/O 口使用时需要外接排阻。其他 P1-P3 口则可以直接作为双向口使用,51 单片在上电复位 后端口被默认的置 1.在 51 单片中端口的某一位置 0 时端口作为输出口使用,置 1 时作为输 入口使用。例如如果我们想把 P1 作为输出口使用时我们可以在程序开始时写 P1=0x00; 如果 我们想把 P1 口作为输入口使用时我们可以写 P1=0xff; 这一点正好和飞思卡尔的 128 单片机 相反,另外 128 单片有专门的数据方向寄存器 DDRA 或者 DDRB 等来管理各个端口的输入 输出选择,51 单片没有。如果我们想把端口 A 作为输入口使用,我们只需写 DDRA=0x00; 即所有位都置 0,如果我们想把端口 A 作为输出口使用,我们只需要写 DDRA=0xff; 即所有 位都置 1 ,而如 果我们想要 把端口 A 的高四 位做输入口 ,低 4 位做输 出口时我们 就 写 DDRA=0x0f; 当我们需要将该端口的某一位做输出或者输入口使用时只需要将该端口对应的 方向位置 1 或者置 0 即可。例如我们想把 A3 口作输入口, A4 口作输出口使用时我们只需 要写: DDRA_DDRA3=0; DDRA_DDRA4=1; 即可。 � � 对于数据方向寄存器的使用只要记住:置 1——输出 置 0——输入 PORTA 数据寄存器也是由 8 位组成,任何时候都可以对它进行读写操作。
MC9S12XS128之脉冲宽度调制PWM

M C9S12X S128之脉冲宽度调制P W M-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN半年前就开始写PWM的程序了,那时候只是用来控制电机和舵机。
最近在烦着摄像头的显示问题,再次探究PWM,看能不能找到出路。
我数了一下,整个PWM模块中,总共有37个寄存器。
不过把这些寄存器的功能都理了一下,发现:也不过这么一回事。
PWM就是脉冲宽度调制,是英文“Pulse Width Modulation”的缩写,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
在XS128中,PWM主要就是通过设置相关的寄存器,让PWM0~PWM7引脚输出一定周期一定占空比的矩形波。
输出的矩形波的周期和占空比在输出的过程中,可以通过改变相关寄存器的值来改变的。
电机和舵机就这利用这点来控制期速度和转向的。
不过观察了一下,似乎在112引脚封装的芯片中才有PWM0到PWM7八个通道的引脚输出,而在80引脚封装的芯片中只有七个通道的引脚输出,没有PWM6的引脚输出。
接下来写一下各个寄存器的功能和设置方法:一、PWME:各通道使能寄存器明显,当某位置1时,相应通道的PWM就打开了。
置0时,就是禁止该通道的PWM。
二、PWMPOL:极性设置寄存器这个寄存器可以设置相应通道的PWM波在每个周期内是先出现高电平后低电平,或是先低电平后高电平。
PPOLn=1:n 通道对外输出波形先是高电平然后再变为低电平。
PPOLn=0:n通道对外输出波形先是低电平然后再变为高电平。
这个设置与占空比的计算有关。
三、PWMCLK:时钟选择寄存器PWM模块中共有四个时钟,分别为A、B、SA、SB。
对于第0、1、4、5通道,PCLKn=0时,则其通选择的是时钟A;当PCLKn=1时,其通道选择的是时钟SA。
对于2、3、6、7通道,PCLKn=0时,其通道选择的是时钟B,当PCLKn=1时,其通道选择的是时钟SB。
MC9S12XS128之串行通信SCI

串行通信分为同步通信和异步通信。
串行通信接口都具有发送引脚TXD和接收引脚RXD,它们是TTL平电。
如果要利用这两个引脚与外界实行异步通信,必须将TTL电平转化为RS-232电平。
SCI是一种全双工异步串行通信接口,主要用于MCU与其他计算机或设备之间的通信,几个独立的MCU也能通过SCI实现串行通信,形成网络。
从编程角度看,先设定好波特率,通信格式,是否校验,是否允许中断等。
接着发送数据时,先检查相应的标志位是否允许发送数据,如果可以,则把数据放入SCI数据寄存器即可,剩下的工作芯片自动完成:将数据从SCI数据寄存器送到发送移位寄存器,硬件驱动将发送移位寄存器里的数据按规定发送到发送引脚TXD,供对方接收。
接收时,数据逐位从接收引脚RXD进入到接收移位寄存器,当收到一个完整字节时,芯片会自动将数据送到SCI数据寄存器,并置相应的标志位,我们就可以根据标志位的情况来读取数据了。
SCIBDH:TNP[1:0]:发送窄脉冲位。
此位的设定与SCI传送的脉冲对应关系如下表:SCIBDL:SBR[12:0]:波特率设定位当IREN=0时,SCI波特率=SCI总线时钟/(16*SBR[12:0])当IREN=1时,SCI波特率=SCI总线时钟/(32*SBR[12:1])SCICR1:控制寄存器1(当AMAP=0时有效)LOOPS:循环模式选择位。
LOOPS=0时,为正常模式。
LOOPS=1时,为自发自收模式,在此模式下,RXD引脚与SCI内部断开,内部发送数据直接作为接收的输入,用于测试。
接收器的输入由RSRC位决定。
SCISWAI:当SCISWAI=0时,SCI可以在等待模式下工作。
当SCISWAI=1时,SCI不可以在等待模式下工作。
RSRC:当LOOPS=1时,RSRC位决定接收移位寄存器接收数据的来源。
RSRC=1,RXD引脚与SCI模块断开,SCI用TXD引脚来发送及接收。
RSRC=0时,发送器的输出作为接收器的输入。
MC9S12XS128单片机

2.CodeWarrior IDE 12 应用
MC9S12XS128单片机
• MC9S12XS128(以下简称XS128)是Freescale公 司推出的S12XS系列单片机中的一款增强型16位 单片机,S12XS系列单片机是在S12XE系列基础 上去掉XGate协处理器的单片机,该系列单片机 采用 CPU12X V2内核,可运行在40MHz总线频 率上。不仅在汽车电子、工业控制、中高档机电 产品等应用领域具有广泛的用途,而且在FLASH 存储控制及加密方面呢也有很强的功能。
PWM模块 特点:
1. 它有 8 个独立的输出通道,并且通过编程可控 制其输出波形的周期。 2. 每一个输出通道都有一个精确的计数器。 3. 每一个通道的 PWM 输出使能都可以由编程来控 制。 4. PWM 输出波形的翻转控制可以通过编程来实现。 5. 周期和脉宽可以被双缓冲。当通道关闭或 PWM 计数器为 0 时,改变周期和脉宽才起作用。 6. 8 字节或 16 字节的通道协议。 7. 有4 个时钟源可供选择(A、SA、B、SB),他 们提供了一个宽范围的时钟频率。
ECT初始化程序:
以0通道为例:
void ECT_Init(void) { TIE = 0x00; //通道0~7的使能屏蔽 TIOS = 0x00; // 所有的端口设置成输入捕获模式 TSCR1 = 0x90; // 使能时钟模块,定时器标志位 快速清零,读取数据自动清零 TCTL4_EDG0B = 0; TCTL4_EDG0A = 1; //捕捉 上升沿,0通道 TIE_C0I = 1; // 使能0通道中断,中断服务程序中 读取捕获数 }
ECT模块(增强型定时器模块)
• ECT特点相当于高速的I/O口,由一个16为自由计 数器、8个16为的输入捕捉/输出比较通道、一个 16为脉冲累加器及一个16位的模数递减计算器 (MDC)组成。
飞思卡尔MC9S12G系列详解

飞思卡尔MC9S12G系列详解
飞思卡尔MC9S12G系列详解
电子发烧友网:随着驾驶员对车内舒适度和便利性的要求在提高,汽车车身电子产品在保持具有竞争力价格的同时,还需要继续提供性能更高的半导体。
飞思卡尔半导体目前开始扩大现已普及的16位S12微控制器(MCU)系列,以优化大量对成本敏感的汽车车身电子应用。
先进的S12G 器件设计针对应用需求,提供灵活的内存、封装和成本选项。
MC9S12G系列是一个专注于低功耗、高性能、低引脚数量的高效汽车级16位微控制器产品。
这个系列是桥连8位高端微机和16位高性能微机,像MC9S12XS系列。
本文将详细介绍关于飞思卡尔MC9S12系列的芯片简介、MC9S12单片机最小系统硬件设计、典型程序应用、飞思卡尔XS128和G128两种单片机的主要区别等进行阐述。
飞思卡尔MC9S12G系列单片机中文简介
1.1介绍
MC9S12G系列是一个专注于低功耗、高性能、低引脚数量的高效汽车级16位微控制器产品。
这个系列是桥连8位高端微机和16位高性能微机,像MC9S12XS系列。
MC9S12G系列是为了满足通用汽车CAN或
LIN/J2602通信应用。
这些应用的典型例子包括body controllers,occupant。
飞思卡尔MC9S12XS128(定时器)ECT寄存器详解

1、定时器IC/OC功能选择寄存器TIOSIOS[7..0]IC/OC功能选择通道0 相应通道选择为输入捕捉(IC)1 相应通道选择为输出比较(OC)2、定时器比较强制寄存器 CFORCFOC[7..0]设置该寄存器某个FOCn位为1将导致在相应通道上立即产生一个输出比较动作,在初始化输出通道时候非常有用。
【说明】这个状态和正常状态下输出比较发生后,标志位未被置位后的情况相同。
3、输出比较7屏蔽寄存器 OC7MOC7M[7..0]OC7(即通道7的输出比较)具有特殊地位,它匹配时可以直接改变PT7个输出引脚的状态,并覆盖各个引脚原来的匹配动作结果,寄存器OC7M决定哪些通道将处于OC7的管理之下。
OC7M中的各位与PORTT口寄存器的各位一一对应。
当通过TIOS将某个通道设定为输出比较时,将OC7M中的相应位置1,对应的引脚就是输出状态,与DDR中的对应位的状态无关,但OC7Mn并不改变DDR相应位的状态。
【说明】OC7M具有更高的优先级,它优于通过TCTL1和TCTL2寄存器中的OMn和OLn设定的引脚动作,若OC7M中某个位置1,就会阻止相应引脚上由OM和OL设定的动作。
4、输出比较7数据寄存器 OC7DOC7D[7..0]OC7M对于其他OC输出引脚的管理限于将某个二进制值送到对应引脚,这个值保存在寄存器OC7D中的对应位中。
当OC7匹配成功后,若某个OC7Mn=1,则内部逻辑将OC7Dn送到对应引脚。
OC7D中的各位与PORTT口寄存器的各位一一对应。
当通道7比较成功时,如果OC7M中的某个位为1,OC7D中的对应位将被输出到PORTT的对应引脚。
【总结】通道7的输出比较(OC7)具有特殊的位置,在OC7Mn和OC7Dn两个寄存器设置以后,OC7成功输出后将会引起一系列的动作。
比如:OC7M0=1,则通道0处在OC7的管理下,在OC7成功后,系统会将OC7D0的逻辑数据(仅限0或者1)反应在PT0端口上。
飞思卡尔MC9S12XS128技术手册翻译AD

飞思卡尔MC9S12XS128技术手册(AD转换部分)英文资料:飞思卡尔MC9S12XS256RMV1官方技术手册1.1 XS12系列单片机的特点XS12系列单片机特点如下:·16位S12CPU—向上支持S12模糊指令集并去除了其中的MEM, WAV, WAVR, REV, REVW 五条指令;—模块映射地址机制(MMC);—背景调试模块(BDM);·CRG时钟和复位发生器—COP看门狗;—实时中断;·标准定时器模块—8个16位输入捕捉或输出比较通道;;—16位计数器,8位精密与分频功能;—1个16位脉冲累加器;·周期中断定时器PIT—4具有独立溢出定时的定时器;—溢出定时可选范围在1到2^24总线时钟;—溢出中断和外部触发器;·多达8个的8位或4个16位PWM通道—每个通道的周期和占空比有程序决定;—输出方式可以选择左对齐或中心对其;—可编程时钟选择逻辑,且可选频率范围很宽;·SPI通信模块—可选择8位或16位数据宽度;—全双工或半双工通信方式;—收发双向缓冲;—主机或从机模式;—可选择最高有效为先输出或者最低有效位先输出;·两个SCI串行通信接口—全双工或半双工模式·输入输出端口—多达91个通用I/O引脚,根据封装方式,有些引脚未被引出;—两个单输入引脚;·封装形式—112引脚薄型四边引线扁平封装(LQFP);—80引脚扁平封装(QFP);—64引脚LQFP封装;·工作条件—全功率模式下单电源供电范围3.15V到5V;—CPU总线频率最大为40MHz—工作温度范围–40 C到125 C第十章模拟—数字转换10.1 介绍ADC12B16C是一个16通道,12位,复用方式输入逐次逼近模拟—数字转换器。
ATD的精度由电器规格决定。
10.1.1 特点·可设置8位、10位、12位精度·在停止模式下,ATD转换使用内部时钟·转换序列结束后自动进入低耗电模式·可编程采样时间·转化结果可选择左对齐或右对齐·外部触发控制·转换序列结束后产生中断·模拟输入的16个通道为复用方式·可以选择VRH、VRL、 (VRL+VRH)/2特殊转换方式·转换序列长度1到16·可选择连续转换方式·多通道扫描·任何AD通道均可配置外部触发功能,并且可选择4种额外的触发输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWMCNTx:
PWM通道计数寄存器。
每个通道都有一个独立的8位计数器,其计数速率由所选择的时钟源决定。计数器的值可以随时读取而不影响计数器运行,也不影响PWM波形输出。在左对齐模式时,计数器从0计数至周期寄存器的值减1;在中心对齐模式,计数器从0计数至周期寄存器的值,然后再倒计数至0。
CFORC:
定时器比较强制寄存器。复位值为0x00。
FOCx=1将强制该位对应通道产生输出比较成功动作,但CxF中断标志位不置位。任何通道的强制比较成功动作若与普通比较成功动作同时发生,则强制比较成功动作优先发生,且CxF标志位不会置位。
被置位后瞬间将自动清除该位,所以任何时候对该寄存器的读动作都将返回0x00。
OC7M:
输出比较通道7屏蔽寄存器。复位值为0x00。
Setting the OC7Mx (x ranges from 0 to 6) will set the corresponding port to be an output port when the corresponding TIOSx (x ranges from 0 to 6) bit is set to be an output compare and the corresponding OCPDx (x ranges from 0 to 6) bit is set to zero to enable the timer port.A successful channel 7 output compare overrides any channel 6:0 compares. For each OC7M bit that is set, the output compare action reflects the corresponding OC7D bit.
Clock A、Clock B由下面的PWMPRCLK设置。
PWMPRCLK:
PWM预分频时钟源选择寄存器。
控制Clock A、Clock B的值。
PWMCAE:
PWM中心对齐使能寄存器。CAEx=1,该通道为中心对齐;CAEx=0,该通道为左对齐。
PWMCTL:
PWM控制寄存器。CONxx=1,则相应的两个通道级联使用,否则单独使用。级联后,整个级联通道由低位通道(通道数大的)的各个寄存器控制,高位通道(通道数小的)不起作用。
{
PWMPOL=0X01;//通道0输出波形开始极性为1 output waveform which high first then low when the duty counter is reached
PWMCAE=0x00; //左对齐输出模式output left align waveform
级联模式下,向高位通道或低位通道计数器寄存器写值,等同于向16位级联计数器寄存器写值,也即重置为0。
PWMSCLA:
PWM标度A寄存器。用于控制Clock SA的值,Clock SA = Clock A / (2 * PWMSCLA),当PWMSCLA=0x00时,相当于PWMSCLA=256。
PWMSCLB:
TCNT:
定时器计数寄存器。复位值为0x0000。
这是一个16位的寄存器,注意要使用字访问,不要单独访问高位或低位。该计数器向上计数至0xFFFF时将溢出至0x0000并触发定时器计数器溢出中断。向该寄存器写入值是无意义或无效的。
TSCR1:
定时器系统控制寄存器1。复位值为0x00。
TEN为定时器使能位,置位将启动主定时器模块,清零将关闭。清零后不影响脉冲累加计数器模块在事件计数器模式单独工作。
TTOV:
定时器溢出时触发寄存器。
该寄存器功能仅在相应通道行使输出比较功能时有效。当相应位置位并且定时器计数器溢出时,将优先于CFORC寄存器(除通道7以外)触发相应引脚。
TCTL1/TCTL2:
定时器控制寄存器1/2。
这两个寄存器中,每两位确定一个输出比较通道在成功发生一次比较后采取何种输出动作,这两位分别是OMx、OLx。他们的组合有四种,对应四种动作方式。
PWMPERx:
PWM通道周期寄存器。
每个通道都有一个独立的8位周期寄存器,它的值将间接决定该通道的PWM波形周期。该寄存器采用双缓冲器设计,即写入的新值不立即生效,直到本次有效周期结束或者计数器寄存器清零或者该通道被禁止。读该寄存器将返回最近一次写入的值(不一定是当前生效的值)。复位将重置值为0xFF。
PWMCLK=0X01; //PWM时钟源为SAClock SA is the clock source for PWM channel 0
PWMPRCLK=0X03; //时钟A8分频Clock A is 8MHz/8=1MHz
PWMSCLA=0X80; //时钟SA为1MHz/128/2 Clock SA is 1MHz/128/2=4KHz
对于端口T, S, M, P, H, J,和AD,有基于每个针脚的降额输出驱动控制寄存器。
对于端口A, B, E,和K,有一个基于端口的降额输出驱动控制寄存器。
对于端口S、M,有漏极开路(线或)控制寄存器。
对于端口P、H和J,有基于每个针脚的中断标志寄存器。
纯通用IO端口共计有41个,分别是:
PA[7:0]
PWMPER0=255; //设定输出周期=通道时钟周期*256
PWMDTY0=150;//占空比初始为0 Duty is 50%,and PWM waveform's frequent is 16
PWME=0X01;//通道0使能enable pwm channel 0
}
void main(void)
PWMPOL:
PWM极性寄存器。PPOLx=1,则该通道的周期初始输出为高电平,达到占空比后变为低电平;相反,若PPOLx=0,则初始输出为低电平,达到占空比后变为高电平。
PWMCLK:
PWM时钟源选择寄存器。0、1、4、5通道,PCLKx=0使用Clock A,PCLKx=1使用Clock SA;2、3、6、7通道,PCLKx=0使用Clock B,PCLKx=1使用Clock SB。
下面给出了如何由占空寄存器的值计算最终PWM输出波形的占空比:
Polarity = 0 (PPOLx = 0)
Duty Cycle = [(PWMPERx - PWMDTYx) / PWMPERx] * 100%
Polarity = 1 (PPOLx = 1)
Duty Cycle = [PWMDTYx / PWMPERx] * 100%
OC7D:
输出比较7数据寄存器。复位值为0x00。
A channel 7 output compare can cause bits in the output compare 7 data register to transfer to the timer port data register depending on the output compare 7 mask register.
向计数器写入任何值都将导致计数器复位至0、计数方向重置为向上。在有效周期末,计数器同样会被清零。只有当通道使能时计数器才进行计数。改变计数器的值应该在该通道禁止时进行。
若某个通道正在执行PWM功能,使用PWMEx=0禁止该通道,则该通道的计数器将“冻结”,下次使能该通道时,计数器将接着上次停止的地方继续计数,而不是重新从0开始。若要开始一个新的PWM脉冲波形,则应在使能前写一次计数器。
PWMx Period = Clock (A, B, SA, or SB) * (2 * PWMPERx)
PWMx Frequency = Clock (A, B, SA, or SB) / (2 * PWMPERx)
PWMDTYx:
PWM占空寄存器。每个通道都有一个独立的8位占空寄存器,它的值将间接决定该通道的PWM波形占空比。该寄存器采用双缓冲器设计,即写入的新值不立即生效,直到本次有效周期结束或者计数器寄存器清零或者该通道被禁止。读该寄存器将返回最近一次写入的值(不一定是当前生效的值)。复位将重置值为0xFF。
TIOS:
定时器输入捕捉/输出比较选择寄存器。复位值为0x00。
IOSx=0,相应通道行使输入捕捉,输入捕捉用来获取当外部事件发生时定时器计数器(TCNT)的值,当预期的触发事件输入到该通道上,定时器将把定时器计数器中的当前值传送到该通道的TCx寄存器中,然后置位TFLG1中的CxF标志位,若TIE中的CxI=1,则将触发该通道输入捕捉中断请求;而当IOSx=1,相应通道行使输出比较,输出比较用来在相应引脚上产生可定制周期、频率和极性的脉冲,当定时器计数器中的值步进至与该通道TCx中的预设值相等时,若OCPDx=0,定时器将置位、清零或者触发该通道的引脚,然后置位TFLG1中的CxF标志位,若TIE中的CxI=1,则将触发钙通道输出比较中断请求。
TFFCA为定时器所有标志位快速清零位,置位时将在访问某些寄存器时才清零TFLG1、TFLG2、PAFLG中的相应标志位;清零时将正常执行清零动作。该位默认是清零的。
PRNT确定定时器预分频器分频比从何选择。PRNT=0,则预分频比由TSCR2中的PR0、PR1、PR2决定;若PRNT=1,则由PTPSR寄存器决定。该寄存器在每次复位后只能写入一次。
PWMSDN:
PWM紧急关断寄存器。
参考程序:
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */