经济数学基础(线性代数)讲义
《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
经济数学基础线性代数之第3章 线性方程组

第一单元 线性方程组的表达一、学习目标了解线性方程组的表示方法及线性方程组的基本概念二、内容讲解线性方程组的一般表示 方程数目为m ,未知量个数为n . 下面举一个例子.例: 用矩阵形式表示方程组⎩⎨⎧-=-+=+-165443321321x x x x x x解: 将未知量的系数和常数项按原来的位置写成矩阵⎥⎦⎤⎢⎣⎡---=11654143A ,n =3,m =2系数矩阵⎥⎦⎤⎢⎣⎡--=165143A ,未知数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321x x x X ,常数矩阵⎥⎦⎤⎢⎣⎡-=14b 线性方程组用矩阵表示为b AX =即⎥⎦⎤⎢⎣⎡--165143⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎦⎤⎢⎣⎡-=14线性方程组三种表示形式⎥⎦⎤⎢⎣⎡---=11654143A三、例题讲解例1 将线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=++-=--43502515432131321321x x x x x x x x x x x 改写成矩阵的形式.解:增广矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=4315010121511154A 系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=315101151154A 常数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4021b线性方程组的矩阵表示为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----315101151154⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4021 例2若已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500101111231021A 表示一个线性方程组的增广矩阵,讨论这个线性方程组:(1)有几个未知量?(2)有几个方程?(3)最后一行代表的方程是什么?解:(1)根据增广矩阵的概念,可知最后一列是常数项,前4列是未知量的系数,故这个方程组有4个未知量.(2)由增广矩阵的构成可知,增广矩阵的行数就是方程的个数,故有3个方程. (3)最后一行代表的方程是50004321=+++x x x x 即52=x例3,线性方程组b AX =,矩阵A 是4×6矩阵,矩阵b 是4×1矩阵,问这个方程组有几个未知量?有几个方程?解:有6个未知量,有4个方程.四、课堂练习练习写出下列线性方程组的增广矩阵,并写出矩阵表达形式.五、课后作业将下列方程组写成矩阵形式:(1)⎪⎩⎪⎨⎧=--=++-=+2423325232132121xxxxxxxx;(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=++=++-=++=+4652652652651655454343232121xxxxxxxxxxxxx(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛---23542321112321xxx;(2)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛12221656516516516554321xxxxx第二单元消元法一、学习目标熟练掌握求线性方程组一般解的消元法,掌握求线性方程组的特解.二、内容讲解例:若一个线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=222111112A,求方程组的解.解:从最后一行开始,得223-=x,13-=x第二行表示的方程是232=+xx,322xx-=3)1(2=--=第一行表示的方程是12321=-+xxx,23)1(21321-=+-=xxx方程组的解为⎪⎪⎩⎪⎪⎨⎧-==-=1323321xxx归纳:当线性方程组的增广矩阵为阶梯形矩阵时,可以从最后一行开始,用逐步回代的方法求得线性方程组的解.比较增广矩阵与线性方程组作初等行变换的关系结论:对线性方程组的增广矩阵进行初等行变换,不改变线性方程组的解.消元法:用初等行变换把线性方程组的增广矩阵化成阶梯形矩阵;从阶梯形矩阵的最后一行开始,用逐步回代的方法求解.这种解线性方程组的方法就叫消元法。
线性代数讲义(基础版)

1 2 3 1
2 0 2 1 a2
4 2 0 2 a3 a3 a3 − x a3 a4 a4 a4 a4 − x
a1 − x
例2 求 D=
a2 − x a2 a2
a0 1
例3 求 Dn +1 = 1
1 a1
1 a2
1 (ai ≠ 0) an
1
a1 + x a2 a3 a4 0 0 x −x 例 3 求 D4 = 0 −x x 0 0 0 −x x a1
n
6
线性代数基础班 09
合肥工业大学考研辅导中心(共创考研)
7
例1. 设
⎛1 0 1⎞ ⎜ ⎟ A = ⎜0 1 0⎟ ⎜0 0 1⎟ ⎝ ⎠
, 求A
n
例2. 设
⎛3 1 0⎞ ⎜ ⎟ A = ⎜0 3 0⎟ , ⎜0 0 2⎟ ⎝ ⎠
求 A
n
例3. 设
α = (1 2 3)T β = αT β
,
线性代数基础班 09
合肥工业大学考研辅导中心(共创考研)
1
第四篇:线性代数
第一章 行列式
考试要求 1.了解行列式的概念,掌握行列式的性质。 2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式。
一、内容提要
1.行列式的定义
n 2 个数 ai j (i, j = 1,2,
a11 a 21 a n1 a12 a 22 an2
练习 求 Dn =
b1 a2
b2 an −1 bn −1
bn
an
1
练习
−1 −1 x −1 −1
1 x +1 1 1
x −1 −1 −1 −1
3
1 1 x +1
线性代数基础讲义

2015考研数学线性代数基础讲义第一章 行列式一.基本内容1.排列与逆序定义 :由 n 个自然数1, 2,3,..., n 组成的无重复有序实数组 称为一个 n 级排列。
定义 :在一个 n 级排列中,如果一个较大数排在一个较小数前面,我们就称这两个数构成一个逆序。
对于逆序,我们感兴趣的是一个 n 级排列中逆序的总数,称为 n 级排列的逆序数,记作。
2. 行列式的定义个数 ( )排成的行列的方形表称为一个n 阶行列式。
它表示所有取自不同行不同列的个元素乘积的代数和。
3.行列式的性质(1)转置不改变行列式的值(2)行列式某行(列)元素的公因子可以提到行列式之外(3)行列式的分行(列)可加性(4)行列式两行(列)元素成比例,则行列式值为0(5)互换行列式的某两行(列)行列式的值改变符号(6)行列式某行(列)的倍加到另外一行(列),行列式值不变4.行列式的余子式、代数余子式划去元素 所在的行、列,剩下的元素按照原来的顺序排成的n-1阶行列式称为 的余子式,记为 ,称 为 的代数余子式。
5.行列式的展开(1)展开定理(2)行列式某一行(列)每个元素与另一行(列)对应元素的代数余子式乘积的和等于0 。
二.基本结论(1)(2)12,,n i i i 12,,n i i i ()12,,n i i i τ2n ij a ,1,2,,i j n =⋅⋅⋅1212121112121222(,,,)12,,,12(1)n n n n n j j j j j nj j j j n n nn a a a a a a D a a a a a a τ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅⋅⋅⋅∑ij a ij a ij M (1)i j ij ij A M +=-ij a 1122i i i i in in D a A a A a A =++1,2,,i n =1122j j j j nj nj a A a A a A =++1,2,,j n =11220k i k i kn in a A a A a A ++=k i≠11220k i k i nk ni a A a A a A ++=k i ≠1122nn a a a =11112222******nn nn a a a a a a ==1112(1)2(1)2(1)111******n n n n n n n n n a a a a a a a a a ---===三. 基本题型与基本方法题型1:行列式的计算:行列式基本方法:利用性质及展开具体方法:方法一 :三角法(利用性质将行列式化为三角型行列式)例方法二:降阶法(利用展开降阶)例第二章 矩阵第一节 矩阵及其运算一. 基本内容1.矩阵概念1)定义2)特殊矩阵:(1)零矩阵:(2)阶方阵:(3)行矩阵(向量)、列矩阵(向量):(4)对角矩阵、单位矩阵、上三角矩阵、下三角矩阵:(5)对称矩阵、反对称矩阵:2.矩阵的运算1)线性运算:加法与数乘2)乘法:(1)乘法法则:(2)运算律:3)方阵的运算(1)方阵的幂及其运算律:(2)方阵的行列式4)转置:性质5)伴随矩阵性质:二、基本结论1.伴随矩阵的相关结论2.分块矩阵的逆 4124120233200112D =0111111n n a a D a +=12344000000a x a a a x x D x x x x +-=--()111212122212n n ij m n m m mn a a a a a a A a a a a ⨯⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪== ⎪⋅⋅⋅⋅⋅⋅ ⎪⎝⎭第二节 可逆矩阵一、基本内容1.可逆的定义:2.阶矩阵可逆的充要条件:3.性质:二、基本题型与基本方法题型1:逆矩阵的计算与证明(具体矩阵、抽象矩阵)方法一:公式法求逆方法二:初等变换求逆:方法:例方法四:利用定义,求(证明)逆矩(抽象矩阵的情形中常见)例:n 阶矩阵满足 求第三节 矩阵的初等变换与秩一、基本内容1.初等变换的定义:2.初等矩阵(1)定义:由单位矩阵经过一次初等变换得到的矩阵(2)三种初等矩阵:(3)性质:初等矩阵都是可逆的,其逆仍是初等矩阵3.初等变换的本质(初等变换与初等矩阵的关系)4.矩阵等价1)定义:2)性质:5.矩阵的秩(1)定义:(2)性质:初等变换不改变矩阵的秩二、基本题型与基本方法题型:求矩阵的秩基本方法:初等变换法对矩阵作初等行变换,化为阶梯形,阶梯形中非零行的个数即为矩阵的秩。
04184线性代数(经管类)基础知识

第一章行列式(一)行列式的定义1.行列式的定义D n=∑(-1)t a1c1a2c2…a n cn(t是列标c的逆序数)=∑(-1)t a r11a r22…a rn n(t是行标r的逆序数) 2.余子式及代数余子式设有n阶行列式D n,对任何一个元素a ij,划去它所在的第i行及第j列,剩下的元素按原先次序组成一个n-1阶行列式,称它为元素a ij的余子式,记作M ij,再记A ij=(-1)i+j M ij,称A ij为元素a ij的代数余子式.3.特殊行列式①②③(二)行列式的性质性质1 行列式与它的转置行列式相等,即|A|=|A T|性质2用数k乘行列式D中某一行(列)的所有元素等于用数k乘此行列式D.推论1行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面性质3互换行列式的任意两行(列),行列式的值改变符号.推论2如果行列式中有某两行(列)相同,则此行列式的值等于零.推论3 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4如果行列式某行(列)所有元素均为两个数的和,则行列式可以按该行(列)拆为两个行列式的和.性质5 把行列式某一行(列)所有元素都乘以同一个数然后加到另一行(列)的对应元素上去,行列式不变. 定理1(行列式展开定理)n阶行列式D=|a ij|n等于它任意一行(列)各元素与其对应的代数余子式的乘积的和,即D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…n)(D按第i行的展开式)或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…n)(D按第j列的展开式)定理2行列式D=|a ij|n的任一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即a i1A k1+a i2A k2+…+a in A kn=0(i≠k)或a1j A1s+a2j A2s+…+a nj A ns=0(j≠s)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:第二章矩阵(一)矩阵的定义矩阵定义:m*n个数a ij(i=1,2,…m,j=1,2,…n)排列成一个m行n列的有序数表,称为m*n矩阵,记为(a ij)m*n (二)矩阵的运算1.矩阵的同型与相等设有矩阵A=(a ij)m*n, B=(b ij)k*s,若m=k, n=s,则说A与B是同型矩阵,若A与B同型,且对应元素相等,即a ij=b ij,则称矩阵A与B相等,记为A=B2.矩阵的加、减法设A=(a ij)m*n, B=(b ij)m*n,是两个同型矩阵,则A+B=(a ij+b ij)m*n , A-B=(a ij-b ij)m*n注意:矩阵的相加(减)体现为对应元素的相加(减),只有A与B为同型矩阵,它们才可以相加(减).①A+B=B+A ②(A+B)+C=A+(B+C) ③A-B=A+(-B)3.数乘运算设A=(a ij)m*n,k为任一个数,则规定kA=(ka ij)m*n, 数k与矩阵A的乘积就是A中所有元素都乘以k①(kj)A=k(j A) ②(k+j)A=k A+j A ③k(A+B)=k A+k B4.乘法运算设A=(a ij)m*k,B=(b ij)k*n,则规定AB=(c ij)m*n,其中c ij=a i1b1j+a i2b2j+…+a ik b kj (i=1,2,…,m, j=1,2,…,n)只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,且AB的行数为A的行数,AB的列数为B的列数,AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.矩阵乘法与普通数乘法不同:不满足交换律,即①AB≠BA②当AB=0,不能推出A=0或B=0,不满足消去律.①(AB)C=A(BC) ②A(B+C)=AB+AC ③(B+C)A=BA+CA ④k(AB)=(k A)B=A(k B)⑤AE=EA=A5.方阵的乘幂与多项式方阵A为n阶方阵,则A m=AAA…A(m个).①A k A j=A k+j ②(A k)j=A kj ③特别地A0=E④若f(x)=a m x m+a m-1x m-1+…+a1x+a0,则规定f(A)=a m A m+a m-1A m-1+…+a1A+a0E,称f(A)为A的方阵多项式。
经济数学基础线性代数部分重难点解析

第三部 线性代数 第1章 行列式1.了解或理解一些基本概念(1)了解n 阶行列式、余子式、代数余子式等概念; (2)了解n 阶行列式性质,尤其是:性质1 行列式D 和其转置行列式T D 相等;性质2 若将行列式的任意两行(或列)互换,则行列式的值改变符号; 性质3 行列式一行(或列)元素的公因子可以提到行列式记号的外面;性质5 若将行列式的某一行(或列)的倍数加到另一行(或列)对应的元素上,则行列式的值不变.例1 设行列式211201231--=D ,则D 中元素223=a 的代数余子式23A = 。
解 由代数余子式的定义ij A ij ji M +-=)1(,其中ij M 为ij a 的余子式,可知 23A =11311131)1(32-=-+。
应该填写 1131-。
例2 下列等式成立的是( ) ,其中d c b a ,,,为常数。
A .acb d dc ba -= B .111111c bd a d c b a +=++C .d c b a d c ba 22222= D .111111c b d a d c b a ⋅=⋅⋅ 解 因为 dc ba d cb acd a b a b c d a c b d ≠-==-=-,所以选项A 是错误的。
由行列式性质4可知,111111c b d a d c b a +=++,所以选项B 是正确的。
因为d c ba d cb a dc b a 242222≠=,所以选项C 是错误的。
因为1111,11c b d a cd ab d c b a ⋅-=⋅⋅=))((c b d a --,111111c b d a d c b a ⋅≠⋅⋅,所以选项D 是错误的。
例3 行列式4321100001000010=D = 。
解 按第1列展开行列式,得6300020001)1(432130000200001014-=-==+D故应该填写 –6。
2.掌握行列式的计算方法化三角形法:利用行列式性质化成上(或下)三角行列式,其主对角线元素的乘积即为行列式的值。
经济数学基础线性代数之第1章行列式

第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。
即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。
线性代数(经管类)讲义

⎧a11x1 + a12 x2 + L + a1n xn = b1,
⎪⎪ ⎨ ⎪
a21x1 + a22 x2 + L + a2n xn = LLLLLLLLLL
b2
,
⎩⎪an1x1 + an2 x2 + L + ann xn = bn
如果其系数行列式 D
=
aij
n
≠
0 ,则方程组必有唯一解: x j
元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.
14/53
例4
当
λ
取何值时,齐次线性方程组
⎧(1 ⎪ ⎨
− 2
λ)x1 − x1 + (3
2 −
x2 λ)
+ 4x3 = x2 + x3
0 =
0
只有零解?
⎪⎩ x1 + x2 + (1 − λ)x3 = 0
解:方程组的系数行列式
1−λ −2 4
2 0
7025
7025
725
5 31 2
2列 + 5×1列 1
0
0 按第二行展开 31
2 = 81
37 5
7 37 5
10/53
abbb babb 例 2 计算行列式 D4 = b b a b bbba
解:方法 1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取 0
同型,且对应元素相等,即 aij = bij ,则称矩阵 A 与 B 相等,记为 A = B
因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.
2.矩阵的加、减法 设 A = (aij )m×n , B = (bij )m×n 是两个同型矩阵则规定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学线性代数学习讲义合川电大兰冬生1,矩阵:A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,称为矩阵。
认识矩阵第一步:行与列,横为行,竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2这是一个三行三列矩阵, 再给出一个三行四列矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=12614231213252A 教材概念的m 行n 列矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,这个矩阵记作n m A ⨯,表明这个矩阵有m 行,n 列,注意行m 写在前面,列n 写在后面,括号里面的称为元素,记为ij a ,i 是行,j 是列, 例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----12614231213252是三行四列矩阵,也说成43⨯矩阵,注意行3在前面,列4在后面,这里211=a (就是指的第一行第一列那个数) 123-=a (就是指的第二行第三列那个数) 2,矩阵加法矩阵加法,满足行列相同的矩阵才能相加,对应位置的数相加。
例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011101010+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021512220 减法是对应位置的数相减。
,3,矩阵的乘法矩阵乘法参看以下法则:注意字母对应⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b =⎦⎢⎢⎢⎣⎡33323122211211c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b ,注意是对应元素相乘,再求和。
乘积的结果矩阵21c 等于第一个矩阵的第二行元素21a 22a 23a 乘以第二个矩阵的第一列元素11b 21b 31b 。
依次类推,结果元素ij c 等于第i 行乘以第j 列,举例:矩阵 A AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 第一行乘以第一列,)2(4)2(1061-=⨯-+⨯+⨯ 第一行乘以第二列,11)2(2031=⨯-+⨯+⨯ 第二行乘以第一列,4401)2(61=⨯+⨯-+⨯ 第二行乘以第二列,1102)2(31-=⨯+⨯-+⨯可以乘的条件:第一个矩阵的列数和第二个矩阵的行数必须相同,就是尾首必须相同,v w n m B A ⨯⨯可以乘必须是A 矩阵脚标的尾n 等于B 矩阵脚标的首w 相等,w n =例如: 3332⨯⨯B A 可乘3432⨯⨯B A 不可乘,只要尾首相同就可乘,v w n m B A ⨯⨯乘积为v m ⨯矩阵 例如: 3332⨯⨯B A 可乘,乘积结果为32⨯C 矩阵2334⨯⨯B A 可乘,乘积结果为24⨯C 矩阵矩阵的数乘,一个数乘以一个矩阵,等于这个矩阵的每个元素乘以这个数例:A =⎥⎦⎤⎢⎣⎡--021201,3A =⎥⎦⎤⎢⎣⎡--063603. 矩阵的乘法可以看出,矩阵的乘法不可交换,一般情况下BA AB ≠ 4,矩阵的转置矩阵A 转置矩阵记为T A ,转置就是把矩阵的行列元素对调,也可以看成沿主对角线翻转!AA 则⎢⎢⎢⎣⎡-=T AA T 是3×2矩阵(3行2列),2012年1月考题:设A 为3×4矩阵,B 为5×2矩阵,且乘积矩阵AC T B T 有意义,则C 为( B )矩阵。
A. 4×2B. 2×4C. 3×5D. 5×3分析:根据尾首相同法AC T B T 可表示为(3×4)( )(2×5),中间一个就是4×2,注意是C T ,所以C 就是2×4。
对称矩阵:对称矩阵的元素依主对角线对称:1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵.5,求矩阵的逆预备知识:(1),在数的学习中,数的单位是1,1313=⨯, 矩阵的单位是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 I ,除主对角是1以外,其余全是0,并且,单位矩阵全是方阵(行数与列数相等)任何矩阵乘以单位阵不变AI =A ,(可以试一试)例,3阶单位阵,I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001,我们以3阶阵来说逆, 已知A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210 与前面1313=⨯类似,能不能找到一个矩阵,使得A 乘以这个矩阵等于单位阵? 记为I AA =-1,1-A 称为A 的逆,(2)矩阵的初等变换,①将矩阵的任意两行互换,②把某一行乘以一个数(指对这一行的每个元素都乘以这个数), ③把某一行乘以一个数,然后加到另外一行。
求逆求逆原理:][][1-→A I I A ,举例:设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 分析: 第一步:把A 和单位阵I 写在一起,[A I ] =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001012411210 第二步:初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100001010012210411,(由于第一行第一个数是0,要化成前面是单位阵,这里就不能是0,于是交换1,2行,随便两行都可以交换,因为第二行第一个数是1,简单,所以就1,2行互换)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→120001010830210411第一行乘以-2加到第三行,目的是化0,除主对角以外,其他全部化成0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→123001010200210411第二行乘以3加到第三行, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123001011200210201现在开始化上面,第二行乘以-1加到第一行 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→123124112200010001第三行直接加到第一行;加到第二行 把对角线上的都化成1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 第三行乘以21-,这一步是把前面化成单位阵,这个就是我们要的][1-A I ,前半部分是I ,后半部分就是1-A所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112这是个考题,具体计算可以省略些步骤,给出解题答案为:设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 解 因为(A I ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112另一种题型,解矩阵方程,其原理是对B AX =两边左乘(就是靠在左边)1-A ,得B A AX A 11--=,因为I A A =-1,所以B A X 1-=,注意任何矩阵乘以单位阵保持不变。
例:已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 分析:先求逆,在计算。
解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法和转置运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X考题举例: 1,2.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 解 因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 (AB I ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112 ⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102 所以 (AB )-1= ⎥⎥⎦⎤⎢⎢⎣⎡1221213.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--2522314.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12 5.设矩阵 A =102120-⎡⎤⎢⎥-⎣⎦,B =123012-⎡⎤⎢⎥-⎣⎦,计算(AB T )-1. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=231201021201T AB ⎥⎦⎤⎢⎣⎡--=2347 所以⎥⎥⎦⎤⎢⎢⎣⎡=-272321)(1TAB 6.设矩阵A =--⎡⎣⎢⎤⎦⎥1213,且有⎥⎦⎤⎢⎣⎡=+2453TAB A ,求矩阵B . 解:T A AB -⎥⎦⎤⎢⎣⎡=2453 所以⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=--32112453245311A A AB T ⎥⎦⎤⎢⎣⎡=-52621A ,又⎥⎦⎤⎢⎣⎡--=-11231A 所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=114281052621123B 7. 设矩阵 A =1536-⎡⎤⎢⎥-⎣⎦,B =11⎡⎤⎢⎥-⎣⎦,计算(A-I )-1B . 设矩阵A=[-1-6],B=[1] 解:8. 已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法和转置运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X 9.已知AX B =,其中122110135A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,210B ⎛⎫⎪=- ⎪ ⎪⎝⎭,求.X10.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121 ⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-110111.设矩阵⎥⎥⎥⎦⎢⎢⎢⎣------=843722A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111 即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 12.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即 ⎥⎥⎥⎦⎢⎢⎢⎣---=-1461351A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A 13. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=321B ,求B A I )2(T -. 解 因为T 2A I -= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000100012T113421201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142120311=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311所以B A I )2(T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--9310 14.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=521,322121011B A ,求B A 1-. 解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即 ⎥⎥⎥⎦⎢⎢⎢⎣---=-1461351A 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-9655211461351341B A 15.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613,求1-A . 解 因为 (A I )= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1001120101240013613⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100112210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→1302710210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→172010210100141011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001 所以 A -1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---210172031 16.1A )(I ,121511311A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=求解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+++-++++-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+021501310)1(0)2(01050)1(1103010)1(1121511311100010001A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+100001010021310501100010001021501310][I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−→−-11233556101123355610100010001112001011003105011100010105203105011A )(I17.设矩阵100101,011212A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求1()T B A -。