线性代数总复习讲义分析知识讲解
《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数总复习讲义

线性代数总复习
r(A) r(A,b)无解
r(A)=r(A,b)=n 有唯一解
克拉默法则, xj
Dj D
Ax=b
b=0 b≠0
d1 d 2 d n T 初等变换,
齐次方程的基础解系
r(A)=r(A,b)<n 有无穷多解
非齐次方程的一个特解
非齐次方程的通解
上页 下页 返回
0 1 1
1 1 0 0 0 0
r3 r2 r4 3r1
0 1 1 2 r4 r3 0 0 0 0 2 4 2 2
0 1 1
1 ( 1) ( 2) ( 2) 4
上页 下页 返回
线性代数总复习
(2) 利用行列式展开计算
定理 行列式等于它的任一行(列)的各元素 与其对应的代数余子式乘积之和,即
r2 5r3
32 2 1 0 10 1 3 r2 ( 2) 3 5 3 5 1 A 1 3 3 . 0 0 2 2 2 r3 ( 1) 2 11 1 0 0 11 1
上页 下页 返回
上页 下页 返回
线性代数总复习
r1 r2
r3 r2
r1 2r3
1 0 2 1 1 0 r 2r 3 1 0 2 5 2 1 0 0 0 1 1 1 1 r2 5r3 1 0 0 1 3 2 r 2 ( 2) 0 2 0 3 6 5 ( 1) 0 0 1 1 1 1 r3
上页 下页 返回
线性代数总复习
2、n阶行列式的计算 (1) 利用行列式的性质计算 (化为三角形) 性质1 行列式与它的转置行列式相等.
线性代数总复习PPT 很全!.ppt

x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.
即
x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3
线性代数知识点归纳,超详细

线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数知识点总结

线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
线性代数知识点全面总结PPT课件

量 组 的
维 向 量 线性相关
判定 概念 判定
充要条件
线
概念
充分条件
性 相
线性无关
判定
充要条件 充分条件
关 性
概念
向
极大无关组 求法
量
概念
空
向量空间的基
间
线 Ax = b
解
有解判定R(A)≠R(B)无解 的
性 方 程 组
初行变换等阶梯形
R(A)=R(B)有解 结
构
R(A)=n仅有零解 基
Ax = 0
2、矩阵的乘法
(1)(AB)C = A ( BC ) ;
(2) A ( B + C ) =
(3) (kA)(lB) = (kl)AB;
(4) AO =OA = O.
3、矩阵的转置
(1)(AT)T = A; (3)(kA)T =kAT;
(2) (A+B)T = AT+BT; (4) (AB)T = BTAT.
A
A12
A22
An1
An2
A1n A2n
Ann
概 如果AB=BA=E,则A可逆, 念 B是A的逆矩阵.
用定义
逆 矩求
用伴随矩阵 A1 1 A
A
阵
法
分块对 A
角矩阵
0
0 1 A1
B
0
0 0
B1
B
A1 0
0
A1
B1
0
|A| ≠ 0 , A
证 法
可|A逆| =.0 , A不可 逆AB .= E , A与B互逆.
总 有 解R(A)<n有非零解
A+B = ( aij + biAj与) B同型
线性代数知识点总结

大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数高频考点总结及解析

线性代数高频考点总结及解析线性代数是一门应用广泛的数学学科,掌握线性代数的基本概念和方法对于数理科学、工程技术以及计算机领域都具有重要意义。
本文将就线性代数的高频考点进行总结和解析,帮助读者更好地理解和应用线性代数知识。
一、向量与矩阵1. 向量的定义与性质向量是线性代数中最基本的概念之一,它由具有相同属性的数据集合组成。
向量可以表示点、向量、函数等,具有加法、数乘等运算规则。
向量的模、方向、正交性等性质也是高频考点。
2. 矩阵的定义与运算矩阵是由一组数按照矩阵的排列方式排列成的集合,可以表示线性变换、方程组、图像等。
矩阵的加法、数乘、乘法等运算规则是考点之一。
此外,矩阵的转置、共轭、逆等性质也需要掌握。
3. 向量空间与矩阵空间向量空间是由一组向量组成的集合,具有加法、数乘等运算规则,并满足一定的性质。
矩阵空间是由一组矩阵组成的集合,同样具有加法、数乘等运算规则。
了解向量空间和矩阵空间的定义和性质对于理解线性代数的本质十分重要。
二、线性变换与矩阵的应用1. 线性变换的定义和性质线性变换是指保持向量加法和数乘运算的映射,它可以用矩阵表示。
线性变换的基本性质包括保持零向量不变、保持向量加法和数乘运算等,这些性质是考点之一。
2. 矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中一个重要的概念。
特征值是一个标量,特征向量是对应于特征值的非零向量。
理解特征值与特征向量的意义,以及它们的计算方法和性质对于矩阵的运算和应用至关重要。
3. 行列式的定义与计算行列式是一个标量,它是矩阵的一个重要的特征。
行列式的计算方法包括按行展开、按列展开等。
行列式用于判断矩阵的可逆性、计算矩阵的逆、求解线性方程组等问题。
三、线性方程组的求解及应用1. 线性方程组的解的存在唯一性理解线性方程组解的存在唯一性是解决线性方程组问题的基础之一。
矩阵的秩、行列式、特解与齐次解等概念与线性方程组解的存在唯一性密切相关。
2. 线性方程组的求解方法线性方程组的求解方法包括高斯消元法、克拉默法则、矩阵的逆等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齐
化为行阶梯形矩阵
线性代数总复习
次
线
step2. 讨论方程组的解
性
step3.(无穷解时) 进一步将矩
方
阵化为各首非零元为1,所在
程
列其余元素为零的矩阵
组
step4. 选择自由未知量,基本
求
未知量
怎样选择?
解
过
step5. 写出同解方程
程
step6. 求出基础解系
怎样求?
step7. 写出通解
上页 下页 返回
4 .了解向量组等价的概念,了解向量组 的秩与矩阵秩的关系。
重要结论2
上页 下页 返回
线性代数总复习
5.理解齐次线性方程组有非零解的充分必要条件及非 齐次线性方程组有解的充分必要条件。
6.理解齐次线性方程组的基础解系、通解的概念及 求法。
3.理解非齐次线性方程组解的结构及通解的概念。
4.掌握用行初等变换求非齐次线性方程组通解的方 法。
线性代数总复习
线性代数总复习讲义分析
上页 下页 返回
行列式的计算
线性代数总复习
n阶行列式的计算方法很多,除直接按 定义计算外,一般还有下列方法: 1.利用行列式的性质化为三角形行列式计
算法 2. 降阶展开法
上页 下页 返回
第二、三章教学要求:
线性代数总复习
1.理解矩阵的概念。
2.了解单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称
6.了解分块矩阵及其运算。
上页 下页 返回
第四章教学要求:
1.了解n维向量的概念。
线性代数总复习
重要结论1
2.理解向量组线性相关、线性无关的定义,了解并会用有关 向量组线性相关、线性无关的重要结论。
3.了解向量组的极大线性无关组和向量组的秩的概念,理解矩 阵的秩的概念,掌握用初等变换求矩阵的秩和求向量组的极大 线性无关组及秩。
矩阵,以及它们的性质。
3.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂、方阵乘积的行列式。
4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的 充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆。
5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概 念,掌握用初等变换求逆矩阵的方法;及求矩阵的秩的方法。
4.了解内积的概念,掌握线性无关向量组标准规范化的施密特 正交化方法。向量的单位化等。
结论 上页 下页 返回
第五章教学要求:
线性代数总复习
1.掌握二次型 及其矩阵表示,了解二次型秩的概念, 了解二次型秩的标准形、规范形的概念,了解正、负 惯性指标(数)。
2.掌握化二次型为标准形的方法(配方法)。
3.会判定二次型和对应矩阵的正定性等。
上页 下页 返回
线性代数总复习
充要条件 1
一般情况
当向量个数=向量维数
线
性 相
相应的齐次线性方程组
关
x1a1+x2a2+…+xmam=θ
有非零解
系数行列式 D=0
线 相应的齐次线性方程组
性 无
x1a1+x2a2+…+xmam=θ
关
只有唯一零解
系数行列式 D≠0
上页 下页 返回
充要条件 2
线性代数总复习
加长不变性
R n 中,任一无关组
向量个数 ≤ 向量维数 n
关
上页 下页 返回
线性代数总复习
• 向量组 a1 , a2 ,···, am 线性无关, 而添加 β 形成的向量组 a1 , a2 ,···, am ,β 线性相关, 则 β 可由 a1 , a2 ,···, am 线性表示,且表示唯一。
结论1结束
构成矩阵 A ; ⑵ 求出矩阵 A 的秩,也即原向量组的秩
上页 下页 返回
r(A) r(A,b)无解
线性代数总复习
r(A)=r(A,b)=n 有唯一解
Ax=b
b=0
b≠0
r(A)=r(A,b)<n
有无穷多解
克拉默法则,x j
Dj D
初等变换,d1 d2 dnT
齐次方程的基础解系 非齐次方程的一个特解 非齐次方程的通解
上页 下页 返回
step1. 系数矩阵初等行变换
上页 下页 返回
线性代数总复习
化 二 次
配方法
平方项系数至少有一个不等于零。 二次型不出现平方项,只有xixj的乘积项.
型
为
标
准 形 的
正交变换法 .
方
法
上页 下页 返回
线性代数总复习
判别n元实二次型正定的充要条件是:
1)A是正定矩阵 2)f 的正惯性指数为 n
3)f 的 规范形为 z1 2z2 2zn 2
过
程
step7. 求出齐次线性方程组的通解
怎样求?
step8. 写出非齐次线性方程组的通解上页 下页 返回
第五章教学要求:
线性代数总复习
1.理解矩阵的特征值和特征向量的概念及性质,会求 矩阵的特征值和特征向量。
2.了解相似矩阵的概念、性质及掌握矩阵可相 似对角化的充分必要条件。
3.掌握用相似变换化实对称矩阵为对角矩阵的 方法。
step1. 增广矩阵初等行变换化为行阶梯形矩阵 线性代数总复习
非
齐
step2. 讨论方程组的解
次
step3.(无穷解时) 进一步将矩
线
阵化为各首非零元为1,所在
性
列其余元素为零的矩阵
方
step4. 写出非齐次线性方程组的同解方程组
程
组
step5. 求出非齐次线性方程组的特解
求
解
step6. 写出齐次线性方程组的同解方程组
上页 下页 返回
计算问题
1)怎样求矩阵 A 的秩?------ 行、列
线性代数总复习
A( 行)初 等 变 换 行阶梯形矩阵
则 秩(A)= 行阶梯形矩阵中非零行的行数
--最常用
上页 下页 返回
线性代数总复习
2)怎样求向量组 1,2,,s 的秩? ------ 行、列 ⑴ 以向量组 1,2,,s 中各向量作为列向量,
4)f 的 标准形
g ( y 1 ,y 2 , ,y n ) d 1 y 1 2 d 2 y 2 2 d n y n 2 di 0,i1,2,,n
上页 下页 返回
线性代数总复习
5)存在可逆矩阵C,使实对称矩阵A= CTC 6)实对称矩阵A合同于I 7)实对称矩阵A的n个特征值 全大于零。
(8)矩 阵 A 的 每 一 个 顺 序 主 子 式 均 大 于 零 , 即 : A k 0,i1 ,2个向量可以由
相 关
其余 m -1 个向量线性表示
线
性
其中每一个向量都不能
无 关
由其余 m -1 个向量线性表示
上页 下页 返回
部分 与 整体 长短变化
线性代数总复习
向量个数 与 维数
线
若向量组中
性 相
部分相关 => 整体相关
缩短不变性
向量个数 > 向量维数
关
必线性相关
线
性 无
整体无关 => 部分无关