线性代数讲义 (20)
线性代数讲义课后习题答案

线性代数讲义课后习题答案
《线性代数讲义课后习题答案》
在学习线性代数的过程中,课后习题是巩固知识、提高能力的重要途径。
下面我们将针对线性代数讲义中的一些课后习题进行解答,希望能够帮助大家更好地理解和掌握线性代数的知识。
1. 解题思路
首先,我们要明确线性代数的基本概念和原理,包括向量、矩阵、行列式、线性方程组等。
在解题过程中,要灵活运用这些概念和原理,结合具体题目的要求,采取合适的方法和技巧进行分析和求解。
2. 举例说明
举例来说,对于矩阵的运算,我们需要掌握矩阵的加法、减法、数乘、矩阵乘法等基本运算法则,然后根据题目给出的具体矩阵进行计算。
对于行列式的计算,我们需要了解行列式的性质和计算方法,然后根据题目给出的矩阵计算其行列式的值。
3. 深入探讨
在解题过程中,还需要注意一些特殊情况和问题。
比如,当矩阵不满秩时,如何求解其逆矩阵?当线性方程组无解或有无穷多解时,如何判断和求解?这些都是需要深入探讨和思考的问题。
4. 总结归纳
最后,我们要对解题过程进行总结和归纳,总结出解题的一般规律和方法,以便在以后的学习和应用中能够更加灵活和熟练地运用线性代数的知识和技巧。
通过以上的解题思路、举例说明、深入探讨和总结归纳,相信大家对线性代数
讲义中的课后习题有了更清晰的认识和理解。
希望大家在学习线性代数的过程中能够勤加练习,不断提高自己的解题能力,从而更好地掌握线性代数的知识和方法。
线性代数讲义正式版

目录 第一章 行列式........................................................................................................................................ 1
第一节:基本概念.......................................................................................................................... 1 第二节:行列式的基本性质与计算.............................................................................................. 1 第三节:典型例题精讲.................................................................................................................. 2 第二章 矩阵.......................................................................................................................................... 5 第一节:基本概念.......................................................................................................................... 5 第二节:几种特殊矩阵.................................................................................................................. 5 第三节:矩阵基本运算与公式性质.............................................................................................. 6 第四节:初等变换与初等矩阵...................................................................................................... 8 第五节:求逆矩阵........................................................................................................................ 10 第六节:矩阵的秩........................................................................................................................ 12 第七节:矩阵的性质.................................................................................................................... 13 第三章 向量........................................................................................................................................ 18 第一节:基本概念........................................................................................................................ 18 第二节:向量组的性质................................................................................................................ 19 第三节:向量组的秩与向量组等价............................................................................................ 23 第四章 线性方程组............................................................................................................................ 26 第一节:基本概念........................................................................................................................ 26 第二节:基本结论........................................................................................................................ 26 第三节:线性方程组解的结构.................................................................................................... 27 第四节:具体线性方程组的通解的求法.................................................................................... 28
《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数讲义

线性代数(Linear Algebra )引 言(Introduction )1. 数学 数学(數學、mathematics )在我国古代叫算(筭、祘)术,后来叫算学或数学;直到1939年6月,为了划一才确定统一用数学.“数学是研究现实世界的量的关系和空间形式的科学”,分为代数、几何等.2. 代数 代数(algebra)分为古典代数和近世代数. 古典代数(ancient algebra)基本上就是方程论,以方程的解法为中心.如: 一元一次方程 )0(≠=a b ax 的解为b a x 1-=;一元二次方程 )0(02≠=++a c bx ax 的解为)2/()4(22,1a ac b b x -±-=; 一元三、四次方程也有类似的求根公式(16世纪);但是,一元n 次方程当n ≥5时却无一般的“求根公式”(参见数学史或近代数);根式求解条件的探究导致群概念的引入,这最早出现在Lagrange 1770年和1771年的著作中;1799年Ruffini 给出“证明”(群论思想);Abel 进一步给出严格的证明,开辟了近世代数方程论的道路(1824年和1826年),包括群论和方程的超越函数解法;Galois 引入代换群彻底解决了代数方程根式可解的条件,开辟了代数学的一个崭新的领域——群论.从而使代数的研究对象转向研究代数结构本身,此即近世代数.近世代数(modern algebra)又称抽象代数(abstract algebra )包括代数数论、超复数系、线性代数、群论、环论、域论、格论、李(Lie )群、李代数、代数几何、代数拓扑,等等. 3. 线性代数 如果保持一元一次方程中未知量的指数(一次的)不变,而增加未知量及方程的个数,即得到线性(一次)方程组.先看下面三个例子:例1 (《孙子算经》卷下第31题)“今有雉兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?答曰:雉二十三,兔一十二.”解法1 设雉、兔分别为x ,y ,则由⎩⎨⎧=+=+944235y x y x 解得⎩⎨⎧==1223y x .解法2 ⎪⎪⎭⎫ ⎝⎛9435足头⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎭⎫ ⎝⎛−−→−⎪⎪⎭⎫ ⎝⎛−−→−122312354735兔雉兔头半足头再作差作差半其足 . 解法 3 请兔子全“起立”后,雉兔总“足”数为70235=⨯,从而得兔“手”数为94-70=24,于是兔子数为24÷2=12,雉数为35-12=23 .注:后两种解法心算即可.例2 某厂用四种原料生产五种产品,各产品的原料成份及各原料的用量为表1所示,求每种产品的产量(千克).表1 各产品的原料成份(%)及各原料的用量(千克)解 设A,B,C,D,E 五种产品的产量分别为X i (i =1,2,3,4,5),则问题归结为求解方程组 ⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++=++++6001.06.01.02.01.07807.01.03.01.02.02501.02.02.06.04.01001.01.04.01.03.054321543215432154321X X X X X X X X X X X X X X X X X X X X这是一个含五个未知量、四个方程的方程组.例3 某商店经营四类商品,四个季度的销售额及利润额如表2所示.求每类商品的年平均利润率(%). 表2 各类商品四个季度的销售额及利润额(单位:元)解 设四类商品A,B,C,D 的利润率分别为X i (i =1,2,3,4),则问题归结为解下面含四个未知量、四个方程的方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++955005002503009075040030016085800500100200806003002002504321432143214321X X X X X X X X X X X X X X X X .现实中的很多问题,往往归结为求解含多个未知量(数)的一次方程组,称为线性方程组,其一般形式为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 .此类线性方程组可能有解,也可能无解;有解时可能只有一组解,也可能有多组甚至无穷多组解,如⑴⎩⎨⎧=-=+226132121x x x x 有唯一解⎩⎨⎧==03/121x x ; ⑵⎩⎨⎧=-=-226132121x x x x 有无穷多解⎩⎨⎧-==1321c x cx (其中c 为任意常数) ; ⑶⎩⎨⎧=-=-426132121x x x x 无解 .那么,如何判定一个给定的线性方程组有没有解?如果有解,究竟有多少组解(一组、多组、无穷多组)?这些解又怎样求(表示)出来?如果无解,又怎么办?因为无解的方程组如果是某一有解的实际问题的数学抽象,此时又如何(用这一线性方程组来)描述它所表示的实际问题的解(“广义解”)?这就要求我们研究解决线性方程组有解的判定条件、解法、解的结构与解的表示以及“广义解”等问题,这些都是线性代数所要解决的问题.线性代数( Linear algebra )是从线性方程组、行列式和矩阵等理论中产生出来的,是代数各分支中应用最广泛的分支.在历史上首先应归功于英国的J.J.Sylvester 、A.Cayley 、美国的Peirce 父子和L.E.Dickson 等人的工作.主要内容:行列式、矩阵、线性方程组、向量空间、相似矩阵及二次型等;主要方法:初等变换法、降阶法、分块法、标准形法、特征值法等. 下面我们将分别介绍.当然我们这里所介绍的只是线性代数中最基本的内容,还有很多内容(如矩阵论或矩阵分析等)要等到我们进一步深造时再学;而且线性代数本身也是在不断发展的.参 考 书[1] 线性代数(第三版、第四版),同济大学数学教研室编,高等教育出版社. [2] 线性代数(居余马等编)、线性代数与解析几何(俞正光等编)、线性代数辅导(胡金徳等编),清华大学出版社. [3] 线性代数(陈龙玄等编)、线性代数(李炯生等编),中国科技大学出版社. [4] 线性代数解题方法技巧归纳,毛纲源编,华中理工大学出版社. [5] 线性代数方法导引,屠伯埙编,复旦大学出版社. [6] Linear Algebra(UTM),By L.Smith ,Springer-V erlag .. . .第一讲 行列式 ( Determinant )教学目的与要求:了解n 阶行列式的概念,掌握行列式的性质和二、三阶行列式的计算方法, 会应用行列式的性质简化n 阶行列式的计算,会用Cramer 法则解线性方程组.重点:n 阶行列式的概念、性质与计算§1 二、三阶行列式 (复习与总结)一、2阶行列例1 求下列二元一次方程组的解:(1) ⎩⎨⎧=+=+②①9442352121x x x x ;(2)⎩⎨⎧=+=+②① 22221211212111b x a x a b x a x a ……(1)(其中)021122211≠-=a a a a D .解 (1) )1(4-⨯+⨯②①得,2346211=⇒=x x1)2(⨯+-⨯②①得1224222=⇒=x x .(2) )(1222a a -⨯+⨯②①得121222111)(x b a a b D Dx ⇒-===D 1/D ,1121)(a a ⨯+-⨯②①得=⇒-==221121122)(x a b b a D Dx D 2/D .为使⑴的解表示简单,Leibniz 于18世纪初引入2阶行列式的定义如下:定义 设有4个元素(数)排成的两行(row )、两列(column )的22211211a a a a ,称为一个2阶行列式,其值为a 11a 22-a 12a 21,即2112221122211211a a a a a a a a -=.如例1(2)中的D=22211211a a a a 称为方程组⑴的系数行列式,而2221211a b a b D =,2211112b a b a D =;(1)中的24942351,46494135,2421121======D D D . 例2 计算2315-=D .解 1331252315=)(-=-⨯-⨯=D . 例3设132λλ=D ,问λ为何值时,(1)D = 0,(2)D ≠0? 解 因D =λ2-3λ=λ(λ-3),故(1)当λ=0或3时,D = 0;(2)当λ≠0,3时,D ≠0.例4 设1221--=k k D ,则D ≠0的充要条件是()答:k ≠-1,3.(因D =(k -1)2-4=(k +1)(k -3),故D ≠0的充要条件是k ≠-1,3) 例5 如果1222112110==a a a a D ,则下列( )是⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解.(A)22111122221211b a b a x a b a b x ==,; (B)22111122221211b a b a x a b a b x =-=,;(C)22111122221211b a b a x a b a b x ----=----=,; (D)22111122221211b a b a x a b a b x ---=-----=,.答:( )(因原方程组即⎩⎨⎧-=-+-=-+22221211212111)()(b x a x a b x a x a 的系数行列式1022211211-=-=--=D a a a a D ,2221212221211a b a b a b a b D =----=,2211112211112b a b a b a b a D -=--=)二、3阶行列式例6 求解下列三元一次方程组:(1) ⎪⎩⎪⎨⎧=++=++=++③②①333323213123232221211313212111b x a x a x a b x a x a x a b x a x a x a (2)(其中)0322311332112312213322113312312332211≠---++=a a a a a a a a a a a a a a a a a a D ;(2) ⎪⎩⎪⎨⎧-=++-=++=-③②① 232131232132131x x x x x x x x .解(1)记3332232211a a a a A =,3331232112a a a a A -=,3231222113a a a a A =, 3332131221a a a a A -=,3331131122a a a a A =,3231121123a a a a A -=,2322131231a a a a A =,2321131132a a a a A -=,2221121133a a a a A =,则: ①×A 11+②×A 21+③×A 31得D X 1=D 1(=b 1A 11+b 2A 21+b 3A 31), X 1=D 1/D , ①×A 12+②×A 22+③×A 32得D X 2=D 2(=b 1A 12+b 2A 22+b 3A 32), X 2=D 2 /D , ①×A 13+②×A 23+③×A 33得D X 3=D 3(=b 1A 13+b 2A 23+b 3A 33), x 3=D 3/D ;(2) D=1+0-6-4+0-9=-18,23120A 61320A 81331A 312111=-=,=-=,=-=--, ,=--=,=---=,=--=53121A 31221A 71231A 322212--11101A 33201A 53211A 332313==,=--=,=-=-,①×A 11+②×A 21+③×A 31得 -18x 1=-18 ⇒x 1=1, ①×A 12+②×A 22+③×A 32得 -18x 2=0 ⇒x 2=0, ①×A 13+②×A 23+③×A 33得 -18x 3=0 ⇒x 3=0.定义 设有9个元素(数)排成的3行、3列的333231232221131211a a a a a a a a a 称为一个三阶行列式, 其值为322311332112312213322113312312332211a a a a a a a a a a a a a a a a a a ---++.如例6中的D 即称为方程组的系数行列式.2、3阶行列式的值(代数和)可用沙路法(或对角线法则)来记忆:211222112112221122211211a a a a a a a a a a a a -=+=,322311332112312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a +++++==322311332112312213322113312312332211a a a a a a a a a a a a a a a a a ---++α;或在图333231232221131211333231232221131211a a a a a a a a a a a a a a a a a a 上操作. 例7 计算 61504321-=D . 解58051642)1(03043)1(5260105164210343152601-=⋅⋅-⋅⋅--⋅⋅-⋅⋅+-⋅⋅+⋅⋅=-+-++-+=D例8 (1)010000=-=a bb aD 的充要条件是( )答:022=+b a .(因为22b a D +=)(2)0114011>=a a D 的充要条件是(),其中R a ∈.答:1012>>-a a 或.(因为12-=a D ) (3)01110212=-=k kD 的充要条件是()(A )k =2; (B )k =-2; (C )k =0; (D )k =3.答:(B )或(D ).(因为)3)(2(64222-+=--=---=k k k k k k D )例9 计算下列行列式的值(1)749651823=D ;(2)768452913'=D解 (1)201721436032108105749651823-=---++==D ;(2)201147236010832105768452913'-=---++==D . 三、3阶行列式的性质 (由定义易验证,对2阶也成立且验证更易)性质1 D T =D . 其中D T 为将D 的行与列互换后所得的行列式,即如果333231232221131211a a a a a a a a a D =,则332313322212312111a a a a a a a a a D T =; D T 有时也记为D ˊ,称为行列式D 的转置行列式.此性质说明在(二、三阶)行列式中行、列等位.因此凡对行(或列)成立的性质对列(或行)也成立.性质2 交换两行(或列)使行列式仅变号,即有333231232221131211333231131211232221a a a a a a a a a a a a a a a a a a -=等.对换第i 行(列)与第j 行(列)记为(r i ,r j )((c i ,c j )).推论 两行(或列)相同的行列式值为0,即有0232221131211131211=a a a a a a a a a 等. 性质3 行列式中某一行(或列)的公因子可以提到行列式外面来,即有333231232221131211333231232221131211a a a a a a a a a k a a a ka ka ka a a a =等. 推论1 用数k 乘以某行列式相当于用k 乘以该行列的某一行(或列). 以k 数乘以第i 行(列)记为)(i ic k r k ⋅⋅.推论2 某一行(或列)全为0的行列式的值为0.推论3 有两行(或列)成比例的行列式的值为0.如0333231131211131211333231131211131211==a a a a a a a a a k a a a ka ka ka a a a 性质4 若行列式的某一行(或列)的每个元素都是两个元素之和,则此行列式可按此行(或列)分拆成两个行列式之和.如=+++=333231232322222121131211a a a cbc b c b a a a D D 1+D 2,其中3332312322211312111a a a b b b a a a D =,3332312322211312112a a a c c c a a a D =. 性质5 将某一行(或列)各元素的同一数倍加于另一行(或列)相应的元素上去,不改变行列式的值,即有333231232221131211333231132312221121131211a a a a a a a a a a a a la a la a la a a a a =+++等. 将第j 行(列)的l 倍加到第i 行(列)记为 r i +⋅l r j ( c i +⋅l c j ).注:性质2、3和5中的变换:对换两行(或列)、以非零常数乘某行(或列)和把某行(或列)的常数倍加到另一行(或列)上去,分别称为第一、第二和第三类初等行(或列)变换(详见第二讲§5).性质6(按行(或列)展开定理) (1)∑====31333231232221131211)3,2,1(j ij ij i A a a a a a a a a a a D ,即333332323131232322222121131312121111A a A a A a A a A a A a A a A a A a D ++=++=++=;(2)∑==31i ij ijA aD (j=1,2,3), 即313121211111A a A a A a D ++=333323231313323222221212A a A a A a A a A a A a ++=++=(其中A ij 如例6所示:ij ji ij M A +-=)1(,M ij 是将D中a ij 所在的第i 行和第j 列全划掉余下的二阶行列式,称为a ij 在D 中的余子式,而A ij 称为a ij 在D 中的代数余子式.) 例10 计算下列行列式的值(1)151413---=kk D ;(2)12121-=k k kD . 解(1))3)(1(1430114004315140132321++=-+-=-+++---=k k k k k k r r r r k k D ;;(2))2(222020021121211312k kk k kkr r r r kk kD --=--=-----=;.性质7(代数余子式的性质) (1)D A a ik j kj ij δ=∑=31(其中⎩⎨⎧≠=ki 0ki 1,=,δik 为Kronecker 记号.当i =k 时即为性质6(1);当i ≠k ,如i =1,k =2时,0A 231322122111=+A a A a a +等).(2)D A ajl i il ijδ=∑=31(当j =l 时即为性质6(2);当j ≠l , 如j =1,l =2时, 0A 323122211211=+A a A a a +等).例11 求132311201--=D 的值,并验证性质7.解 D 的23120A 61320A 81331A 312111=-=,=-=,=-=-- ,=--=,=---=,=--=53121A 31221A 71231A 322212--,11101A 33201A 53211A 332313==,=--=,=-=-(1) 按第1列展开得=⋅-⋅+⋅=312111211A A A D 1×(-8)+1×(-6)-2×2=-18;(2) 023)6(1)8(0310312111=⋅+-⋅+-⋅=⋅+⋅+⋅A A A ;其余类似.四、Cramer 法则1.一般情形 由例1和例6即得定理(Cramer 法则) (1)二元一次线性方程组 ⎩⎨⎧=+=+②① 22221211212111b x a x a b x a x a …(1)当其系数行列式D=22211211a a a a ≠0时有唯一解D D x j j =(j =1,2); (2)三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++③②①333323213123232221211313212111b x a x a x a b x a x a x a b x a x a x a …(2)当其系数行列式D=333231232221131211a a a a a a a a a ≠0时有唯一解 D D x j j =(j =1,2,3). 例12(例6(2)的解法2 ) 18132311201=---=D ,D 1=D =-18, 01223112112=---=D ,⎪⎩⎪⎨⎧⇒--0x 0x 1x 023211111D 3322113========D D D D D D .注:两种解法本质是一样的,只不过解法2是直接用Cramer 法则的结果(公式),而原解法是把消元(或Cramer 法则的证明)过程再写一遍.2.齐次情形推论 奇次线性方程组 ⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a (2ˊ)当其系数行列式D ≠0时只有零解(x1=x2=x3=0).以后将证明此推论的逆也成立,于是有命题(1)奇次线性方程组(2ˊ)只有零解⇔D ≠0;(2)奇次线性方程组(2ˊ)有非零解⇔D =0.例13 λ取何值时,奇次线性方程组⎪⎩⎪⎨⎧==-+=++00023321321x x x x x x x λλλ,有非零解?解 因为)1(0011212-=-=λλλλλD ,故当λ=0或±1时,该方程组有非零解.例14 如果方程组⎪⎩⎪⎨⎧=--=+=-+05403z y kx o z y z ky x 有非零解,则().(A ) k =0;(B )k =1:(C )k =-1;(D )k =-3.答:(C ,D ).(由例10(1))3)(1(1514013++=---=k k kk D 即得) .例15 当()时,奇次线性方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx 仅有零解;(A ) k =0;(B )k =-1;(C )k =2;(D )k =-2.答:(A ,B ,D ).(由例10(2))2(2121210k kk kD --=-=即得) .§2 全排列及其逆序列问题:行列式可否归纳定义 212112221111222112112)1()1(a a a a a a a a D ⋅-⋅+⋅-⋅==++,当n ≥2时,n n nn ijn A a A a A a a D 1112121111+++==⨯ ,其中j j j M A 111)1(+-=,M 1j 为a 1j 在D n 中的余子式(n -1阶行列式)?一、全排列例1 用1、2、3三个数字可以组成多少个没有重复数字的三位数?请写出.解 共6个,分别为123,132,213,231,312,321.把n 个不同的元素(不妨设为1,2,…,n )排成一列,叫做这n 个元素的一个(n 级)全排列,n 个不同元素的全排列的种数为P n =n!,如P 3=3!=6,P 4=4!=24,P 5=5!=120等.记S n 为1,2,…,n 的所有n 级排列所组成的集合,即S n ={(j 1j 2…j n )| (j 1j 2…j n )为n 级排列},则|S n |= n!.二、逆序与逆序数1. 标准排列:对n 个不同的元素,先规定一个标准次序(如对1,2,…,n ,规定从小到大的次序为标准次序),从而得到一个标准排列.对1,2,…,n ,今后规定其标准排列为自然排列1 2 … (n -1) n .2.逆序与逆序数 在一个n 级排列中,当两个元素a 和b 的先后次序与标准顺序不同时,则说a 和b 形成一个逆序;一个排列中所有逆序的总数叫该排列的逆序数.排列p 1p 2…p n 的逆序数记为 t (p 1p 2…p n ).逆序数为奇(或偶)数的排列称为奇(或偶)排列. 例2 (1)2个2级排列12和21,一个为奇排列(21),一个为偶排列(12).(2)3级排列的逆序数表(6个3级排列中奇、偶排列各3个)三、逆序数的求法不妨设n 个元素为1,2,…,n ,其标准排列为自然排列1 2 … n ,设p 1p 2…p n 为1,2,…,n 的一个排列,记t i =t(p i )为排列p 1p 2…p n 中p i 左(前)面的比p i 大的元素的个数,s i =s (p i )为排列p 1p 2…p n 中p i 右(后)面的比p i 小的元素的个数,简记t(p 1p 2…p n )为t ,则(1)t(1)t(2) t(n)t(n) t(2)t(1)t t t t n 21+++=+++=+++= ;(2)s(1)s(2) s(n)s(n) s(2)s(1)s s s n 21+++=+++=+++= t . 注:显然0(1)t(n)t 1====s s n , t(1 2 … n)=0.例3 求(1)t=t(32514);(2)t(7632451);(3)t(2 3 … n 1);(4)t(n (n-1) … 2 1) . 解 (1)因t 1=t(3)=0,t 2=t(2)=1,t 3=t(5)=0,t 4=t(1)=3,t 5=t(4)=1⇒ t =5(奇), 或因s 1=s(3)=2,s 2=s(2)=1,s 3=s(5)=2,s 4=s(1)=0,s 5=s(4)=0⇒ t =5. (2)t(7632451)=0+1+2+3+2+2+6=16,或=6+5+2+1+1+1+0=16(偶). (3)t(2 3 … n 1)=0+0+…+0+(n-1)= n-1,或=1+1+…+1+0= n-1.(4)t(n … 2 1)=0+1+…+(n-2)+(n-1)=2)1(-n n ,或=(n-1)+(n-2)+…+1+0=2)1(-n n .如62341) 2 3 t(4=⋅=,102451) 2 3 4 t(5=⋅=,152561) 2 3 4 5 t(6=⋅=,… 再看6个3级排列的逆序数:t(123)=0,t(132)=0+0+1=1,或=0+1+0=1;t(213)=0+1+0=1,或=1+0+0=1;t(231)=0+0+2=2,或=1+1+0=2;t(312)=0+1+1=2,或=2+0+0=2;t(321)=0+1+2=3,或=2+1+0=3.四、对换及其性质1.对换:在一个排列中,互换某两个元素(如i ,j )的位置,而其余的元素不动,叫做对该排列的一次对换,记为(i ,j );互换相邻两个元素的对换叫做相邻对换.例4 (321)0)123(,3)321(),123(3,1(==−−→−t t );(7632451)−−→−)1,6((7132456),t(7632451)=16(偶), t(7132456)=0+1+1+2+1+1+1=7(奇).2.性质性质1 一次对换改变排列的奇偶性.证明(1)相邻对换改变排列的奇偶性:设(…a b …)−−→−),(b a (…b a …)因对换(a ,b )只改变了a 和b 之间的逆序:当a<b 时,经对换后逆序数增加1;当a>b 时,经对换后逆序数减少1.而a 或b 与其他元素,以及其他元素之间的逆序数经对换后都没有改变,故相邻对换改变排列的奇偶性.(2)任一对换可由奇数次相邻对换而得到,从而改变奇偶性:(…ac 1c 2…c s b …)−−→−),(1c a(…c 1ac 2…c s b …) −−→−−−→−),(),(2sc a c a (…c 1c 2…c s ab …)−−→−),(b a (…c 1c 2…c s ba …)−−→−),(b c s (…c 1c 2…bc s a …)−−→−−→−),(2b c ( …c 1bc 2…c s a …)−−→−),(1b c (bc 1c 2…c s a …),共2s+1次.例4(1)对换(7632451)−−→−)1,6((7132456)可由9次相邻对换得到,相应的逆序变化为:(16=)t(7632451)= t(7362451)+1= t(7326451)+2= t(7324651)+3= t(7324561)+4 = t(7324516)+5=( t(7324156)+6= t(7321456)+7= t(7312456)+8= ) t(7132456)+9 (=7+9). (2)(7=) t(7132456)= t(1324567)+6= t(1234567)+7 (=0+7).(3)(16=) t(7632451)= t(6324517)+6= t(3245167)+11= t(3241567)+12= t(3214567)+13=t(2134567)+15=t(1234567)+16(=0+16).性质2 (1)任一排列(p 1p 2…p n )总可经有限次(相邻)对换成标准排列,且所作对换的次数k 与该排列有相同的奇偶性,即k 与t (p 1p 2…p n )奇偶性相同;(2)任一排列(p 1p 2…p n )都可由标准排列1 2 … n 经有限次(相邻)对换而得到,且所作对换的次数k 与该排列有相同的奇偶性,即k 与t (p 1p 2…p n )奇偶性相同.(3)S n 中的任意两个n 级排列均可经有限次(相邻)对换而互相得到;且若这两个排列的奇偶性相(或不)同,则所作对换的次数为偶(或奇)数.证(1)对排列的阶n 归纳.当n=1时显然成立.假设结论对n -1已经成立,则对n : ①若排列为p 1 … p n-1 n ,由归纳假设n -1级排列p 1 … p n-1可经有限次对换成为标准排列1 2 … (n -1),且所作对换的次数与t(p 1…p n-1)有相同的奇偶性,从而p 1…p n-1 n 经上述对换即成为标准排列1 2 …(n -1) n ,且所作对换的次数的次数与t(p 1…p n-1 n)=t(p 1…p n-1)有相同的奇偶性.②若排列为(p 1…p i-1 n p i+1…p n ),则可经n -i 次相邻对换成为(p 1…p i-1p i+1…p n n ),且t (p 1…p i-1 n p i+1…p n )=t (p 1…p i-1p i+1…p n n )+(n -i ),而由①得p 1…p i-1p i+1…p n n 可经有限次对换成为1 2 …(n -1) n ,且所作对换的次数m 与t (p 1…p i-1p i+1…p n n )有相同的奇偶性,于是p 1…p i-1 n p i+1…p n 可经m +n -i 次对换成为1 2 … n ,且所作对换的次数k =m+n-i 的奇偶性与t (p 1…p i-1 n p i+1…p n )即t (p 1…p i-1p i+1…p n n )+n -i 的奇偶性相同.图示如下:(p 1…p i-1 n p i+1…p n )−−→−-次i n (p 1…p i-1p i+1…p n n )−−→−次m (1 2 …(n -1) n ); ③所作对换次数与原排列有相同的奇偶性还可如下证明:设排列p 1…p n 经k 次对换成为标准排列,则t(p 1…p n )经k 次改变奇偶性后成为0 (=t(1 2 … n)),从而k 与t(p 1…p n )奇偶性相同(对k 为奇、偶数分别说明).(2)将(1)中的变(对)换全倒过来便得.(3)由(1)和(2):−→−次k n p p p )(21 (1 2 … n ))21h n q q q (次−→−即得.性质3 n !个n 级排列中奇偶排列各为 )2(2!≥n n .证 因映射ϕ:{n 级奇排列}−−→−),(21{n 级偶排列}为一一对应,即得. 如 {(21)}−−→−),(21{(12)} ; {(132), (213), (321) }−−→−),(21{(231), (123), (312)} .§3 n 阶行列式的概念一、 二、三阶行列式的结构规律1. 二、三阶行列式定义式的结构(1)2112221122211211a a a a a a a a -=中的两项可统一表示为212121)()1(j j j j t a a -,其中(j 1j 2)取遍所有(2个)2级排列(12),(21).(2)33⨯ija =322311332112312213322113312312332211a a a a a a a a a a a a a a a a a ---++α中的6项可统一表示为321321321)()1(j j j j j j t a a a -,(j 1j 2j 3)取遍所有(6个)3级排列(123),(231),(312),(321),(213),(132).2. 二、三阶行列式的共同规律设n =2或3,则:(1) n 阶行列式为由n 2个数得到一个数的函数;(2) n 阶行列式为n !项的代数和,每项为n 个元素的乘积,而这n 个元素是取自n 阶行列式中的不同的行、不同的列;(3) n 阶行列式中每项正负号的确定:当项中各乘积因子的第一个(行)下标为标准排列时,其第二个(列)下标为奇(偶)排列的项带负(正)号. 3. 二、三阶行列式的简单统一表达式(1)∑∈-=221221)(211)(22211211)1(s j j j j j j t a a a a a a ,其中)}1,2(),2,1{(2=S ;(2)∑∈-=332132321)(3211)(333231232221131211)1(s j j j j j j j j j t a a a a a a a a a a a a ,S 3={(j 1j 2j 3)| (j 1j 2j 3)为3级排列}={(123),(231),(312),(321),(213),(132)}.二、n 阶行列式的定义1.定义 设有n 2个元素排成的n 行、n 列的nnn n nn a a a a a a a a a 212222111211称为一个n 阶行列式,其值为∑∈-nn n n s j j j nj j j j j j t a a a )(211)(21221)1( .上述n 阶行列式可简记为nn ij a ⨯或det n (ij a ). 注:⑴当n =2,3时,与前面定义一致;当n =1时,1111a a =(注意别与绝对值混淆). ⑵当n ≥4时,“沙路法”不再成立(或不再那样简单),见例1(4).例1 (1)n 21n21λλλλ0λ0λ=((主)对角线(形)行列式),n nn a a a a =⨯0,11101=, |0|n ×n = 0; (2)nn nnn n a a a a a a a a a 221121222111=(下三角形行列式);(3)nn nn nna a a a a a a a a2211222112110=上三角形行列式)(;(4))1(0112211111111212)1(112121n n nn n n n n n nn nn n n n na a a a a a a a a a a a a a a------=-=,n n n λλλλλλ212)1(21)1(0--=n(次对角形行列式);如,abcd 0dcb a 0= ,abcde 0ed cb a= ;abcdef 0fed c b a 0-=(5)abcd abcd abcd d c b a t -=-=-=3)3142()1()1(000000000000; (6)111111)1(11001001011010)4123(-=-=⋅⋅⋅-=3)(t (因第3行和第1列均只有一个非零元素,因此非零项必取含21a 32a 的,从而另两个乘积因子11j a 和44j a 只能分别取14a 和43a 才能使该项不为0,于是得结果); (7)∑∑∈∈-⋅=-=34324324324432432432)(432)(11S )j j (1j 43211)1(44434241443332312423222111)1()1(000S j j j j j j j j j t j j j j j j t a a a a a a a a a a a a a a a a a a a a a })243,324,432,423,342,234{}3234{(344434234333234232211)()()()()()(=级排列的=⋅=S a a a a a a a a a a ;类似有nnn n nnn n na a a a a a a a a a a a2222112122221110⋅=,特别地,00002122221=nnn n na a a a a a,一般地,nnnr nr r r rrr r nnr n nrn n r r r r r r rrr r a a a a a a a a a a a a a a a a a a a a11111111111111111111000++++++++++⋅=, 简记为C A CB O A ⋅=;(8)当n ≥2时,n n n n n nn n a a a a a a a a a a 12212)2)(1(1221)1(0000000000000-------=.(9)当n ≥2时,02!2!)1(1111111111)()(2121=-=-==∑⨯n n n n j j j j j j t nn . (10)nn ijj n nj j j j j j j j t nn ji j i a b a b a b a b ba n n n ⨯---⨯-=-=≠∑)())(()1()0(2211212211)( .2.等价定义定理1 n i i i i i i i i i t nn ijn n n a a a a D 21)()(212121)1(∑-==⨯(记为D 1).证 ⎢⎢⎢⎣⎡−−−−−−−−→−⎥⎥⎥⎦⎤)n 12)12()(2121i i j j 212121i j j i 21n nj j j n n i i i j j j a a a n i i i a a a nn 列标()行标(列标行标)=,=经若干次对换( 因n n n nj j j j j j j j j t nn ija a a a 21212121)()()1(D ∑-=⨯=由对换的性质2知对D 中任一项n n nj j j j j j t a a a 212121)()1(-总有且仅有D 1中的某一项n i i i j j j t n n a a a 21)(2121)1(-与之对应并相等;反之,对D 1中任一项n i i i i i i t n n a a a 21)(2121)1(-,也总有且仅有D 中的某一项n n nj j j j j j t a a a 212121)()1(-与之对应并相等,如D4中))1(()1())1(()1(42342113334134221)2413(42342113342342113)3142(a a a a a a a a a a a a a a a a t t -=-=-=-;于是D 与D 1中的项可以一一对应并相等,从而D =D 1. 定理2 n n j i j i j i J t I t nn ija a a a 2211)()()1(∑+⨯-=,其中t(I)=t(i 1i 2…i n ),t(J)=t(j 1j 2…j n ),∑为对所有n 级排列(i 1i 2…i n )求和(此时(j 1j 2…j n )为某一固定的n 级排列),或为对所有n 级排列(j 1j 2…j n )求和(此时(i 1i 2…i n )为某一固定的n 级排列).证 用对换的性质2(3),与定理1类似证明即可.再看例1(3),a b c da b c d a c b d a b c d b d a c d c b a t t t -=-=-=-=-=++41)3412()1324()2413()1()1(,)1(000000000000又.注:此例中i 1=2,i 4=4,i 3=1,i 4=3;j 1=3,j 2=1,j 3=4,j 4=2;j i1=j 2=1,j i2=j 4=2,j i3=j 1=3,j i4=j 3=4;i j1=i 3=1,i j2=i 1=2,i j3=i 4=3,i j4=i 2=4.§4 行列式的性质一、性质设nnn n n na a a a a a a a a D212222111211=,记D T(或D ˊ)nnn nn n a a a a a a a a a212221212111=,称为D 的转置(行列式),由§3定理1立即得:性质1 D T=D , 即任一行列式与其转置的值相等.此性质说明:行列的行与列具有同等的地位,凡对行(或列)成立的性质对列(或行)也成立.性质2 互换行列式的两行(或两列),行列式仅变号.证 设k ia a a a D in i kn k111=,欲证D 1=-D ,只需证D 1和D 的定义式中的一般项互为相反数即可.事实上,D 1中的一般项为n k i 1n k i 1nj ij kj j 1)j j j j (t a a a a )1( -n i k 1n i k 1nj kj j i j 1)j j j j (t a a a a )1( --=恰为D 中一般项的相反数;故得证.推论 两行(或列)完全相同得行列式值为零.性质3 行列式某一行(或列)的公因子可以提到行列式外面来,kD a a ka ka a a nnn in i n=11111. 证明与性质2的证明类似,考虑一般项即可.推论1 行列式的某一行(或列)中所有元素都乘同一数k ,等于用k 乘此行列式. 推论2 某行(或列)全为零的行列式的值为零. 推论3 两行(或列)成比例的行列式的值为零.性质4 若行列式中某一行(或列)的元素都是两项之和,则该行列式可按此行(或列)分拆成两个行列式之和,即nnn in i nnnn in i n nnn in in i i n a a c c a a a a b b a a a a c b c b a a1111111111111111+=++. 证明与性质2的证明类似,考虑一般项即可.性质5 将行列式某一(如第j )行(或列)每个元素的常数l 倍加到另一(如第i )行(或列)相应的元素上去,其值不去,即nn ijnnn jn in j i na D a a la a la a a a ⨯==++(111111).证 由性质4,左边的行列式可分拆成两个行列式之和,一个为D ,而另一个为0111111=nnn jn j jn j na a a a la la a a(因其第i 行与第j 行成比例);从而得证.二、行列式的计算—化为三角形行列式定理1 任何一个行列式均可利用性质2和5化为上(或下)三角形行列式,从而计算其值.证 (1)若a ij =0(i ,j =1,2,…,n ),则00==⨯n n D ;(2)若0≠∃ij a ,则可用性质2(先第1行与第i 行互换,再第1列与第j 列互换)将a ij 调到左上角;(3)若011≠a ,则可用性质5将第1列(或行)的其余n -1个元素化为零(“打洞”); (4)对右下角的n -1阶行列式重复(1)~(3)的步骤,如此下去(归纳),即可将D 化为上(或下)三角形行列式.以下以(r i ,r j )表示互换i ,j 行;r i +hr j 表示将第j 行的h 倍加到i 行. 例1(1)4130211021102011)r 2r (),r r (0112012121102011)r ,r (0112012120112110141321-------+-----------;4)2()2()1(12000420021102011r r 2200420021102011)r 3r (),r r (342423=-⋅-⋅-⋅-=-------------++(2))r ,r (72160112064802131)r 5r (),r r (3315112043512131)c ,c (335111024315211332141221------+--------------)r 4r (108003200112021315)r ,r (1510001080011202131)r 8r (),r 4r (7216064801120213134432423-----⋅-----+-----402221520003200112021315=⋅⋅⋅⋅=---⋅.(3)48222162002000020111164,3,2i ),r r (31111311113111116)r r r (r 31111311113111131i 4321=⋅⋅⋅⋅=⋅=-⋅+++ ; (4)xaa aa a x a a a a a x a a a a a x a a n x n i r r xaa aaa x a a a a a x a a a a a x a a a a a x i11111])1([,,2),(1⋅-+=+11)(])1([000000000000011111])1([,,2),(--⋅-+=----⋅-+=-n i a x a n x ax ax a x ax a n x n i ar r;(5)cb a b a ac b a b a a c b a b a a dc b a i r rd c b a c b a b a a d c b a c b a b a a d c b a c b a b a a d c b a i i +++++++++=-+++++++++++++++++++3630232001,2,3),(361036323423214341030020002,3),(a aa aa r rb a a b a a a a i r r i i =*-++*=-+.例2 证明奇数(n )阶反对称行列式(a ji =-a ij )的值为零,即000021212112=---n nnna a a a a a .证 0)1(=⇒-=⋅-==D D D D D n T .例3 解方程 (a 1≠0)113211232113221132111321=-+-+-+-+-------xa a a a a a a xa a a a a a a x a a a a a a a xa a a a a a a a n n n n n n n n n n n n解 将左边行列式的第1行的相反数分别加到第2~n 行,得左边x)-x)(-(x)-x)(-(00000000000001-n 2-n 21112211321a a a a a xa xa x a x a a a a a a n n n n=----=---故原方程的解为)1,,2,1(-==n i a x i i ,共n -1个解.三、按行、列展开定理1.代数余子式 设nn ji a D ⨯=,把D 中元素a ij 所在的第i 行和第j 行划去后,余下的n -1阶行列式叫做a ij 在D 中的余子式,记作M ij ,记A ij =(-1)i +j M ij ,叫做a ij 在D 中的代数余子式.例4(1)213132321----=D 的52113)1(1111=--⋅-=+A12312)1(2112=---=+A ,71332)1(3113-=---=+A ;(2)5021011321014321---=D的19521013201)1(3113=---=+A ,521013421)1(3223---=+A =- 63,18521201421)1(3333=--=+A .10013201421)1(3443-=--=+A ;2.按行、列展开定理引理 若n 阶行列式nn ij a D ⨯=的元素a ij 所在第i 行(或第j 列)的其他所有元素全为零,则ij ij A a D =.证 (1)当i =j =1,即D 的第1行(或第1列)除a 11外所有元素全为零,则由§3例1(7)知1111A a D ⋅=;(2)一般地,设nnnjn ijnja a a a a a a D1111100=,将D 的第i 行依次与第i -1,i -2,…,2,1行对换,再将第j 列依次与第j -1,j -2,…,2,1列对换,使a ij 调到左上角,所得的新行列式D D D j i j i ⋅-=⋅-=+-+)1()1(21,而a ij 在D 1中的余子式即为a ij 在D 中的余子式M ij ,由(1)ij ij ji ij ij A a D D M a D =-=⇒=+11)1(.定理2 n 阶行列式nn ija D ⨯=的值等于其任一行(或列)的每一个元素分别与其相应的代数余子式的乘积之和,即),,2,1(111n i A a A a A aD in in i i nj ij ij=++==∑=或∑==++==ni nj nj j j j ij n j A a A a Ai a D 111),,2,1( .证 (1)nnn n i nnnn n in i i n a a a a a a a a a a a a a a a a D2111121121211121100000000=+++++++++=),,2,1(00002211211121121211211n i A a A a A a a a a a a a a a a a a a a a in in i i i i nnn n in nnnn n i n=++++++引理 (2)由行列式的性质1立即得对列的等式也成立.例4 (3)对(1)中的18)7(312513)2(1131211-=-⋅+⋅-⋅=⋅+⋅-+⋅=A A A D ;对(2),24)10(018)1()63(1193-=-⋅+⋅-+-⋅+⋅=D . 定理3 设nn ija D ⨯=,则(1)D A a A a A aik kn in k i nj kj ij⋅=++=∑=δ 111;(2)∑=⋅=++=ni jr nr nj r j ir ijD A a A a A a111δ证 (1)由定理1知当i =k 时成立.当i ≠k 时,将nn k ia a a a a a a a a a a a nn n n in i i in i i n⨯=212121112110按第k 行展开即得∑==nj kj ijA a10,即∑=≠⋅=nj kj ij k i D A a 1)(0;故得证.由行列式的性质1立即得对列的结论(2)也成立.定理2、3表明,行列式D 的任一行(或列)的每一个元素与其相应的代数余子式的乘积之和等于D 的值,而D 的任一行(或列)的每一个元素与另外一行(或列)的每一个元素的代数余子式的乘积之和等于零.例4(4)对(1)中的D 有 0)7()1(1352)1(32131211=-⋅-+⋅+⋅-=⋅-+⋅+⋅-A A A , 0)7(211532)1(3131211=-⋅+⋅-⋅=⋅+⋅-+⋅A A A ;对(2)中的D 有0)10(1183)63(1191131143332313=-⋅+⋅+-⋅+⋅=⋅+⋅+⋅+⋅A A A A , 0)10(2181)63(01922)1(024*******=-⋅+⋅--⋅+⋅=⋅+⋅-+⋅+⋅A A A A , 0)10(5180)63(2194)5(024********=-⋅-⋅+-⋅+⋅=⋅-+⋅+⋅+⋅A A A A .3. 行列式的归纳定义 11111a a D ==,21122211212112221111222112112)1()1(a a a a a a a a a a a a D -=⋅-⋅+-⋅==++,当n ≥2时,n n nn ijn A a A a A a a D 1112121111+++==⨯ ,其中j j j M A 111)1(+-=,M 1j 为a 1j 在D n 中的余子式(n -1阶行列式).可以证明如上定义的n 阶行列式与前面的定义n 阶行列式是完全一样的.4.行列式的简化计算 首先利用性质将某行(或列)化为仅有一个元素可能非零,再按该行(或列)展开,降为n -1阶行列式,如此下去,直到化为二阶或一阶,即可计算其值. 例5(1)527211417)1()1(5207011321014107)2(),2(5021011321014321233431---⋅-=----++---+r r r r 241861926)1(110921126)2(),(222321-=--=-⋅-⋅=-+-+r r r r .(2))4)(1(22)1(202001120020001100112002000110011212--=-=-=--k k kk k k k k kk k r r k k k . (3)0551*******3550100131111115)(),2(33511102431521133431----=----+-------c c c c 40552605502611512=---=----r r .例6(1)dd c dcb a b a a dcd c dc b a baba D n 000012⋅=行展开按第)1(2)1(21)12()1(2)()1(000--+---=--=⋅-n n n n D bc ad D bc adD cd c dc b a bab(递推公式))()()()(221)2(22bc ad dc ba D bc ad D bc ad D bc ad n n n -==-=-==-=-- . (2)n ≥2,ba b ba bb ab a ba b a a a b b a ba ba D n n 0)1(010001+-⋅+⋅=列展开按第n n b a )(--=.(3)++---+---=----xa a a a xxxx xa a a a a xxxx D n n n n n n 122112211111111列展开按第n n n n n nn a a xD x a xD x xa +++=--------+)((1111)1(1211递推公式)=).1,(21212211111a x a x xa a x D x a D a x a x a x n n n n ++=+-=+=++++==--例7(1)计算V andermonde 行列式)2(≥n :Dn =),,,(21n x x x V =),(111112112222121j i x x x x x x x x x x x j i n nn n n n ≠≠---; 解 D 2 =122121211),(x x x x x x V -==,将D n 中依次第i 行减去第i -1行的x n 倍。
线性代数讲义

0 b2 a3 0 0
0 0 0
0 0 0 = _____________________ .
0 0 bn
an −1 bn −1 0 an
【例 2】四阶行列式
a1 0 0 b4
0 a2 b3 0
0 b2 a3 0
b1 0 0 a4
的值等于
(
)
(A)a1a2 a3 a4 − b1b2b3b4 (C )(a1a2 − b1b2 )(a3 a4 − b3b4 )
第一讲
行列式值的判断。
行列式
考试重点:核心考点是行列式的计算,主要考试题型分为数字型行列式计算,抽象型行列式计算,
一、基本概念、公式精讲
1 行列式的定义
定义 n 阶行列式
1
a11 D= a21 an1
a12 a22 an 2
a1n a2 n ann
T
=
p1 , p2
∑
n!
(−1)τ ( p1 , p2
( B)a1a2 a3 a4 + b1b2b3b4 ( D)(a2 a3 − b2b3 )(a1a4 − b1b4 )
【常见形式 2:三对角线形】
,三对角型行列式的特点是沿主对角线方向三列元
素不为零,其余元素均为零。 【例 3】五阶行列式
4
a 1− a 0 0 0 −1 1 − a a 0 0 D= 0 −1 1 − a a 0 = _____________ . −1 1 − a a 0 0 −1 1 − a 0 0 0
n) n)
D = a1 j A1 j + a2 j A2 j +
定理 2 n 阶行列式
+ anj Anj
2
《线性代数(经管类)》讲义

2 0
7025
7025
725
5 31 2
2列 + 5×1列 1
0
0 按第二行展开 31
2 = 81
37 5
7 37 5
10/53
abbb babb 例 2 计算行列式 D4 = b b a b bbba
解:方法 1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取 0
解:观察到第二列第四行的元素为 0,而且第二列第一行的元素是 a12 = 1 ,利用这个元素可以把这一
列其它两个非零元素化为 0,然后按第二列展开.
2141
2141
3 −1 2 1 2行 +1×1行 5 D4 = 5 2 3 2 3行 + (−2) ×1行 1
062 0 −5 0
56 按第二列展开 − 1 − 5
n
之和等于零.即 ai1 Ak1 + ai2 Ak 2 + L + ain Akn = 0(i ≠ k )
或 a1 j A1s + a2 j A2s + L + anj Ans = 0( j ≠ s)
8/53
(三)行列式的计算
行列式的计算主要采用以下两种基本方法: (1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,
那么 ,三阶行列式 D3 定义为
a11 a12 a13 D3 = a21 a22 a23 = a11 A11 + a21 A21 + a31 A31
a31 a32 a33
3
3
∑ ∑ 我们把它称为 D3 按第一列的展开式,经常简写成 D3 = ai1 Ai1 = (−1)i+1 ai1Mi1
线性代数讲义课后习题答案

线性代数讲义课后习题答案线性代数是数学中的一门重要课程,它研究的是向量空间及其上的线性变换。
通过学习线性代数,我们可以更好地理解和解决各种实际问题,例如解线性方程组、求特征值和特征向量以及进行矩阵运算等。
而为了巩固所学知识,许多教材都会附带习题,让学生进行练习和巩固。
本文将给出一些线性代数讲义的课后习题答案,希望能够帮助读者更好地理解和掌握线性代数的知识。
一、向量空间与线性变换1. 证明:若V是一个向量空间,那么V的零元素是唯一的。
解:设0和0'都是V的零元素,则有0+0'=0',又有0+0=0,由向量空间的加法结合律可知0=0',即零元素是唯一的。
2. 证明:若V是一个向量空间,那么对于任意的向量v∈V,它的负元素也是唯一的。
解:设v和w都是向量v的负元素,则有v+w=0,又有v+(-v)=0,由向量空间的加法逆元素的唯一性可知w=-v,即负元素是唯一的。
3. 证明:若V是一个向量空间,那么对于任意的向量v∈V,有(-1)v=-v。
解:根据向量空间的定义,(-1)v+v=0,由加法逆元素的唯一性可知(-1)v=-v。
二、线性方程组与矩阵运算1. 解线性方程组:2x + 3y = 74x - 2y = 2解:通过消元法,将方程组化为行阶梯形式:2x + 3y = 70x - 8y = -12可以得到y的解为y = 3/4。
将y的解代入第一个方程,可以得到x的解为x =1/2。
因此,线性方程组的解为{x = 1/2, y = 3/4}。
2. 计算矩阵的乘积:A = [1 2 3; 4 5 6]B = [7 8; 9 10; 11 12]解:矩阵A的维度为2×3,矩阵B的维度为3×2,因此可以进行矩阵乘积运算。
AB = [1×7+2×9+3×11 1×8+2×10+3×12;4×7+5×9+6×11 4×8+5×10+6×12]化简得到:AB = [58 64;139 154]因此,矩阵AB的结果为[58 64; 139 154]。
刘金峰线代讲义

刘金峰线代讲义摘要:1.刘金峰线代讲义概述2.线性代数的基本概念3.线性方程组的解法4.特征值与特征向量5.矩阵的谱分解6.二次型7.奇异值分解8.总结正文:一、刘金峰线代讲义概述《刘金峰线代讲义》是一本关于线性代数(又称“线代”)的教材,适用于本科生学习。
线性代数是数学的一个分支,主要研究线性方程组、向量空间、矩阵、线性变换等概念,具有广泛的应用价值。
刘金峰教授以其丰富的教学经验和深厚的学术造诣,为学生提供了一本内容详实、逻辑清晰的线代教材。
二、线性代数的基本概念线性代数的基本概念包括向量、线性方程组、矩阵、行列式等。
向量是具有大小和方向的量,可以用来表示空间中的点或者方向。
线性方程组是包含多个变量的代数方程,这些方程的解构成了一种特定的关系。
矩阵是一种特殊的数表,可以用来表示线性方程组、线性变换等。
行列式是矩阵的一种性质,可以用来判断矩阵的性质。
三、线性方程组的解法线性方程组的解法有多种,如高斯消元法、克莱姆法则等。
高斯消元法是一种基于矩阵的行变换的方法,可以将线性方程组化为简化阶梯形矩阵,从而求解方程组。
克莱姆法则是求解线性方程组中逆矩阵的一种方法,可以用来求解具有唯一解的线性方程组。
四、特征值与特征向量特征值与特征向量是矩阵理论中的重要概念。
特征值是一个标量,特征向量是一个非零向量,它们满足矩阵与特征向量的乘积等于特征值与特征向量的乘积。
特征值与特征向量可以用来描述线性变换的性质,具有重要的理论意义和实际应用价值。
五、矩阵的谱分解矩阵的谱分解是将矩阵分解为特征值对角矩阵与特征向量矩阵的乘积,可以更好地描述矩阵的结构和性质。
谱分解在很多领域有广泛的应用,如信号处理、图像处理等。
六、二次型二次型是一种特殊的线性方程组,可以用来描述空间中的曲面或者超曲面。
研究二次型的性质可以帮助我们更好地理解空间几何中的问题。
七、奇异值分解奇异值分解是一种线性代数中的分解方法,可以将矩阵分解为三个矩阵的乘积,从而揭示矩阵的内部结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 由 0 A I x 1 y (1 )2
得1,2 1,3 0.
1 0
由定理1的 推论2‘,必有r( A 1I ) 3 2 1
1 0 1 1 0 1
而A
I
x
0
y
~
0
0
x y,
解毕 1 0 1 0 0 0
故必有 x y.
例4 已知矩阵A与B相似,其中
若有 ( x) a0 xn a1xn1 an ,则
a A a A a a (2) (A)
n
n1
A I
0
1
n1
n
a0 PBn P1 a1 PBn1 P1
an1 PBP 1 an PIP1
a B a B P( 0
n 1
n1 an1B anI )P 1
P(B) P1.
0 0 2
由同次项系数相等 p2 q2 2 2 p 0 q. 解毕
说明 在利用相似矩阵性质求解矩阵中未知 元素时,建议先用性质 (1) tr( A) tr(B); (2) A B . 有重根时,需回代检验;若只 能得到一个方程时,再用
A I B I ,
比较两端同次项系数即可.
3. 若A与B相似,则Am与Bm相似m为正整数,
AT 与BT 相似.
4. 若可逆阵A与B相似,则A1与B1相似.
5. 若n阶矩阵 A与 B相似,则 A与 B的特征多项 式相同,从而A与B的特征值亦相同. 证明 A与B相似
可逆阵P,使得P 1 AP B
B I P1AP P1I P P1A I P
定理1 n阶矩阵A与对角矩阵相似(即A能对角化) 的充分必要条件是A有n个线性无关的特征向量.
证明 假设存在可逆阵P,使P 1 AP 为对角阵,
将 P 用其列向量表示为 P p1, p2 , , pn .
由P1 AP ,得AP P,
1
即 A p1 , p2 , , pn p1 , p2 , , pn
二、相似矩阵与相似变换的性质
1. 等价关系 (1)反身性 A与A本身相似. ( A I 1AI )
(2)对称性 若A与B相似,则B与A相似. ( 若B P1AP, 则(P1)1BP 1 A)
(3)传递性 若A与B相似, B与C相似, 则A与C相似.
2. P 1A1 A2 P P 1 A1P P 1 A2 P .
P1 A I P A I .
推论1 若A相似于B,则
(1) tr( A) tr(B); (2) A B .
说明 性质 5 及其推论 1中的两个结论只是
两个矩阵相似的必要条 件.
例如,A
1 0
10,
B
1 0
11. 容易算出
A与B的特征多项式均为(1来自 )2但A是一个单位阵,对任给的可逆阵P , 有 P1AP P1IP P1P I
例1 判断下列实矩阵能否化为对角阵?
2 1 2 A 5 3 3
1 0 2
解
2 1 2
A I 5 3 3 13
1
0 2
所以A的特征值为1 2 3 1.
把 1代入A I x 0, 解之得基础解系
1, 1, 1T ,
由于 1 1 m1 3, 故A不能化为对角矩阵.
1 0 0
P 1 AP
0
1
0.
0 0 2
注意:
1 2 0
若令P
3 ,1 ,2
1
1
0
,
1 0 1
则有
P 1 AP
2 0
0 1
0 0 .
0 0 1
即矩阵 P 的列向量和对角矩阵中特征值的位置 要相互对应.
0
例3
设
A
x
1
应满足的关系式 .
0 1 1 y可对角化,求 x与y 0 0
解毕
例2
设A
4 3
6 5
0 0
3 6 1
A能否对角化?若能对角 化,则求出可逆矩阵P,
使P 1 AP为对角阵.
解
4 6
A I 3 5
0
0 12 2
3 6 1
所以A的全部特征值为1 2 1, 3 2.
将1 2 1代入A I x 0得方程组
33xx1 166xx2 200 3 x1 6 x2 0
即 x1 2 x2
令x2 c1, x3 c2 , 解之得基础解系
2
1 1 ,
0
0
2 0
1
将3 2代入A I x 0,得方程组的基础
解系
3 1,1,1T
由于 1,2 ,3 线性无关. 所以 A 可对角化.
2 0 1
令
P
1
,
2
,
3
1
0
1
0 1 1
则有 解毕
因此,若B与A相似,则 B 必是单位阵. 而现在 B不是单位阵. 所以,A与B不为相似矩阵!
推论2 若 n 阶方阵 A 与对角阵
1
2
n
相似,则1, 2 , , n即是A的n个特征值.
利用对角矩阵计算矩阵多项式:
若A PB P1, 则 Ak PBk P1.
k个
(1) Ak PB P1 PB P1 PB P1PB P1 P Bk P1.
是A的特征方程的r 重根,则矩阵 A I 的秩 r( A I ) n r,从而对应特征值 恰有 r 个
线性无关的特征向量.
说明:
(1) 推论1只是矩阵可对角化的充分条件;
(2) 如果 A的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
试求矩阵 A.
解 由相似矩阵的性质,知有 A B 0, 即
1 p1
A p 1 q (q p)2 0 p q.
1q1
再由 A I B I
1 p 1 p 1 q 3 3 2 ( p2 q2 2) ( p q)2 1 q 1
0 0 0 1 0 3 32 2
又由于P可逆,所以p1, p2 , , pn线性无关.
命题得证.
推论1 如果 n 阶矩阵 A 的 n个特征值互不相等, 则 A与对角阵相似.
推论2 n阶矩阵A可对角化的充分必要条件是 其每一特征值的代数重数等于几何重数,即对
每个,有m .
推论2也可描述为
推论2 设 n阶矩阵A可对角化的充要条件是, 若
1 0 0
1 0 0
由P 0 1 1,可解得P 1 0 1 2 1 2
0 1 1
0 1 2 1 2
于是
2n
Bn
PAn P 1
0
0
0
5n 1 2
5n 1 2
0
5n 1 2
5n 1 2
解毕
1 p 1
0 0 0
例4
设
A
p
1
q 与 B 0
1
0相似,
1 q 1
0 0 2
思考题
设n阶方阵A与B有相同的特征值,则下列 说法正确的是( )? 1、A与B相似 2、存在一对角阵,使A、B都相似于它 3、存在正交阵Q,使 QT AQ B 4、|A|=|B|
5.2 相似矩阵
一、相似矩阵与相似变 换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化 四、小结、思考题
一、相似矩阵与相似变换的概念
定义1 设A, B都是n阶矩阵,若有可逆矩阵P,使 P1AP B,
则称B是A的相似矩阵, 或说矩阵A与B相似.对A进 行运算P 1 A P称为对A进行相似变换, 可逆矩阵P 被称为把 A 变成 B 的相似变换矩阵.
2
n
1 p1 ,2 p2 , ,n pn .
A p1 , p2 , , pn Ap1 , Ap2 , , Apn 1 p1,p2 , ,pn
于是有 Api i pi i 1,2, , n.
可见 i 是A的特征值,而P的列向量 pi 就是 A的对应于特征值i的特征向量.
反 之,由 于A恰 好 有n个 特 征 值, 并 可 对 应 地 求 得n个特征向量, 这n个特征向量即可构成矩阵P , 使AP P.
四、小结
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质。
2.相似变换与相似变换矩阵
相似变换是对方阵进行的一种运算,它把A 变成 P1 AP,而可逆矩阵 P称为进行这一变换的 相似变换矩阵.
这种变换的重要意义在于简化对矩阵的各种 运算,其方法是先通过相似变换,将矩阵变成与 之等价的对角矩阵,再对对角矩阵进行运算,从 而将比较复杂的矩阵的运算转化为比较简单的对 角矩阵的运算.
2 0 0
2 0 0
A 0 1 0, B 0 b 2,
0 0 a
0 2 3
(1)求a,b的值; (2)求可逆阵P,使P1BP A;
(3)求 Bn.
解 (1)由相似矩阵具有相同的特征值及
n
n
i tr( A) tr(B) , 12 n i A B
i 1
i 1
得2 1 a 2 b 3; 2a 2(3b 4), 解之得
特别地,若可逆矩阵P使 P1 AP 为对角矩阵,
则 Ak P k P1, ( A) P () P1.
对于对角矩阵,有
k 1
k
k 2
,
k n
利用上 述结论可以
(1)
()
(1)
,
(1)
很方便地计
算矩阵A 的
多项式 ( A).
三、利用相似变换将方阵对角化
对 n 阶方阵 A ,若可找到可逆矩阵P ,使 P 1AP 为对角阵,这就称为 方阵A可对角化 .
a 5, b 3.