在教学中渗透转化与化归数学思想方法的实践意义
转化与化归思想在高中数学解题教学中的应用研究

转化与化归思想在高中数学解题教学中的应用研究【摘要】:随着科技、经济的迅速发展,数学在不同领域的应用日益广泛,数学教育成为世界各国关注的重点。
数学思想方法是数学学科的精髓,是分析与解决问题的理论基础,而转化与化归思想是数学中最重要的思想之一。
数学解题过程中处处渗透着转化与化归思想,学生解题能力的高低很大程度上也取决于其转化与化归能力的强弱。
笔者身处高中一线教学,结合教育教学实践经验以及调查分析,发现目前高中生数学解题中的转化与化归能力相对欠缺,影响学生解题能力的提升。
笔者希望本文的研究能够给一线教师提供一定的借鉴作用,对于提高学生的解题能力提供一定的帮助。
首先,笔者通过文献参考,了解转化与化归思想在国内外的研究现状,分析转化与化归思想的本质和内涵、转化与化归的原则、以及高中数学解题中转化与化归的常用方法。
简单来说,转化与化归思想就是通过观察、分析、类比、联想等思维过程把数学中需要解决的问题,遵循熟悉化、简单化、直观化等原则,选择合适的方法进行转化,然后归结到某些已经解决或比较容易解决的问题的一种思想方法。
其次,通过访谈和调查问卷,以我校部分教师和学生为研究对象,分别从教师和学生的角度研究转化与化归思想在高中数学中的应用现状。
研究表明,目前高中教师能够认识到转化和化归思想在高中数学解题中的重要作用。
但是,不少教师本身对于转化与化归思想缺乏系统深入的研究,教学过程渗透有限。
大部分学生的转化与化归能力仍然有待提高。
然后,结合教学实践经验,从高中数学中的数列、立体几何、函数、解析几何以及不等式几个方面,分析转化与化归思想的渗透策略。
这里重点选取近几年高考试题中一些具有代表性的问题,结合学生解题过程中存在的问题,具体分析老师在教学过程中的处理方式以及实践效果。
并提供《常见的递推数列通项公式的求法》解题教学案例,对课堂实践情况进行了详细分析。
最后,结合调查研究,笔者提出几点教学建议。
一要相信学生,给他们更多实践的机会;二要深入挖掘教材,感悟化归思想;三要注重概念、定理、公式等基础知识的教学,并注重知识之间的联系;四是通过变式训练引导学生应用化归思想;五是加强一题多解和多解归一的训练;六是引导学生及时归纳总结。
转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。
本文将分别探讨转化思想和化归思想在中学数学中的应用。
一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。
它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。
在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。
这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。
例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。
2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。
例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。
3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。
这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。
例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。
二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。
通过化归,我们可以更容易地理解问题,从而更好地解决问题。
在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。
这时候,我们可以采用化归的方法,将其化归为低阶次问题。
例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。
在“数学分析”中渗透数学思想的教学意义——化归与转化思想

化归 与转化 思想 。就 是把未 知 的数学 问题转 化
展 ,都是 由数 学思想 的突破 而引起 的 。可 以说 数学 为在 已学 知识 内可能解 决 的 问题 的一 种思想 ,其 特
思想 在数 学分 析 的发展 与完善 中起 着重要 的作用 。 点就 是实 现化 复杂 为简单 的转化 、从 不熟悉 向熟 悉
元 法 降阶法 等等 ,但任 何一 种数学 方 法都反 映 了一 知识 迈 进 ,使 低 一级 知识 向高一 级 知 识纵 深 发展 。
例如连续 函数 、导数 、定积分 、级数 的收敛等定义
收 稿 日期 :2012—02—24 基 金项 目 :新世纪 教 改工程 2010年项 目 (2010JGA078)
深刻 、更本 质 ,具 有更 高 的概括水 平 。基本 的数 学 化 归思想 在数 学分 析 中起 着如 下两 种作用 :
思 想包 括 :符号 化思想 、公 理化 与结 构思想 、函数
(一 )化 归 与转 化思 想对 数 学分 析 理论 起着 杠
与方 程 思 想 、数 形 结合 思 想 、化 归 思 想 、转 化 思 杆放 大作 用『1]
从 数 学发展 史来讲 ,微积分 的产生标 志着 从初 定 的数学思 想 ,如换元 法 实际上 就是转 化思 想 的具
等数 学到 高等数 学 的飞跃 .经 过历 代数学 家们 的努 体 表 现 。
力 .微积 分发展 成 为今天 具有 广泛 应用 意义 的数学
二 、化 归 与转化 思想
基础 学科— —数 学 分析 。数学 分析 理论 的每 一次发
一 些常用的函数 ,如指数函数、三角函数、对数 函 其 几何 意 义是 :满 足 定理 三 个 条件 的 曲线 f(X1在
谈化归与转化思想在高中数学教学中的应用研究

㊀㊀㊀㊀㊀数学学习与研究㊀2023 09谈化归与转化思想在高中数学教学中的应用研究谈化归与转化思想在高中数学教学中的应用研究Һ陈晓莉㊀(江苏省石庄高级中学,江苏㊀南通㊀226500)㊀㊀ʌ摘要ɔ化归与转化思想是一种将复杂问题转化成简单问题,将抽象问题转化成直观问题的数学思想,也是一种基础的思维策略.教师将化归与转化思想用于高中数学教学中,有利于开阔学生的数学学习视野,提升学生的数学思维水平.文章深入分析了化归与转化思想的内涵,同时结合高中数学教学实际案例对化归与转化思想的应用展开研究,指出教师可以在预习㊁教学㊁练习㊁复习过程中应用化归与转化思想,并建议教师可以应用化归与转化思想设计问题㊁布置任务,希望为进一步提升高中数学教学质量,促进学生综合素养持续提升提供教学参考.ʌ关键词ɔ化归与转化思想;高中数学;教学应用‘普通高中数学课程标准(2017年版2020年修订)“(以下简称‘课程标准“)指出,现阶段的高中数学教学要以培养学生的数学学习关键能力为主.在此视域下,传统专注理论知识注入的教学模式不能满足学生能力发展㊁素养提升的学习需求,将数学思想与方法应用到课程教学中是非常有必要的.化归与转化思想是一种重要的数学思想.将其应用于高中数学教学课堂,有利于丰富教学课堂的内涵,培养学生多元分析㊁多元思考的学习习惯.教师只有认真研究化归与转化思想在高中数学教学中的应用策略,才能为学生的学习与发展创造更多可能性.一㊁化归与转化思想的内涵分析化归与转化思想是一种以快速解决问题为本质的思想,主要表现为学习者在研究数学问题㊁解决数学问题时采取某种方法将原问题转化为另外的数学问题,从而降低解题难度,达到快速解决问题的目的.在高中数学教学中,化归与转化思想具体体现为以下内容:第一,正反之间的转化.在高中数学教学中,学生经常会遇见具有一定复杂性的数学问题,或给出的信息不完整的数学问题.如果学生在解决这种问题时应用常规思路,那么就很难解答问题.为此,学生可以采取正反转化的方式,由问题求解目的出发反向思考数学问题,从而在逆向推理的过程中快速找出解题切入点.第二,特殊与一般之间的转化.在分析数学问题时,学生可以先分析问题是否为特殊问题,如果是特殊问题,观察问题中的特殊数量㊁特殊关系结构,并对其中蕴藏的数学知识㊁数学原理进行分析,通过 推广 的方式将特殊问题转化为一般问题,从而降低问题难度.第三,相等与不等之间的转化.这一思想主要用于解不等式问题.在高中数学教学中,很多不等问题可以借助化归与转化思想转变成相等问题,比如将不等式问题转化为求值问题㊁将不等式问题转化为函数问题等.通过将不等式问题转化为等式问题㊁函数问题降低了不等式问题的抽象性,从而提高了学生的解题效率.第四,数与形之间的转化.代数问题㊁几何问题是高中数学教学内容的主要构成部分.在部分学生的眼里,代数问题只能用代数方法解决,几何问题只能用几何方法解决.然而,这样的看法显然是不对的.针对一些过于抽象的数学问题,学生可以通过绘制解题示意图㊁建立数学模型的方式简化问题,从而快速求解问题答案;针对一些过于直观的几何问题,学生可以通过为几何要素赋值细节化问题,从而快速确定几何问题的求解方向.二㊁化归与转化思想在高中数学教学中的应用策略(一)在预习教学中应用思想,激活数学思维预习即正式教学前的自主学习.将化归与转化思想用于高中数学预习教学中,有利于解决注入教学㊁灌输教学所造成的学生惯性思维的问题,使学生学会主动发现数学问题,主动理解数学知识.在实际教学中,教师可以根据化归与转化思想的内涵对课程教学内容进行分析,挖掘新课教学与过去教学内容的关联,并依据具体关联设计导学问题.借助简单问题引导学生回顾旧知,接着提出复杂问题驱动学生应用转化的思想方法将复杂问题转化成已了解的简单问题,由此激活学生的迁移思维,提高其预习学习的效率.比如,在苏教版高一数学必修第一册 并集㊁交集 一课的预习教学中,教师可以根据过去教学内容设计回顾性问题: 你能说明子集㊁补集的概念吗?它们各涉及了几个集合? 通过提出这两个问题激发学生的迁移意识,使学生认识到过去教学内容与即将要学习的内容之间的关联.之后,教师再要求学生在自学过程中思考下面的问题: 已知集合A={1,3,5},B={2,4,6},C={1,2,3,4,5,6},你能说出集合C与集合A,B之间的关系吗? 这一问题较为新颖,在过去的教学中并未出现过.要让学生在课前解决问题,教师可以在此过程中渗透化归与转化思想,让学生将未知问题转化成已知问题解决.比如,教师可以在导学案中为学生提供解题思路: 抛开集合这一限制,1,3,5是什么?2,4,6是什么?1,2,3,4,5,6又是什么? 通过给予思路让学生感悟:1,3,5为奇数;2,4,6为偶数,1,2,3,4,5,6为正整数,奇数与偶数被包括在正整数的范围内.这样,将未知问题转化成已知问题,可以确定集合C是集合A㊁集合B两个集合合在一起的结果.这样,学生能够在转化分析的过程中初步感受并集的内涵,为接下来的概念学习㊁性质学习以及并集与交集的深度学习做好准备.这样,教师通过在预习教学中先后提出复习性问题㊁探究性问题激活学生的数学思维,使学生学会从转化的角度将未知数学难题转化为已知数学问题,从而达到培养学生㊀㊀㊀㊀数学学习与研究㊀2023 09迁移学习能力,增强学生自主学习效果的预习教学目的.(二)在新知教学中应用思想,提高数学能力高中数学教学内容具有一定的抽象性,且难度较高.如果教师只采取注入式教学方法为学生讲解数学概念㊁数学性质㊁数学方法,很容易造成学生的浅层学习问题,不利于学生分析㊁判断㊁应用㊁创新能力的形成与发展.为此,教师可以将化归与转化思想应用于新知教学的过程中,根据思想内涵设计教学问题,布置教学任务,由此驱动学生主动联想数学知识,深入分析数学问题,合作探究数学规律等,使学生在转化问题的过程中达到深度学习的状态.1.应用思想设计问题,提高数学分析能力高中数学教学内容虽然具有一定的难度,但各部分教学内容的安排具有较强的逻辑性,教学内容的难度也呈阶梯特征增加.这样的教学安排为化归与转化思想的有效应用提供了更多机会.在实际教学中,教师可以应用相关思想设计旧知回顾问题与新知探析问题,由问题引导学生从将未知转化为已知㊁将一般转化为特殊的角度出发分析新课教学内容,探究新课教学问题,同时提高学生的逻辑推理㊁数学抽象等数学分析能力.比如,在苏教版高一数学必修第一册 从函数观点看一元二次方程和一元二次不等式 一课的教学中,教师可以设计如下问题:问题1:求不等式3x-2>0的解集?这一问题较为简单,学生将原式转化为3x>2之后再计算,能够轻松得到x>23的答案.在学生应用代数方法解决问题后,教师可以引导学生从几何角度解决该问题,指导学生绘制一次函数图像并找出函数图像与x轴的交点坐标23,0(),根据图像明确不等式3x-2>0的解集为x>23.这样,学生在思考这一问题时不仅能够树立良好的数形转化学习观念,还可以初步体会不等式与函数之间的关系,为接下来的学习做好铺垫.问题2:二次函数y=x2-2x-3的图像是怎样的?一元二次方程x2-2x-3=0的根是多少?不等式x2-2x-3>0的解集是多少?不等式x2-2x-3<0的解集是多少?二次函数y=x2-2x-3与一元二次方程x2-2x-3=0㊁一元二次不等式x2-2x-3>0有着怎样的关系?这一问题涵盖的内容较多,包括二次函数图像的绘制方法㊁一元二次方程根的求解方法㊁一元二次不等式解集的求解方法等.教师通过提出此问题,能够使学生从 数 形 两个角度出发分析数学问题,认识函数㊁方程与不等式三者之间的深度关联,进一步提高学生转化问题㊁简化问题的分析能力.问题3:对于一个具体的一元二次不等式,我们会求解集,如果反过来,已知不等式的解集,你能求出这个不等式吗?已知关于x的不等式x2+bx+c<0的解集为(-1,3),求实数b,c的值?这一问题从逆向角度出发,需要学生根据题意将x=-1,x=3代入方程得到(-1)2+b㊃(-1)+c=0,32+b㊃3+c=0,{即-b+c+1=0,3b+c+9=0,{解得b=-2,c=-3.{教师通过提出这一问题,能够进一步加深学生对一元二次函数㊁方程与不等式内在联系的理解,同时培养学生应用逆向转化方法解决问题的能力.教师通过设计问题串引导学生进行未知与已知的转化学习㊁ 数 与 形 的转化学习㊁ 正 与 反 的转化学习,使学生在转化学习的过程中真正理解新课教学内容,达到内化吸收的深度学习状态.2.应用思想布置任务,提高数学探究能力任务教学是一种围绕具体教学任务展开新知讲解㊁对话问答㊁合作探究等多项教学活动的教学模式.将任务教学法用于高中数学课程教学中,有益于增强学生的课堂学习主体性,进一步加深其数学课堂的学习深度.应用化归与转化思想进行数学教学时,教师可以根据思想内涵设计探究任务,并组织学生围绕具体任务进行分析㊁思考㊁讨论㊁交流,由此驱动学生拆分任务㊁转化任务㊁解决任务,从而锻炼学生的转化能力与应用能力.比如,在苏教版高一数学必修第二册 正弦定理 一课的教学中,教师可以基于化归与转化思想布置探究任务:船从港口A航行到港口C,测得AC的距离为600米,船在港口C卸货后继续向港口B航行,由于船员的疏忽没有测得BC距离,如果船上有测角仪,是否能计算出A,B的距离?图1基于此任务,教师可以组织学生讨论交流,引导学生将具体问题转化为解三角形问题的数学模型,再应用数学模型解决问题.思路1:将任务问题转化为已知的三角形相似的数学问题.测量角A,C,测得角øBAC=75ʎ,øACB=45ʎ,确定计算AB两地距离的解题目的.绘制三角形AᶄBᶄCᶄ,使得BᶄCᶄ为6厘米,øBᶄAᶄCᶄ=75ʎ,øAᶄCᶄBᶄ=45ʎ,量得AᶄBᶄ距离约为4.9厘米,利用三角形相似性质可知AB约为490米.思路2:将任务问题转化为解直角三角形的数学问题.әABC是斜三角形,如图2,过点A作ADʅBC于D,把әABC分为两个直角三角形.在RtәACD中,sinøACB=ADAC,所以AD=ACˑsinøACB=600ˑ22=3002m.øACB=45ʎ,øBAC=75ʎ,所以øABC=180ʎ-øACB-øBAC=60ʎ.在㊀㊀㊀㊀㊀数学学习与研究㊀2023 09RtәABD中,sinøABC=ADAB,所以AB=ADsinøABC=300232=2006m.图2在学生应用不同思路探究数学任务后,教师还可以应用转化思想引导学生推理正弦定理:在解决问题的过程中,若AC=b,AB=c,能否用B,b,C表示c呢?在学生发现asinA=bsinB=csinC这一数学规律后,教师还可以追问:这一公式是否适用于任意三角形呢?由具体任务驱动学生将实际问题转化数学问题,将未知问题转化为已知问题,进一步锻炼学生迁移应用能力.在学生完成学习任务后,教师再通过追问引导学生将特殊问题转化为一般问题,进一步提高学生数学归纳㊁数学分析的能力.(三)在练习教学中应用思想,丰富解题经验练习教学是高中数学教学的重要构成部分,教师只有做好练习教学的工作,才能进一步巩固学生对相关知识的理解与记忆,进一步加强学生对具体数学方法的掌握程度.为进一步提高化归与转化思想在教学中的应用效果,教师可以在课堂教学过程中组织练习教学活动.通过出示典型练习题㊁拓展练习题等多种方式引导学生从转化的角度思考数学问题,进一步提升学生对化归与转化思想的认知水平,同时丰富学生应用化归与转化思想解决问题的学习经验.比如,在苏教版高二数学选择性必修第一册 数列 一章的练习教学中,教师可以根据化归与转化思想,设计如下练习题组织学生解题:(1)已知{an}满足an+1=12an,且a1=2,求an.(将原递推公式转化为an+1an=f(n),利用累乘法求解)(2)已知在数列{an}中,a1=1,an+1=2an+3,求an.(将原递推公式转化为an+1-t=p(an-t),其中t=q1-p,再利用换元法转化为等比数列求解)(3)已知在数列{an}中,a1=1,a2=2,an+2=23an+1+13an,求an.(先将原递推公式两边同时除以qn+1,将其转化为an+1qn+1=pq㊃anqn+1q的形式,再引入辅助数列{bn}bn=anqnæèçöø÷,得到bn+1=pqbn+1q,再使用第(2)题的方法求解)上述练习题均蕴藏着较为丰富的化归与转化思想教学要素.教师通过组织学生分析㊁思考㊁建模解答,有助于加深学生对转化思想的体会,强化学生对转化方法的掌握,进一步提高学生的数学应用能力.(四)在复习教学中应用思想,提升建构水平复习教学具有巩固学生学习基础,提高学生记忆能力的功能.但是,传统的复习教学以抄写教学㊁作业教学为主,将教学重点放在学生对教学内容的识㊁记㊁用方面,忽略了对学生建构能力的培养.要想改善原有复习教学环境,教师需要将化归与转化思想用于复习教学中,根据思想设计综合性强的复习作业,由作业驱动学生在课后联想㊁课后分析㊁课后关联,进而提升学生的关联建构思维水平,强化复习教学的效果.比如,在苏教版高二数学选择性必修第二册 计数原理 一章的复习教学中,教师可以设计复习作业:作业1:三边长分别为整数,且最大边长为11的三角形的个数有多少?作业2:5名成年人带2名小孩排队上山,小孩不排在一起也不排在头尾,共有多少种排法?这两项作业属于生活中常见的排列组合问题.教师通过布置上述作业,可以激发学生的数学应用意识,进一步锻炼学生将实际问题转化为数学模型的能力.同时,教师通过布置上述作业,可以进一步驱动学生回顾排列组合问题的解题途径(元素㊁位置等),解决排列组合问题的常见题型方法(相邻问题捆绑法㊁不相邻问题插空法㊁分排问题直排法㊁定序问题除法等).结㊀语综上所述,将化归与转化思想用于高中数学教学中,对于拓宽教学课堂广度,加深课堂教学深度有着积极意义.要想在教学过程中真正发挥化归与转化思想的育人价值,教师需要确切掌握化归与转化思想的内涵,同时基于学生数学思维㊁数学能力的发展特点设计合理的教学方案,采取合理的教学方法,循序渐进地加深学生对化归与转化思想的认识.为此,教师应不断丰富自身知识储备,不断积累专业教学经验,在学习㊁实践㊁反思的过程中不断优化教学课堂,从而不断提高化归与转化思想在高中数学课堂教学中的应用效率.ʌ参考文献ɔ[1]马淑芳.转化思想在高中数学解题中的应用初探[J].数学学习与研究,2022(35):144-146.[2]林世平,王珠芳.立足转化思想,培育核心素养 例谈转化思想在高中数学解题中的应用[J].数学之友,2022(20):58-60.[3]薛超喜,张永松.转化思想方法在高中数学解题中的应用[J].数理天地(高中版),2022(16):28-29.[4]程新益.在高中数学解题中应用转化思想的几点思考[J].数理化解题研究,2022(18):52-54.[5]李丽润,杜锦泽.高中数学解题中转化思想方法的应用[J].课程教材教学研究(中教研究),2022(Z3):47-48.。
转化与化归思想在数学教学中的应用

等 于0 ,只要解 f ( ) , 且 ,( 0 得 P≤0 则原 0 ≤0 1 , ) ,
题 答 案 是 它 的补 集 , 即C。
析 如果把不等式看作是关于X 的二次不等式 ,则求
解过程繁琐;如果把不等式看作关于P 的一次不等式,则
构造 函数f ) =
■田
维普资讯
中国教育技术装备
成立 。
证 明 ,( =( Z) X) Y+ , ) z 1_ 1 0 + = + > 。
z1 + 令。当 z 0 + : 时,
-
解 设抛物线yx 上存在两点 ( , ) B , ) Axy 、 : : I y关
一
根 ,求m 范 围。 的
析 如果用根的分布, )
一 +)0 F1 ] 1=在 - ,1上
析 直接判断不易弄清楚 ,可 以知道原命题等价于
有一 根 、有 两根 讨论 ,计 算繁 琐 。若将 参数 田 分离 ,转 化
它 逆 命 , = : 1 =, 明q 为 函用 一 一, b1域 题 可 的 否 题 即: 3 或 3很 显 , = 求数 i )丢 ∈ l 问 , 一 , 】 值
求证 :y y + x l O x +zz + > 。
10 - ,解得a2 =。
方程 中的转化
伪 方程 。 一x-( .1=0,在 E1 ] 有实 理 e} r-) - - ,1上
,
析 变量 、
z 地位相同,转化为运用函数思想处
) + ,转 化 为证 明f ) 0 l > 恒
反 函 数 图像 关 于 直 线 Y= 对 称 ,所 以反 函 数 的对 称 中 心 ( 1 ) ,则原 函数 的对 称 中心 ( ,一 ), 即3 a 一 ,3 3 1 一一
浅谈化归与转化思想在高中数学教学中的应用

浅谈化归与转化思想在高中数学教学中的应用作者:黄庆彬来源:《新课程》2021年第12期新课程标准明确提出了高中生通过数学课程的学习要达到获“四基”、提“四能”的目标。
获“四基”,即学生获得数学基础知识、基本的技能、思想和活动经验;提“四能”,即提高学生从数学角度发现并提出问题、分析和解决问題的四种能力。
纵观近年来高考数学试题的编制及考查的内容,都很好地反映了课程改革理念,加大了数学思维能力的考查,注重学科思想方法的运用,这就要求教师在数学教学中要“两手抓”,既要加强基础知识与基本技能的教学,又要注意以素养为导向,以能力为重,加大各种思想方法的渗透。
在中学数学思想方法中,最基本、最核心的就是化归与转化思想,它是解决数学问题思想方法的精髓。
化归与转化,即运用转化、归结的数学手段,通过一定的数学过程,把一个复杂、陌生或者未解决的问题转化到已解决或较易解决的问题上来,从而破解原问题的一种方法。
数学家笛卡尔对此方法给予了高度评价,称之为解决数学问题的万能方法。
它对培养学生的解题能力和数学素质起至关重要的作用,故教师在平时教学中应注意引导学生抓基础与注重转化能力的培养两者并重,这是学好数学的金钥匙。
以下便是其模式。
一、高中数学中应用转化与化归思想遵循的原则应遵循4个原则:(1)熟悉化原则,即“化生为熟”,把陌生问题转化成熟悉问题。
(2)简单化原则,即“化繁为简”,把复杂问题转化成简单问题。
(3)直观化原则,即“化抽象为直观”,把较抽象的问题转化为较直观的问题(如数形结合思想,立体几何问题转化成平面几何问题)。
(4)正难则反原则。
若问题直接求解困难时,可考虑运用反证法或补集法,或用逆否命题间接地解决问题。
二、高中数学中常见的转化与化归方法共有10种:在解决数学问题时,有的可用直接转换法、换元法、数形结合法,有的可用参数法、构造法、坐标法,还有的可用类比法、特殊法、一般化、等价转换法来解。
这些方法在一些题目中可能单独使用,也可能相互交叉使用,是不能完全分割开的。
浅谈化归思想如何在数学教学中的渗透

|基础教育|浅谈化归思想如何在数学教学中的渗透文/严娟摘要:当前为了响应高中新课改号召,我校一线教学也顺应改革的潮流。
由于高中数学是高考中一项入学重要门槛,所以学好高中数学十分重要。
学好数学,必须要有数学思想,思想是教学的灵魂,也是教学的精髓之所在。
高中数学集 结了逻辑思维以及形象构造于一体的学科,所以,在众多数学教学思想中,化归是核心,也是最基本的数学理论思想。
为此论文从五个方面,即函数、方程与不等式的转化渗透、正、反面的转化渗透、主与次的转化渗透、主与次的转化渗 透、换元的转化渗透、常量与变量之间的化归渗透、解决问题中的渗透,分别论述划化归思想在数学教学中的渗透。
关键词:转化化归思想数学教学在高中数学教学中,化归思想较为常见,是一种基本的解 题思路以及答题方式,在应对数学问题能够通过化归进行巧 解。
何为化归,即面对复杂的数学问题时,采用数学关系对其 进行转换元,令复杂的问题简单化从而解决问题的一种数学 方法。
运用化归能够将不常见的数学问题转换成为常见问题,将疑难问题转变成容易求解问题,将不能解决的问题转变成 能解决问题。
在数学解题,尤其是高中数学解题中,化归思想 无处不在。
化归的基本功能大致可以归纳成为,将困难变得简 单、令模糊变得清晰、令抽象变得直观、令生疏变得熟悉。
换言 之,化归就是以不变应万变,通过数学关系,用相互关联作用 的观点来看待数学解析问题,运用化归思想令问题得以转换,从而得到解决。
在数学教学中,所有老师应该重视转换思想,运用化归来提升学生解决问题的能力。
如何在数学教学中渗 透该思想,就从以下几方面来谈。
一、函数、方程及不等式解决函数、方程以及不等式这一类数学问题,需要依托三 者之间的关系,建立解题思路,将原本看似毫无关系的三者通 过转换化归,使其成为能够解决的问题,将复杂的问题简单 化。
通常不同时的关系一般可以转换成为极值以及取值范围 的问题,从而找到所解问题的取值范围。
例1:若关于!的方程9!+(4+")3!+4=0有解,则实数"的取值范围是___________.分析:设#=3!,则原命题等价于关于$的方程$2+(4+%)$+4=0 有正解.分离变量",得"+4=(+4),..$>〇...-(十^)‘-4.'."<-8,即实数"的取值范围是(-〇〇,-8].二、正、反面在拿到题目时发现若是从正面直接求解,发现无从下手,感觉困难时,不妨从反面入手,运用补集思想,体现对立统一 以及相互转换的思想。
浅谈化归转换思想在中学数学教学中的渗透

体意识得到提升,即在青年学生道德教育上主张青年学生道德选择的自由,要求青年学生自己对道德问题作出理性和自觉的把握,强调尊重和保护自我利益。
事实上,这一过程也正是青年学生个性不断张扬、道德不断完善的过程,也是青年学生的道德自律不断发展的过程。
青年学生正是在道德精神的不断完善和发展的过程中,才不断认识自身,逐渐适应时代要求并促进社会的和谐发展。
全球化需要以自由、平等、信用、公平作为基础。
这一基础反映在道德的层面上,就要求要建立一种包括人格自由、尊重人权、公平竞争、依法守法的现代文明规范,表现为独立、理性、自由、平等、公正的道德品质。
因此,在新形势下,青年学生德育要以此为重点内容,培养青年学生学会“关心他人”,做到对他人的尊重、宽容、关怀、理解,克服自私狭隘、以自我为中心的道德取向。
三、在全球化背景下加强青年学生道德建设的对策 在全球化背景下,我们应站在青年学生德育肩负的使命的战略高度,针对青年学生道德素质的现状,采取如下积极的对策,以促进青年学生道德建设的发展。
(一)拓展现代德育内涵,树立适应全球化发展的大德育观。
经济全球化的发展对青年人才所具备的基本素质有新的要求:要求青年有整体化的知识素质和创新意识,有高尚的灵魂、良好的道德品质,有正确的伦理道德、价值观念;要求培养集体协作的“团队精神”,学会与人共处、与人共事,学会和适应各种形式、各个层次的合作;要有健全的人格和良好的心理素质,有乐观向上、善对人生的积极心态;要有强烈的民族自尊心和使命感。
我们必须根据这些要求来开展德育工作。
(二)建立适应全球化时代,具有针对性、时代性和创造性的青年德育内容体系。
我们应该改变传统计划经济体制下僵化单一的政治教化功能和整齐划一的德育内容体系,建立起适应全球化时代开放的德育内容体系。
青年学生道德教育应适应知识经济发展的要求,在重视和加强马克思主义世界观和方法论学习的同时,加强创新能力和开拓意识的培养,培养青年勇于探索事物内部规律的能力和善于开拓进取的精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在教学中渗透转化与化归数学思想方法的实践意义
开封市第二十五中学杨瑞
【关键词】数学思想方法转化与化归解决问题数学的实践应用【摘要】对于高中学生来说,数学的学习一直都应是一种思维方式的训练,甚至也会是生活态度的学习,因此教师在数学教学中要渗透的就应该是数学思想方法,而不仅仅是知识的传授。
【正文】新课程改革后的人教版教材一直想传达给学生这样一种思想:数学是有用的,数学的学习可以提高能力。
一直以来,都有一种数学无用论的声音,很多人觉得生活不需要数学,数学学得好远没有背几首诗词或者读几篇历史故事更能吸引别人的眼光,甚至不如懂得一些物理化学知识来得实用,这已成为数学教师的尴尬,仿佛教学仅仅是为了那张卷子上的一个分数。
实际上,学数学的人都知道在实践中,在理论中,在物质世界中,在精神世界中,数学处处都有。
生活处处蕴含着数学的魅力。
基本无论大到宇宙星系,小至生物微粒及人类所处事宜都散发着数学的气息。
因此高中数学的教学活动中,教师就不能仅仅局限于推导数学公式,掌握公式的使用,教学中渗透思想方法会对学生进行思维方式的训练,甚至也会是生活态度的学习,因为,数学是科学的语言,是思考和解决问题的工具。
在教学中渗透化归与转化这一最重要的数学思想就对学生的思维方式和解决问题的能力有着巨大作用。
高中学生要在高中阶段实现由经验型逻辑思维向理论型逻辑思维转化,最终初步形成辩证思维能力。
而转化与化归思想的渗透恰恰可以在培养学生逻辑思维能力方面发挥作用。
同学们都有这样的经验,解某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将原问题转化为一个新问题,通过对新问题的求解,达到解决原问题的目的,这一思想方法称之为“转化与化归思想”。
转化是将数学命题由一种形式向另一种形式的转换过程;化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
这种数学思想方法不仅可以解决数学问题,显然在生
活中也能帮助学生打开视野和思路。
化归与转化思想的实质是揭示联系,实现转化。
除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。
从这个意义上讲,解决数学问题就是从未知向已知转化的过程,同时在生活中许许多多的事情也需要把未知往已知的方面转化,把事情简单化,这是解决问题的必经思路。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现.新的教学体制的出现, 化归与转化的思想将是贯穿整个中学教学的一种主要的思想,所以在教学过程中,在老师的指导下,同学们可以体会个中的精髓。
世界数学大师波利亚强调:要想解决问题,需要“不断的变换你的问题”,“我们必须一再变化它,重新叙述它,变换它,直到最后成功地找到某些有用的东西为止”,他认为解题的过程就是“转化”的过程。
比如对于那些从“正面进攻”很难奏效或运算较繁的问题,可先攻其反面,运用补集思想从而使正面得以解决也就是我们常说的“正难则反”,同学们非常熟悉的证明异面直线的问题,还有一些证明结论为否定语句的问题,都需要使用反证法,从要证结论的对立面入手,通过证明结论的对立面不成立来解决问题。
“正难则反”思想的应用有时会给我们的解题带来意想不到的妙处。
再比如在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,利用主元与参变量的关系,视参变量为主元(即变量与主元的角色换位)常常可以简化问题的解决。
还有在立体几何的一些证明题中,学生就常常把线线关系、线面关系、面面关系进行相互转化找寻解题思路。
由于转化具有多向性,层次性和重复性的特点,为了实施有效的转化,既可以变更问题的条件,也可以变更问题的结论;既可以变换
问题的内部结构,又可以变换问题的外部形式,这就是多向性。
转化原则既可应用于沟通数学与各分支学科的联系,从宏观上实现学科间的转换,又能调动各种方法与技术,从微观上解决多种具体问题,这是转化的层次性。
而解决问题可以多次的使用转化,使问题逐次达到规范化,这就是转化原则应用的重复性。
再比如常量和变量的转化,空间与平面的转化,抽象与具体的转化,相等与不等的转化等等都为了实现将复杂问题转化为简单问题,将未知问题转化为已知问题的目的。
在生活中,我们会遇到各种各样的问题需要使用这样的转化思想进行解决,从而进一步培养学生遇难不畏难的勇气和解决难题的能力。
在高考中,转化与化归思想占有相当重要的地位,掌握好化归与转化思想的两大特点,学会在解题时注意依据问题本身所提供的信息,利用动态思维,去寻求有利于问题解决的化归与转化的途径和方法,对学好数学是很有帮助的甚至可以说是学好数学的根本。