直线的倾斜角与斜率(教学设计课题)
直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计教学设计:直线的倾斜角和斜率一、教学目标:1.知识目标:理解直线的倾斜角和斜率的概念,能够计算直线的斜率。
2.能力目标:能够运用直线的倾斜角和斜率解决实际问题。
3.情感目标:培养学生对数学的兴趣和积极参与数学学习的态度。
二、教学内容:1.直线的倾斜角和斜率的概念介绍。
2.直线的斜率的计算方法。
3.直线的倾斜角和斜率在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)让学生观察一些直线的图片,引导学生思考直线的特征和性质。
然后提出问题:“如何刻画直线的倾斜程度?”进一步引导学生思考斜率的概念。
2.概念讲解(10分钟)介绍直线的倾斜角和斜率的概念,并进行示例说明。
通过几个具体图例,让学生理解倾斜角和斜率的计算方法。
3.斜率计算练习(15分钟)在黑板上给出几组直线的坐标,让学生自行计算斜率。
然后互相交流答案,老师给予必要的指导和讲解。
4.斜率的性质探究(10分钟)在黑板上给出不同的两条直线,让学生分别计算斜率并进行比较,引导学生发现两条平行线的斜率相等,两条垂直线的斜率的乘积为-15.应用实例探讨(20分钟)以实际问题为例,引导学生应用倾斜角和斜率的概念计算问题。
例如,计算两个点之间的坡度、判断两个线段的交叉情况等。
6.巩固练习(15分钟)提供一些练习题,要求学生计算直线的斜率,并在给出的坐标系中绘制这些直线。
让学生将所学知识应用到实际问题中,巩固对倾斜角和斜率的理解和计算能力。
7.拓展应用(15分钟)让学生从生活实际中寻找更多的与斜率相关的问题,并用倾斜角和斜率的概念解决这些问题。
鼓励学生讨论和分享解决思路,加深对知识的理解和应用能力。
8.知识总结(5分钟)让学生自主总结直线的倾斜角和斜率的关系,并展示自己的总结。
教师进行点评和补充说明。
四、课堂训练:借助数字资源软件或练习册等材料,布置适量的作业题目,巩固学生对直线的倾斜角和斜率的理解和应用。
五、教学反思:本教学设计通过多种方式引导学生理解直线的倾斜角和斜率的概念,并加以实际问题的应用,既注重了学生的思维能力培养,又培养了学生对数学的兴趣和动手能力。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、引言在平面几何中,直线是最基本的图形之一,而直线的倾斜角和斜率则是直线的两个重要特征。
本教案将介绍直线的倾斜角和斜率的概念、计算方法以及应用。
二、直线的倾斜角1. 概念直线的倾斜角是指直线与水平方向的夹角,通常用角度制表示,取值范围为0°~90°。
2. 计算方法设直线的倾斜角为α,则有:•当直线向右倾斜时,0°≤α≤90°,且tanα=斜率;•当直线向左倾斜时,90°<α≤180°,且tan(α-90°)=斜率。
3. 应用直线的倾斜角可以用于解决一些实际问题,如:•在建筑设计中,需要计算房屋屋顶的倾斜角度;•在地理学中,需要计算山坡的倾斜角度;•在物理学中,需要计算斜面的倾斜角度等。
三、直线的斜率1. 概念直线的斜率是指直线上任意两点之间的高度差与水平距离之比,通常用斜率公式表示,即:k=y2−y1 x2−x1其中,(x1,y1)和(x2,y2)为直线上的两个点。
2. 计算方法直线的斜率可以通过斜率公式进行计算,也可以通过直线的倾斜角进行计算,具体方法如下:•当直线向右倾斜时,斜率为正,且斜率等于tanα;•当直线向左倾斜时,斜率为负,且斜率等于tan(α-180°)。
3. 应用直线的斜率可以用于解决一些实际问题,如:•在数学中,可以用斜率来判断两条直线是否平行或垂直;•在物理学中,可以用斜率来计算物体的速度、加速度等;•在工程学中,可以用斜率来计算斜坡的坡度、道路的坡度等。
四、练习题1.某条直线的斜率为2,求该直线的倾斜角。
2.某条直线的倾斜角为30°,求该直线的斜率。
3.某条直线过点(1,2)和(3,6),求该直线的斜率。
4.某条直线过点(1,2)和(3,6),求该直线的倾斜角。
五、总结本教案介绍了直线的倾斜角和斜率的概念、计算方法以及应用。
通过学习,我们可以更好地理解直线的特征和性质,为解决实际问题提供了有力的工具。
《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。
通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。
教学目标:1. 理解直线的倾斜角的概念。
2. 掌握计算直线的斜率的方法。
3. 理解直线的斜率与倾斜角之间的关系。
4. 能运用直线的斜率和倾斜角解决实际问题。
教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。
2. 直线的倾斜角的计算方法。
二、直线的斜率1. 直线的斜率的定义。
2. 直线的斜率的计算方法。
三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。
2. 斜率与倾斜角的计算方法。
四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。
2. 运用斜率和倾斜角计算直线的交点。
五、巩固练习1. 计算给定直线的斜率和倾斜角。
2. 解决实际问题,运用直线的斜率和倾斜角。
教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。
2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。
3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。
教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。
3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。
教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。
2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。
3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。
教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。
2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。
直线的倾斜角与斜率(教学设计)

《8.2直线的倾斜角和斜率》教学设计【课题】直线的倾斜角和斜率【课时】 1课时(45分钟)【授课时间】2015年5月19日【授课类型】新授【设计理念】本节课以一个情境贯串教学始终,层层深入,采用问题引领的探究式教学法,借助一个教学平台,贯串两条教学主线,再现三次教学情境,设置多次学生活动,根据“情境创设生活化,问题探究活动化,辨析质疑及时化,习题设置梯度化”的原则,让不同层次的学生都经历概念的形成、发展和应用过程,从而将本节课的教学步步推向高潮.【内容解析】本节课选自江苏教育出版社出版的《数学》第二册第八章第二节《直线的倾斜角和斜率》.直线的倾斜角和斜率,分别从几何和代数的角度刻画了直线的倾斜程度,两者的联系桥梁是正切函数值,是解析几何的重要概念之一,也是研究直线方程及其位置关系等思维的起点.因此,本节起到“开启全章、承前启后”的作用.同时,本节课内容在机械工程等方面有着广泛应用,为生活生产提供了理论依据.【学情简析】本节课的授课对象1406班是高职一年级的数控专业的学生,班级共38人,36位男生,2位女生.学生数学基础较好,已初步具备解析几何的基本思想.学生思维活跃,善于交流,动手操作能力强,这些特点为本堂课的有效教学提供了质的保障.【教学目标】知识与技能:(1)理解直线的倾斜角和斜率的概念;(2)会求过两点的直线的斜率;过程与方法:(1)经历倾斜角与斜率概念的形成过程,初步领悟解析几何思想;(2)借助过两点的直线斜率公式的推导过程,进一步渗透分类讨论思想;情感态度价值观:通过情境贯串教学,让学生感知数学来源于生活,又应用于生活,从而激发学生的学习激情.【教学重点和难点】重点:直线的倾斜角和斜率的概念、过两点的直线斜率计算公式难点:过两点的直线斜率公式的推导过程关键点:借助问题情境的创设,设置学生活动;借助几何画板的演示,体验知识的形成过程.【教学方法】教法:情境教学法问题驱动法演示实验法学法: 观察讨论法自主探究法类比归纳法【教学用具】多媒体、几何画板【教学过程】以境导学︵约30分钟︶2.媒体——析疑播放几何画板,演示直线绕点P的旋转过程.展示:(1)根据直线分类所得倾斜角的四种情形:(2)直线倾斜角的范围:0180[0,180)α≤<,即3.练习——答疑练习1:1.测量图中x轴-400处所在直线AB的倾斜角练习2.按要求作图:过点P作一条倾斜角为60的直线.探究二:直线斜率的定义及直线倾斜角与斜率之间的关系1.情境——设疑问题4:在日常生活中我们经常会遇到上坡下坡问题,那么对于斜坡的倾斜程度可以用什么量来反映?展示:(1)坡比公式:;(2)直线斜率的概念:倾斜角α的正切值叫做直线l的斜率.(3)注意点:直线倾斜角为90时,直线斜率不存在.教师引导学生观察直线倾斜角大小与直线陡缓程度的关系,并探索直线倾斜角的范围.师问:根据直线的分类,可以将直线倾斜角分成几种情形?教师巡视指导学生寻找并测量直线的倾斜角及规范学生作图.教师引导学生类比坡比概念结合正切函数引出直线斜率的概念.教师强调直线斜率的定义及注意点.学生观察几何画板的演示.学生分析,将形成的直线类型作于活动纸上.学生测量直线倾斜角并作图..学生领悟.几何画板的动态演示让学生直观感受倾斜这一几何量的形成过程,体悟知识的形成过程.通过“找—量—画”三个环节,正逆运用新知,有效检测学生的新知落实情况,也为探究二的学习埋下伏笔.通过问题驱动,让学生观察、类比得出斜率的概念,培养学生的知识迁移能力;并体验从直观到抽象的过程.前进量升高量坡比=以境导学︵约30分钟︶2.媒体——析疑(1)完成下表:角度04590135斜率3333-33-(2)观察表中数据,阐述直线倾斜角与直线斜率之间的变化关系.(3)播放几何画板,演示直线倾斜角与斜率之间的关系.展示:(1)直线倾斜角与斜率之间的关系(2) 当090α≤<,倾斜角越大,斜率越大;当90α=,斜率不存在;当90180α<<,倾斜角越大,斜率越大.3.练习——答疑练习2:问题大挑战.①是否每条直线都有斜率?②是否每条直线都有倾斜角?③直线倾斜角越大,直线斜率是否越大?练习3:根据探究一所得直线AB的倾斜角,计算直线AB的斜率探究三:过两点的直线斜率公式截取图中一条直线11(,)x y300-300-400▪▪PQαM教师复习特殊角的正切函数值.教师引导学生观察表格,寻找直线倾斜角与斜率之间的关系.教师引导学生运用分类讨论思想来探索直线倾斜角与斜率之间的关系.教师纠正学生易混淆的概念.教师巡视指导学生计算直线的斜率.教师一条直线,再次展示情境.学生完成表格.学生观察数据,积极思考,分享成果.学生领悟直线倾斜角与斜率之间的关系.学生思辨并作答,领悟知识要点.学生计算.学生观察图像.填表有效检测学生对特殊角正切函数值的落实情况.利用几何画板动态直观展示直线倾斜角与斜率之间的关系,有助于学生加深对理解.通过三个易混淆的概念判断,有利于进一步强化概念;练习2的设计,落实知识重点,也为探究三知识的验证埋下伏笔.学以致用︵约5分钟︶现欲加工如图所示零件,根据零件标注的要求,采用手动编程完成该零件,在用手工编程过程中,以O点为坐标原点进行编程,A点坐标为(0,15),则需要计算以下内容才能完成手工编程:(1)若直线AB的斜率为1,则点B的坐标为多少?(2)尺寸如图所标,求直线CD的斜率是多少?教师引导学生分析编程中的数据,结合过两点的直线斜率公式解决问题。
《直线的倾斜角和斜率》教案(公开课)

《直线的倾斜角和斜率》教案(公开课)直线的倾斜角和斜率直线的斜率和倾斜角是数学中的重要概念,它们帮助我们理解和描述直线的特性。
本文将介绍直线的倾斜角和斜率的概念,并提供一些实例来帮助读者更好地理解。
1. 斜率的定义和计算方法斜率是直线上的两个点之间纵坐标变化量与横坐标变化量的比值。
用数学符号表示,斜率可以表示为:m = (y₂ - y₁)/(x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)是直线上的两个点。
例如,有一条直线上的两个点分别为A(1, 2)和B(4, 5),我们可以计算这条直线的斜率:m = (5 - 2)/(4 - 1)= 3/3= 1所以,这条直线的斜率为1。
2. 斜率的特性斜率可以帮助我们判断直线的特性,如下所示:- 当斜率为正数时,直线是向上倾斜的。
斜率越大,直线的倾斜程度越大。
- 当斜率为负数时,直线是向下倾斜的。
斜率越小,直线的倾斜程度越大。
- 当斜率为0时,直线是水平的。
- 当斜率不存在(除数为0)时,直线是垂直的。
通过计算直线的斜率,我们可以快速了解直线的倾斜情况,并对其特性进行分析。
3. 倾斜角的定义和计算方法倾斜角是直线与水平线之间的夹角,用数学符号表示为θ。
对于任意一条直线,可以通过其斜率来计算倾斜角。
倾斜角的计算方法如下:- 当直线向上倾斜时,倾斜角为θ = arctan(m)。
- 当直线向下倾斜时,倾斜角为θ = arctan(m) + π。
- 当直线是水平的时,倾斜角为θ = 0。
- 当直线是垂直的时,倾斜角不存在。
4. 实例分析让我们通过几个实例来进一步理解直线的倾斜角和斜率。
实例一:有一条直线通过点A(-2, 1)和B(4, 9)。
计算直线的斜率和倾斜角。
通过斜率的计算公式,我们可以得到直线的斜率:m = (9 - 1)/(4 - (-2))= 8/6= 4/3接下来,我们可以计算直线的倾斜角:θ = arctan(4/3)实例二:有一条直线通过点C(3, 2)和D(3, 8)。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国中职学校“创新杯”教师信息化教学设计和说课大赛8.2.1 直线的倾斜角与斜率教学设计方案2014年11月《8.2.1 直线的倾斜角与斜率》教学设计方案【授课对象】计算机网络专业二年级学生【教材】《数学》(基础模块)下册(主编:广全尚志高等教育出版)【教学容】直线的方程——直线的倾斜角与斜率【授课类型】课堂教学【授课时间】1课时【教材分析】直线的倾斜角和斜率是解析几何的重要概念之一,是以坐标化(解析化)的方式来研究直线的相关性质的重要基础。
直线的斜率是后继容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要的作用。
因此,正确理解直线斜率的概念,熟练掌握直线的斜率公式是学好这一章的关键。
【学情分析】教学对象是计算机网络专业二年级的学生。
他们思维活跃,勇于挑战,且具有一定的网络知识,但数学基础相对薄弱。
在教学中,我力求将数学与专业相结合,充分利用《几何画板》等信息化手段去帮助学生理解、掌握本节课容。
【教学目标】根据中职数学新大纲的要求,结合学生的实际情况,确立了如下的教学目标:(一)知识目标1. 理解直线的倾斜角和斜率的概念。
2. 掌握直线的斜率公式及应用。
(二)能力目标通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括的能力。
(三)情感目标通过合作探索,互相交流,增强团队意识,培养协作能力。
【教学重难点】重点:直线的倾斜角和斜率的概念,直线斜率公式及其应用;难点:斜率公式的推导。
突破难点的关键:充分利用数形结合,并引导学生分类讨论问题。
【教学策略】1.教学方法:问题探究法课前下发导学提纲,学生预习提出问题,课上通过任务展示、问题交流、小组竞赛的形式引导学生自主学习。
2.学习方法:小组合作、自主探究按照强弱搭配的原则将学生分为5个小组,通过讨论交流共同完成学习任务。
3.评价方法:综合评价尊重学生个体差异,关注学习过程中学生的表现和变化,通过自评、互评和师评对学生进行全面动态的评价,使合作学习更加富有成效。
【教学设备】多媒体投影仪,电脑,素描纸,展示板,自制教具。
【设计思路】首先,通过生活实例,把数学植根于生活。
教具的制作,锻炼了学生的动手能力和学习热情。
通过课前导学及微课引导学生自主探究是完成教学任务的主要环节,课上再通过ppt、《几何画板》等信息化手段化解难点。
【教学过程】教学环节设计思路一、课前导学提纲【学习目标】1.理解直线的倾斜角和斜率的概念。
2. 会求直线的斜率:(1)根据直线的倾斜角求斜率(2)根据直线上两点的坐标求斜率【课前准备】1. 举出生活中可以抽象为直线的物体:(1)上网搜集图片(2)手机拍摄图片2. 画图说明什么叫直线的倾斜角?3. 制作两条直线相交的教具,说一说直线的倾斜角的取值围是什么?4.什么叫做直线的斜率?用什么符号表示?5. 填表:6. 已知直线上两个点的坐标,如何求直线的斜率?【问题汇总】学生将预习中存在的问题发送到班级QQ群里,大家共同探讨。
(直线的倾斜角的定义及围可从群共享里查看微课帮助预习)二、课上教学环节(一)知识回顾(用时约5分钟)1.两点间的距离公式按照组强弱搭配,组间能力均衡的原则将学生分为5个小组.教师根据本课的知识点和学生的计算机专业水平设计课前导学提纲,学生分小组完成任务,将搜集到的实例、制作的教具准备好,并把学习过程中存在的问题在规定时间发至班级的qq群里.设计目的:1.让学生带着问题有目的地预习;2.提高学生的观察能力和搜集信息的能力;3.培养学生的动手实践能力;4. 通过小组合作完成任务,培养学生的团结协作的精神;5. 通过课前问题汇总,让课堂真正成为解决学生问题的平台.按照学号顺序,每次课由一名同学充当复习“小老师”,带领同学们复习。
小老师根据(三)学习目标(用时约1分钟)学习新课之前,给出本节课的学习目标:1. 理解直线的倾斜角和斜率的概念. 2. 掌握直线的斜率公式.(四)自主探究(用时约15分钟)问题1. 画图说明什么叫直线的倾斜角? 问题2. 直线的倾斜角的取值围是什么?0180α<≤问题 3. 什么叫做直线的斜率?用什么符号表示?tan(90)kαα=≠问题4. 已知直线上两个点的坐标,如何求直线的斜率?图(1)学生利用课前自制的体现两条直线相交的模型,在教师指导下将其中一条线视为直角坐标系中的x轴,演示观察倾斜角的变化,并说出倾斜角的围。
教师再利用《几何画板》进一步演示,并对倾斜角能否等于1800进行提问。
这样,学生就会更加准确地得出倾斜角的取值围。
学生了解了直线的倾斜角的定义以及取值围之后,教师提问:是不是只有倾斜角才能刻画直线的倾斜程度呢?自然引出下一个问题:让学生体会斜率与倾斜角之间的关系。
学生在求tan120时可能会遇到困难,这时,我让会做的一名同学在黑板上写出求解过程并讲解,如果学生都不会,我再讲解。
做此题的目的也是为后面推导斜率公式作一个铺垫。
问题4是本节课的难点,课上可以先让学生小组讨论,然后请一名同学上台结合倾斜角是锐角的图示进行讲解和推导,得出方法后,再让学生讨论倾斜角是钝角的情况,若仍然没有思路时,这时教师可以引导学生从直线倾斜图(2)图(3)图(4)(五)反馈练习(用时约15分钟)1.热身训练判断题(每题1分)(1)任意一条直线都有倾斜角.( ) (2)任意一条直线都有斜率.( ) (3)直线的倾斜角的顶点有可能在y 轴上.( ) (4)倾斜角越大,斜率越大.( )(5)若直线的倾斜角为30,则该直线的斜率为12. ( ) (6)已知直线的斜率为 1,则该直线的倾斜角为45.( )(7)已知直线上两点111(,)P x y 、222(,)P x y 且12≠x x ,则1212-=-y y k x x . ( )角的定义入手,结合图形给出如下提示:之后教师再给出直线上两点的横坐标相等和纵坐标相等的两种特殊情况让学生探讨,得出斜率不存在和斜率为零的结论。
本环节采用“数形结合”的方法,分四种情况研究了斜率公式,环环相扣的设计起到了分散难点的作用,同时培养学生学会有条理的思考问题。
2. 合作展示根据下列各直线满足的条件,分别求直线的斜率:(每题2分)(1)倾斜角α为135;(2)倾斜角α为π3;(3)过点(2,2)A-,(3,1)B-;(4)过点(1,5)P-,且平行于x轴;(5)过点(2,3)P,且平行于y轴.(六) 拓展延伸(用时约2分钟)已知直线l的斜率 3.5k=,求它的倾斜角?(七) 小结与评价(用时约3分钟)1. 知识要点:反馈练习分为两部分,第一部分是热身训练,以抢答的形式给出,让学生通过判断理解直线的倾斜角和斜率的概念,熟悉求斜率的两种方法。
这个环节使用了计时器和计分器,要求抢到题的小组在规定时间作答,营造出紧有序的比赛氛围;答题完毕后,教师利用计分器给答对的小组加分,这样设计既活跃了课堂气氛,也增强了组与组之间的竞争意识。
合作展示环节采用抽签的形式进行,抽到题的小组在规定时间讨论完成后,教师随意抽取该小组一名同学上台板演并讲解。
这样设计可以充分发挥小组学习的作用,提高组成员主动参与讨论的热情。
并通过组间互评,教师讲评进一步加深学生对知识的理解。
此环节设计的题目在课本例1的基础上对题型进行了变换和丰富,难度由浅入深,加深学生对直线的斜率与倾斜角概念的理解,考查学生对公式的灵活运用程度。
通过反馈练习,学生对倾斜角和斜率之间的关系有了更深一步的理解。
这时教师提出问题:已知任意一条直线的2.倾斜角与斜率的关系:tan k α=3.有了直线的倾斜角来刻画直线的倾斜程度,为什么还要引入斜率?(八) 布置作业(用时约2分钟)1.课本50页练习8.2.12.探究黑板的对角线相对黑板下边的倾斜角和斜率.3.按小组上网查找方法解决拓展延伸的问题,下节课演示并讲解.4.结合导学案预习8.2.2直线的点斜式方程与斜截式方程.斜率,你都能求出它的倾斜角吗?进而将问题拓展延伸,这个问题我让学生利用专业知识课下编程解决。
课堂小结由学生完成,先让学生说一说这节课学了哪些概念和公式,在运用公式的过程中有哪些需要注意的问题,教师出示本节课知识要点,并引导学生探讨倾斜角不同时斜率相应的变化。
接着,再对倾斜角和斜率的关系作补充说明,直线的倾斜角和斜率都是刻画直线的倾斜程度的,但前者是从形的角度来刻画的,后者是从数的角度来刻画的。
而解析几何是用代数的方法来研究几何问题的,因此,我们要重点研究直线的斜率。
向学生渗透解析几何的思想和方法。
最后,再由课代表对各小组的课上表现作点评并公布本节课的优秀小组。
作业分为巩固练习、实际应用、拓展延伸和预习新知四方面,将课成果引向课外,让学生学以致用。
【板书设计】【教学反思】1.导学提纲、教师微课、生活实例、问题设置,体现教师的 “导”;2.自制教具、小组合作与竞赛、问题探究等,突出学生的 “学”;3.通过讨论提出问题、共同探究解决问题,展示小组的“议”; 4.复习小老师、小组代表展示板演,训练学生的“讲”;5.热身、反馈、总结、评价,利用专业知识解决数学问题,强化学生的“练”。
总之,导学议讲练五环,环环相扣;再加上几何画板软件、计时器与计分器的使用,生动形象、激发学生兴趣。
信息化手段还可以多元化,这是我今后努力的方向。
我的说课到此结束,请各位评委老师多多指正。
90) 2)x附表:数学课堂活动评价表班级::得分:时间:。