水体中铜离子的含量测定

合集下载

铜含量的测定实验报告

铜含量的测定实验报告

铜含量的测定实验报告铜含量的测定实验报告引言:铜是一种重要的金属元素,广泛应用于电子、建筑、冶金等领域。

因此,准确测定铜的含量对于质量控制和产品开发至关重要。

本实验旨在使用分光光度法测定水中铜的含量,并通过实验数据和分析结果评估测定方法的准确性和可靠性。

实验方法:1. 实验仪器和试剂准备:- 分光光度计:用于测定溶液中的吸光度。

- 定容瓶和移液管:用于配制标准溶液和待测溶液。

- 硫酸铜溶液:用于制备标准溶液。

- 巯基乙酸钠溶液:用于还原铜离子形成可测定的络合物。

- 酒精:用于清洗实验仪器。

2. 实验步骤:a. 配制标准溶液:取适量硫酸铜溶液,稀释至一定体积,得到含有已知浓度的标准溶液。

b. 准备待测溶液:取待测样品,加入适量巯基乙酸钠溶液,还原铜离子生成络合物。

c. 测定吸光度:使用分光光度计,设置合适的波长,分别测定标准溶液和待测溶液的吸光度。

d. 绘制标准曲线:将标准溶液的吸光度和对应浓度绘制成曲线,以便后续计算待测溶液中铜的含量。

e. 计算待测溶液中铜的含量:根据标准曲线,通过待测溶液的吸光度确定其铜的浓度。

实验结果与分析:通过以上实验步骤,我们测定了多个不同浓度的标准溶液,并绘制了标准曲线。

利用该曲线,我们测定了待测溶液的吸光度,并计算出其铜的含量。

实验数据表明,标准曲线呈现良好的线性关系,吸光度与铜的浓度之间存在明显的正相关性。

这表明所采用的分光光度法具有较高的准确性和可靠性,能够有效测定水中铜的含量。

讨论与结论:本实验使用分光光度法成功测定了水中铜的含量。

通过标准曲线的绘制和待测溶液的吸光度测定,我们得出了较为准确的铜含量数据。

然而,实验中仍存在一些潜在的误差来源。

首先,实验操作中可能存在仪器误差和人为误差,如光度计的读数误差和试剂的使用不精确等。

其次,样品的准备和保存条件也可能对实验结果产生影响。

为了提高实验结果的准确性,可以采取以下措施:严格控制实验操作的准确性和一致性,定期校准仪器,使用高纯度试剂,避免样品受到外界污染等。

真空检测管-电子比色法快速测定水中铜离子

真空检测管-电子比色法快速测定水中铜离子

真空检测管-电子比色法快速测定水中铜离子导言:水是生命之源,而水中的铜离子则是我们生活中常见的重金属离子之一。

水体中的铜离子超标会对人体健康造成不良影响,因此对水中铜离子含量进行快速准确的检测尤为重要。

而真空检测管-电子比色法是一种快速测定水中铜离子含量的方法,本文将详细介绍这一检测方法的原理、过程和应用。

一、真空检测管-电子比色法的原理真空检测管-电子比色法是一种利用光谱分析技术测定溶液中金属离子含量的方法。

其原理简单来说就是利用金属离子与某种试剂形成色彩复合物,再通过光谱仪器对这种复合物进行测定。

在该方法中,电子比色仪能够通过吸收光谱分析得到试液中金属离子的浓度,从而实现对水质中铜离子含量的准确测定。

二、真空检测管-电子比色法的操作步骤1. 准备样品首先需要将采集的水样进行样品制备处理,去除混浊物质,然后通过过滤或离心等方法获得清澈的水样溶液。

2. 试剂配置根据检测需要,配置好所需的试剂溶液,通常选择电子比色法专用的铜分光光度计试剂进行配制。

3. 样品处理取一定量的水样溶液,加入适量的试剂溶液进行反应,形成铜离子与试剂的色彩复合物。

4. 电子比色测定将处理好的样品溶液置于电子比色仪中,通过吸收光谱分析仪器测定其吸光度值,并据此计算出水中铜离子的含量。

5. 结果判定根据测定结果,对水质中铜离子的含量进行评定,并据此来进行相应的水质处理。

三、真空检测管-电子比色法的优势1. 快速准确:真空检测管-电子比色法具有快速准确的特点,可以在短时间内获取水样中铜离子的含量数据,从而及时评估水质安全。

2. 操作简便:该检测方法操作简便,不需要复杂的仪器和操作步骤,只需经过简单的样品处理和试剂配置即可进行测定。

3. 灵敏度高:真空检测管-电子比色法对水样中铜离子含量的测定具有较高的灵敏度和准确度,能够满足对水质安全的严格要求。

四、真空检测管-电子比色法在水质监测中的应用真空检测管-电子比色法广泛应用于水质监测领域,尤其是对水中重金属离子的测定。

真空检测管-电子比色法快速测定水中铜离子

真空检测管-电子比色法快速测定水中铜离子

真空检测管-电子比色法快速测定水中铜离子一、引言目前,电子比色法被广泛应用于水中重金属离子的测定中。

其原理是利用金属离子与特定试剂形成显色络合物,通过测量络合物的吸光度来间接测定金属离子的含量。

而真空检测管则是电子比色法中的一种快速准确的检测工具,其具有检测速度快、准确性高、操作简便等特点。

二、实验原理1. 电子比色法原理电子比色法是一种利用光学测量金属离子含量的方法。

其原理是通过金属离子与特定试剂形成显色的络合物,再根据络合物的吸光度来间接测定金属离子的含量。

一般来说,共价键络合物的吸收最常用的区域是紫外-可见光区域,即200-800nm。

根据试剂和金属络合物的吸收特性,我们可以选择合适的波长进行测量。

通过比较标准曲线或者校准曲线来确定金属离子的含量。

2. 真空检测管原理真空检测管是一种通过溶液对空气进行置换,迅速形成负压,然后将试剂吸入的一种设备。

这种快速形成真空的方法有点类似打电话时快速吸气,形成负压的原理。

通过真空检测管,可以迅速完成试剂与水样中金属离子形成显色络合物的反应过程,并使反应物充分混合。

相比于传统的手工操作,真空检测管可以极大地提高实验效率,同时减少了操作中的误差。

三、实验步骤1. 样品处理将水样取一定量置于容器中,样品处理可以通过前处理方法进行,如离心、过滤、上样处理等。

确保取样的准确性和可靠性。

2. 样品分析将处理好的水样取一定量加入到真空检测管中,然后添加适量的铜离子试剂。

通过真空检测管快速形成真空,使试剂与水样充分混合,并形成显色的络合物。

然后将真空检测管放入光度计中,在特定波长下测量络合物的吸光度。

3. 数据处理将测得的吸光度值代入标准曲线中进行计算,得出水样中铜离子的含量。

四、实验结果及讨论1. 实验数据精准通过对不同浓度的铜离子水样进行测定,实验结果表明该方法准确性高。

在测定过程中,真空检测管能够迅速将试剂与水样进行充分混合并形成显色的络合物,充分保证了试剂与水样的接触质量。

DPV法测定水中铜离子的含量

DPV法测定水中铜离子的含量

微分脉冲伏安法(DPV)测定水中铜离子的含量一实验目的:学习微分脉冲伏安法(DPV)的基本原理和操作技术掌握利用DPV测定水中铜离子的过程和实验现象二实验原理根据溶液的电化学性质及其变化来确定溶液中某物质的量的方法称为电化学分析方法,以电位,电流,电导和电量等电学参数与被测物质含量之间的关系作为其计量的基础。

以测量电解过程中所得电流-电位(电压)曲线进行测定的方法称为伏安法。

DPV是在经典的伏安分析基础上发展起来的,对工作电极施加一线性变化的直流电压上,并用时间控制器同步在间隔一定时间后叠加上一振幅为5-100mV,持续时间为40-80ms 的矩形脉冲电压,并且采用两次电流取样的方法,记录脉冲加入前20ms和脉冲终止前20ms时的电流差值,该值在直流极谱波的半波电位ф1/2处最大(峰值)Δi max,脉冲时间较长,可使充电电流得到充分的衰减,降低背景电流,从而提高测定的灵敏度。

根据Δi max =(Z2F2/4RT) AD1/2(πt)-1/2(ΔE)*C=KC就可获得物质的量。

在醋酸缓冲液中,微量Cu2+→←Cu+→←Cu峰电位约在-0.1V处,若铜含量加大,则可能又在约-0.4V处有第二个峰出现。

铜含量在一定范围内,峰电流与之有线性关系。

三仪器和试剂电化学分析仪(CHI710,CHI630),微量进样器磁力搅拌器,转子。

三电极体系(玻碳工作电极,甘汞参比电极,铂对电极),烧杯(电解池),0.1mol·L-1Hac-NaAc缓冲液(pH=3.75),0.001000mol·L-1铜标液,二次蒸馏水四实验内容和步骤1 电极预处理:用砂纸打磨工作电极至成镜面,以超声波依次在1 mol·L-1硝酸1mol·L-1碱NaOH和二次水中超声洗涤,晾干待用2先打开主机电源预热,准确移取15.00mL 缓冲液(底液)于电解池中,接好电解池上(三电极体系),启动计算机,点击桌面上的电分析快捷键进入该操作系统。

络合滴定法测定铜含量

络合滴定法测定铜含量

络合滴定法测定铜含量
络合滴定法是一种常用于测定金属离子含量的分析方法。

在络合滴定法测定铜含量中,常使用EDTA(乙二胺四乙酸)作为络合剂。

以下是步骤:
1. 准备样品:将待测溶液取一定体积,放入容器中。

2. 加入指示剂:将少量的络合指示剂(例如:二甲啉紫)加入待测溶液中。

该指示剂与Cu2+离子可以形成稳定的络合物,溶液将呈现出特定的颜色。

3. 滴定操作:用标准EDTA溶液进行滴定,溶液中EDTA络合剂与Cu2+离子发生化学反应。

铜离子与EDTA的1:1配位形成稳定的络合物。

4. 边滴定边搅拌:在加入EDTA溶液的过程中,通过搅拌均匀溶液,以促进反应的进行。

5. 判定终点:利用络合指示剂的颜色变化来判断滴定终点。

当底物被完全络合,并且过量的EDTA与金属离子形成一个稳定络合物后,溶液的颜色将发生明显的变化。

一般来说,指示剂的颜色会从紫色变为蓝色。

6. 计算铜离子含量:根据滴定过程中所使用的EDTA溶液的体积,以及EDTA与铜离子的配位比例,可以计算出待测溶液中铜离子的浓度。

以上是使用络合滴定法测定铜含量的基本步骤。

在实际操作中,还需要控制滴定速度、准确测量液体体积等因素,以获得准确的结果。

分光光度法测定铜离子含量

分光光度法测定铜离子含量

分光光度法测定铜离子含量你得知道,铜离子啊,其实在很多日常生活中都有用处。

就像那种被大家熟悉的“铜水管”,其实铜元素在工业、农业,甚至医学上都有着举足轻重的地位。

可问题是,铜离子在环境中的含量如果过多,就会对水源、土壤造成污染,这可不是什么小事。

所以,了解铜离子的含量就显得尤为重要。

而分光光度法,就是一种非常实用的检测方法,它能帮我们准确地量出水里、土里,甚至空气中铜离子的浓度。

要说分光光度法,咱们首先得了解一下什么是“光度”吧。

光度,顾名思义,就是光的强度。

那啥是分光呢?其实很简单,分光就是把光给拆开,分成不同波长的成分。

你就可以想象一束白光照进一根棱镜,啪啦一下,分成了七个彩虹色。

科学家们就是通过分析不同波长的光是如何被样品吸收的,来判断其中含有什么物质,含量多少。

是不是觉得不难?其实这原理就像是你用一只滤镜看世界,那个滤镜会把不同颜色的光“拦”下来,剩下的就是你眼睛能看到的部分。

那么回到我们的铜离子,为什么要用分光光度法呢?嘿,原因很简单。

铜离子有个特别的本领,就是它能吸收某一特定波长的光。

换句话说,你给它一束特定颜色的光,它就会吸收掉一部分,剩下的光被反射回来,我们就能测得它的浓度。

听起来是不是有点儿像“变魔术”?其实就是这么神奇。

测量的时候,首先得准备一堆设备。

比如,分光光度计,这个东西看起来就像个神奇的盒子,能精准地发射不同波长的光,并且能测量样品吸收的光量。

然后呢,还得准备一些化学试剂,通常是能够与铜离子反应,生成一个颜色明显变化的化合物。

就像你手上有一支颜料盒,涂什么颜色都能看得清清楚楚。

因为铜离子和这些试剂反应后会生成一种深蓝色的复合物,颜色越深,说明铜离子的浓度越高。

通过比较标准溶液的颜色,我们就能算出样品中铜离子的含量。

说到这里,你可能有点疑问了:那光怎么能准确地告诉我们铜离子的含量呢?嗯,别急,接下来说说“比色法”的原理。

其实很简单,就是通过比色来判断浓度。

你想啊,浓度高了,溶液就会变得更深,光被吸收得也就更多。

水体中铜离子的含量测定111

水体中铜离子的含量测定111

循环伏安法测定溶液中金属离子浓度及电极表面积环科112班刘昂2104391112391目录一前言二实验测电极面积1实验目的.................................................. 错误!未定义书签。

2.实验原理.................. .................. .. (2)2.1 循环伏安法基本原理...................................... 错误!未定义书签。

2.2.1 线性扫描伏安法 (3)2.2.2 循环伏安法 (4)3 仪器和试剂 (4)4 实验步骤 (5)4.1 实验预处理及实验仪器操作........................ 错误!未定义书签。

4.2 数据及图像处理 (8)4.3 实验中出现的问题及解决办法 (8)5 结论.................. .................. (9)三活动收获四附件一活动日志附件二测溶液中铜离子浓度实验报告前言:根据线性扫描伏安法与循环伏安法的基本原理, 采用电化学中典型的K3[Fe(CN)6]电化学可逆系统,测量电极的峰电位,从而确定电极的粗糙度1.实验目的金属电极表面用肉眼观察是光滑的,但在显微镜下观测是非常粗糙的,电极表面一般呈现多晶状态,膜层本身由许多小晶粒构成,其表面粗糙度与晶粒尺寸相当。

多数情况下晶粒尺寸为几十至几百纳米,这也就是金属电极表面粗糙度的峰-峰值。

当金属电极的尺寸和间距较大时,电极表面粗糙度对器件性能的影响可以忽略。

但是,随着电化学技术的不断发展,电极表面粗糙度对器件的电流密度、析氢超电势、电容、电子传导率、表面能、等效面积、峰值电场、表面张力和薄膜电阻等参数具有重要的影响。

例如:①电极表面粗糙度越大,那么电极的电流密度越大,电流密度过高会产生不理想后果。

因为大多数电导体的电阻是有限的正值,会以热能的形式消散功率,为了要避免电导体因过热而被熔化或发生燃烧,并且防止绝缘材料遭到损坏,电流密度必须维持在过高值以下。

水质铜的测定分光光度法.pdf

水质铜的测定分光光度法.pdf

附件十三:水质铜的测定分光光度法方法1 2,9-二甲基-1,10-菲啰啉分光光度法 2,9-Dimethy-1,10-phenanthroline spectrophotometric method 方法2 二乙基二硫代氨基甲酸钠分光光度法 Sodium diethydlthiocabamate spectrophotometric method(征求意见稿)编 制 说 明沈阳市环境监测站2008年3月编制说明一、任务来源2006年国家质检总局(国质检财函[2006]909号)和2007年国家质检总局(国质检财函[2007]971号)下达了《水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法》(GB 7473-1987)和《水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法》(GB 7474-1987)国家环保标准制修订计划,项目统一编号分别为1175和1178,由沈阳市环境监测站承担。

二、 国内外标准概况铜是一种分布很广的微量元素,地壳中铜的平均丰度为55ppm。

在自然界中,铜主要以硫化物矿和氧化物矿形式存在,分布很广。

铜是生命所必需的微量元素,参与酶催化功能,也是人体血液、肝脏和脑组织等铜蛋白的组成部分,成人每日的需要量估计为20mg,但过量的铜对人和动、植物都有害。

铜的化合物以一价或二价状态存在。

在天然水中,溶解的铜量随 pH 值的升高而降低。

pH值6~8时,溶解度为50~500 μg/L。

pH值小于7时,以碱式碳酸铜( Cu2(OH)2CO3)的溶解度为最大;pH值大于7时,以氧化铜(CuO)的溶解度为最大,此时,溶解铜的形态以Cu2+,CuOH+为主:pH值升高至8时,则Cu(CO3)22-逐渐增多。

水体中固体物质对铜的吸附,可使溶解铜减少,而某些络合配位体的存在,则可使溶解铜增多。

世界各地天然水样品铜含量实测的结果是:淡水平均含铜3μg/L,海水平均含铜0.25μg/L。

在冶炼、金属加工、机器制造、有机合成及其他工业的废水中都含有铜,其中以金属加工、电镀工厂所排废水含铜量最高,每升废水含铜几十至几百毫克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二乙胺基二硫代甲酸钠测污水中的铜含量
一、测定方法:二乙胺基二硫代甲酸钠萃取光度法
二、方法原理
在氨性溶液中(PH9—10),铜与二乙胺基二硫代甲酸钠作用,生成摩尔比为1:2的黄棕色络合物,该络合物可被四氯化碳或氯仿萃取,其最大的吸收波长为440nm,在测定条件下有色络合物可稳定1h,其摩尔吸收系数为1.4.
三、适用范围
本方法的测定范围为0.02—0.60mg/L,最低检出浓度为0.01mg/L,经适当稀释和浓缩测定上限可达2.0mg/L。

用于地面水及各种工业废水中铜的测定。

四、仪器:分光光度计、恒温电热器。

五、试剂:
5.1 盐酸、硝酸、氨水,一级纯。

5.2 四氯化碳。

5.3 1:1氨水。

5.4 0.2%(m/v)二乙胺基二硫代甲酸钠溶液
称取0.2g二乙基二硫代氨基甲酸钠溶于水中并稀释至100ml。

用棕色玻璃瓶贮存,放在暗处,可以保存两周。

5.5 甲酚红指示液(0.4g/L):
称取0.02g试剂溶于95%乙醇50ml中。

5.6 EDTA—柠檬酸铵溶液:
称取5gETDA(乙二铵四乙酸二钠)和20g柠檬酸三铵溶于水中并稀释至100ml,加入4滴甲酚红指示液,用1:1氨水调至PH8—8.5,加入5ml 0.2%(m/v)二乙胺基二硫代甲酸钠溶液,用四氯化碳萃取4次,每次用量20mL。

5.7 铜标准贮备溶液:
准确称取1.000g金属铜(99.9%)置于150ml烧杯中,加入20ml(1:1)硝酸,加热溶解后,加入10ml(1:1)硫酸并加热至冒白烟,冷却后加水溶解并转入1000ml容量瓶中,用水定容至标线,此溶液中1.00ml含铜1.00mg。

5.8 铜标准溶液:
从铜标准贮备溶液中取5mL溶液用水稀释至1000mL,此溶液中1.00ml含铜5.00μg。

六、操作步骤:
6.1 空白试验:取50mL的去离子水,按6.2~6.6步骤,随同试样做平行操作,得出空白试验的吸光度。

6.2 取50ml酸化的水样置于150ml烧杯中,加入5ml硝酸,在恒温电热器上加热消解并蒸发至10ml左右。

稍冷后再加入5ml硝酸和1ml过氧化氢,继续加热消解,蒸发至近干,加水40ml,加热煮沸3min,冷却,将试液转入50ml容量瓶中,用水稀释至标线(若有深沉,应过滤除去)。

6.3在消解后的试样中加入10 ml EDTA柠檬酸铵溶液,2~3滴甲酚红指示液,用(1:1)氨水调至由红色经黄色变成紫色(颜色根据标样的颜色一致),调PH8.0—8.5。

6.4 将容量瓶中溶液转入125ml的分液漏斗中,加入0.2%二乙胺基二硫代甲酸钠溶液5ml,摇匀,静置5min。

6.5 准确加入10ml四氯化碳,用力振荡不少于2min(若用振荡器振荡,应不少于4min)静置待分层。

6.6 将有机相放入干燥的比色皿中,以四氯化碳作参比,于440nm波长处测吸光度,比色皿
应先后用四氯化碳、有机相清洗一下。

6.7 将测得的吸光度扣除空白试验的吸光度,从工作曲线上查得铜的含量。

七、绘制标准曲线
于8个分液漏斗中,分别加入0ml 、0.20ml 、0.50ml 、1.00ml 、2.00ml 、3.00ml 、5.00 ml 、6.00ml 铜标准使用溶液,加水至体积50ml ,配成一组标准系列溶液,按6.2~6.5操作步骤测量各标准溶液的吸光度,以相应的铜含量和吸光度绘制工作曲线。

八、计算
铜的浓度C (mg/L )由以下公式计算:
5)()()/(⨯=ml V g M L mg C μ
m —由校准曲线查得的铜量(g μ)。

V —萃取用的水样体积(ml ),即50ml 。

5—1.00ml 铜标准溶液中含铜5.00μg 。

九、注意事项
9.1 为了防止铜离子吸附在采样容器上,采样后样品应尽快进行分析,如果需保存,样品应立即酸化至PH<2,通常每100ml 样品加入(1:1)盐酸0.5ml 。

9.2 分液漏斗的活塞不得涂抹油性润滑剂,因润滑剂溶于有机溶剂会影响铜的测定。

9.3试验过程中应戴好防护手套和防护口罩,并保持室内通风良好。

9.4 分光光度计在测量之前,应先预热30分钟,待仪器稳定之后方可测量。

相关文档
最新文档