《勾股定理》说课 ppt课件
合集下载
勾股定理数学优秀ppt课件

实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理公开课PPT课件

国清末数学家华蘅芳就提供了二十多种精彩的证法。
在这数百种证明方法中,有的十分精彩,有的十分简洁,
有的因为证明者身份的特殊而非常著名。
现在在网络上看到较多的是16种,包括前面的6种,还有:
欧几里得证明、
利用相似三角形性质证明、
杨作玫证明、
李锐证明、
利用切割线定理证明、
利用多列米定理证明、
作直角三角形的内切圆证明、利用反证法证明、
编辑版pppt
C Aa c
b B
SA+SB=SC探
SA=a2 索
SB=b2 勾
SC=c2 股
a2+b2=c2
定 理
猜想
7
编辑版pppt
如果直角三角形的两条直角边
长分别为a,b,斜边长为c,那么 探
c2=a2+b2.
索
勾
勾a
c弦 股 定
b股
理
试一试?
8
编辑版pppt
请利用此图象,证明勾股定理 :
a2+b2=c2
角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段
话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
编辑版pppt
13
勾股定理,想得再多一点
如图,受台风莫拉克影响,一棵树在离地面4 米处断裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?
4米
3米
编辑版pppt
勾股定理说课PPT

教学设计
勾股定理
目录
1 教材分析 学情分析 教法学法
1 教学手段 教学过程 板书设计
教材分析
作用与地位 教学目标 教学重难点
地位与作用
直角三角形两个锐
角互余等性质
乐学 会学
善学 志学
承上 启下
一元二次方程 解三角形等
知识与技能
教学目标
理解并掌握勾股定理的证明过程,能灵活运用勾股定 理解决生活实际问题。
过程与方法
通过观察,提出猜想,并通过求拼接图形的面积求 验证猜想。
情感态度与价值观
发学生学习数学的兴趣,树立学习数学的自信心。 通过动手操作,合作交流,培养学生的合作意识
重点 难点
教学重点
勾股定理的内容及证明
勾股定理的证明
知标识题上
学情分析
能标力题上
情标感题上
思标维题上ห้องสมุดไป่ตู้
欠标缺题上
学生已经学习过完全 平方公式并具有一定 的运算能力
创设情景引入
探索新知
灵活运用
课堂小结
作业布置
创设情景导入
求树在未折断前有多高?
探究新知
观察发现
提出猜想
动手操作
猜想验证
观察发现
以等腰直角三角形两直角边为边长的小正方形的面 积之和,等于以斜边为边长的大正方形的面积
等腰直角三角形斜边的平方等于两直角边的平方和
提出猜想
猜想:如果直角三角形的两条直角边长分别为a, b, 斜边为为c,那么a²+b²=c²
学生具有一定的合情 推理,观察图形,发 现规律的能力
学生好奇心强,乐于 探究
学生处于形象思维与 抽象思维的过渡期
学生还未具有完全的 独立证明能力
勾股定理
目录
1 教材分析 学情分析 教法学法
1 教学手段 教学过程 板书设计
教材分析
作用与地位 教学目标 教学重难点
地位与作用
直角三角形两个锐
角互余等性质
乐学 会学
善学 志学
承上 启下
一元二次方程 解三角形等
知识与技能
教学目标
理解并掌握勾股定理的证明过程,能灵活运用勾股定 理解决生活实际问题。
过程与方法
通过观察,提出猜想,并通过求拼接图形的面积求 验证猜想。
情感态度与价值观
发学生学习数学的兴趣,树立学习数学的自信心。 通过动手操作,合作交流,培养学生的合作意识
重点 难点
教学重点
勾股定理的内容及证明
勾股定理的证明
知标识题上
学情分析
能标力题上
情标感题上
思标维题上ห้องสมุดไป่ตู้
欠标缺题上
学生已经学习过完全 平方公式并具有一定 的运算能力
创设情景引入
探索新知
灵活运用
课堂小结
作业布置
创设情景导入
求树在未折断前有多高?
探究新知
观察发现
提出猜想
动手操作
猜想验证
观察发现
以等腰直角三角形两直角边为边长的小正方形的面 积之和,等于以斜边为边长的大正方形的面积
等腰直角三角形斜边的平方等于两直角边的平方和
提出猜想
猜想:如果直角三角形的两条直角边长分别为a, b, 斜边为为c,那么a²+b²=c²
学生具有一定的合情 推理,观察图形,发 现规律的能力
学生好奇心强,乐于 探究
学生处于形象思维与 抽象思维的过渡期
学生还未具有完全的 独立证明能力
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理说课ppt课件

如果直角三角形的两条直角边 长分别为a,b,斜边长为c,那么 c2=a2+b2.
a
b
c
这是2002年在北京召开的国际 数学家大会会场,这是最高水 平的全球性数学学术会议,会 徽是赵爽弦图,在三世纪,我 国汉代赵爽用此图证明了勾股 定理.
表现了我国古人对数 学的钻研精神和聪明 才智,是我国古代数 学的骄傲。
用面积法等方法证明勾股定理
教法学法分析
教学方法:
本节课选择“引导探索法”,采用“问题境 情— 探索交流—猜想验证—建立模型”的模 式安排教学,由浅到深,由特殊到一般的提出 问题。引导学生自主探索,合作交流,让学生 通过观察、分析、讨论、操作、归纳,理解定 理,提高学生动手操作能力,以及分析问题和 解决问题的能力。
毕达哥拉斯(公元前 572—前497年),古希 腊著名的哲学家、数学 家、天文学家.
黑 白 相 间 的 地 砖
你能发现下图中的正方形A、B、C面积有什么关系 吗?三角形三边a,b,c之间又有何关系?为什么? 面积关系:
C
c
a b
SA+SB=SC
A
三边关系: a2+b2=c2
B
动手画一画
• 在你的练习本上画△ABC,使 ∠C=90°,AC=3㎝,BC=4㎝.并量 出斜边AB的长。三边之间有怎样 的数量关系?
【情感态度与价值观】
(1)通过探索勾股定理,培养学生积极参 与、合作交流的意识。 (2)通过对勾股定理历史的了解,感受数 学文化,激发学习热情。通过介绍中国古 代勾股方面的成就,激发学生热爱祖国和 热爱祖国悠久文化的思想感情,培养学生 的民族自豪感和钻研精神。
重点难点分析
教学重点 勾股定理的证明与运用 教学难点
勾股定理ppt课件

体会数形结合的思想。(重点)
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
勾股定理ppt课件

B 图2-1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结
果的?与同伴交流交流。
C A
S正方形c
B C
图2-1
A
413318 2
B
(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个直 角边为整数的三角形
(1)若a=3, b=4,求c的长(2)若a=5, c =12,求b的长
(3)若a:b=3:4,c=15,求a,b的长
练习 (1)在直角△ABC中,∠A=90° a=5,b=4,则求c的值?
(2) 在直角△ABC中,∠B=90°, ①a=3, b=4,则求c的值? ②c =24,b=25,则求a的值?
x622232 42
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
快 方法小结: 可用勾股定理建立方程.
!
1、如图,一个高3 米,宽4 米的大门,需在相
对角的顶点间加一个加固木条,则木条的长
为
( C)
A.3 米 B.4 米 C.5米 D.6米
3 4
2、湖的两端有A、B两点,从与BA方向成直
≈4.96(米)
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
做一做:
A
625
P
《勾股定理》数学教学PPT课件(10篇)

= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说空 无只阳 鞭 论的 ?老点最 呼
早照 颜怕晒 式课 师的后 老
早, 见先, ?堂 的难没 师
早花 爹生也
, 教点有 ?
儿 娘骂不
是 学,总
对 我怕
讲 方你结
”我 笨那
座 法是一
”,
2020/12/27
4
地位与作用
➢位于华东师大版八年级下册数学第十四章
中。
➢直角三角形的一条非常重要的性质,几何
中最重要的定理之一。它揭示了一个三角形
2.【过程与方法】
在探索勾股定理的过程中,让学生经历“观察-猜想 -归纳-验证”的数学思想,并体会数形结合和从特 殊到一般的思想方法。
3.【情感态度与价值观】
通过介绍中国古代勾股方面的成就,激发学生热爱 祖国和热爱祖国悠久文化的思想感情,培养学生的 民族自豪感和钻研精神。
2020/12/27
6
勾股定理的探索过程 勾股定理的证明
三条边之间的数量关系,它是可以解决直角
三角形的主要依据之一,在实际生活中用途
很大。
➢教材在编写时注意培养学生的动手操作能
力和观察分析问题的能力;通过实际分析、
拼图等活动,使学生获得较为直观的印象;
通过联系比较,理解勾股定理,以便于正确
的进行运用。
2020/12/27
5
1.【知识与技能】
①理解并掌握勾股定理的内容和证明,能够灵活运 用勾股定理及其计算; ②通过观察分析,大胆猜想,并探索勾股定理,培 养学生动手操作、合作交流、逻辑推理的能力。
2020/12/27
13
证明勾股定理:证明该命题的方法有很多,先让学 生进行讨论回答。展示分割拼接的过程,展示拼图 出的效果,鼓励学生代表作示范演示,然后介绍古 代数学家赵爽的的证明方法,老师通过准备的PPT进 行演示。
2020/12/27
14
1.出示题目①在△ABC中,∠C=900,AC=21m,BC=28m.
后拼接成一个正方形吗?如果可以,那么所得到的新正
方形的边长为多少呢?
2020/12/27
15
引导学生进行总结,梳理学习思路,培养 学生独立自主小结及完成作业的习惯。
最后以观察该张动图结束本节课内容。
2020/12/27
16
著名特级教师华应龙曾说过:板书是教学 设计构思的 艺术结晶,是数学知识的高度凝练和浓 缩。简洁明了的板书设计,突出了重、难点,使学生 对本课所学的知识有更加全面深刻的认识。总之,整 个教学过程,我始终遵循“学生为主体,教师为主导” 的原则,以问题为核心,全面互动,让学生在轻松、 和谐的学习氛围中,积极主动地探索新知,展现自我, 发掘潜能,学会学习。我相信通过这样的教学,一定 可以达到突出重点,突破难点,实现学习再创造,使 每个学生都得到个性化发展的目的。
《》
2020/12/27
13数应师范 XXX
1
说教材 说教法、学法
说教学过程
2020/12/27
2
2020/12/27
3
精品资料
• •
•
• •
…… •
……
笑“ 没风“ 教 式你 需否节如 你
,太 有雨不 师 还所 要会课果 怎
小阳 学狂怕 的 是经 改认的老 么
鸟当 问,太 教 讨历 进为重师 称
2020/12/27
7
1、以自学辅导为主,充分发挥教师的主导作用, 运用各种手段激发学生学习欲望和兴趣,组织学生 活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,提高学生动手操作 能力,以及分析问题和解决问题的能力。 3、通过让学生动手拼图,然后演示拼图过程,引 导学生观察、操作、分析、证明,使学生得到获得 新知的成功感受,从而激发学生钻研新知的欲望。
2020/12/27
8
故事场景 发现新知 规律猜想 直达快车
创设情境 激发兴趣 深入探究 网络信息
数字验证 拼图效果
实践应用 拓展提高
回顾小结 整体感知
2020/12/27
9
还记得在2002年北京召开的国际数 学大会吗?在那个大会上,随处可见一个优 美的图案在流动,这个远看像旋转的的纸风 筝的图案就是大会的会标。
i 求△ABC的面积
ii斜边AB的长
iii 求高CD.
引导学生进行解决问题
②媒体课件演示FLASH小动画片:某楼房三楼失火,消防
员赶来救火,了解到每层楼高3米,消防员取来6.5米长
的云梯,如果梯子底部离墙基距离为2.5米。问:消防员
能否进入三楼救火?
布置作业
试一试:你能把两个边长分别为5、12的正方形经过切割
2020/12/27
17
2020/12/27
2020/12/27
11
要求学生利用网格画一个两直角边分别 为2、3的三角形,用不同的方法求面积,以 及探究直角三角形三边存在的关系。
(2+3)2-4*1/2*2*3=13=22+32 或4*1/2*2*3+1=13
利用正方形网格让学生感知其的实用性及便 捷性。
2020/12/27
12
2
由上面探究我们可以得出在直角三角形中,两直角 边的平方和等于斜边的平方。由此提出命题:如果 一个三角形是直角三角形,那么其两直角边的平方 和等于斜边的平方。分析并根据命题画图,写出已 知和求证。画图:a2+b2=c2。联想到用字母表示数字 的方法,贯彻代数的应用思想。
2020/12/27
10
1、毕达哥拉斯是古希腊著名数学家。相传在2500年 以前,他在朋友家做客时发现朋友家用地砖蒲城地面 反映了直角三角形三边的某种数量关系。讲述故事并 展示图片。引导学生分析情景,并提出“你是如何观 察这张图的?”的问题。引导学生进入学习状态。2、 开展分组活动,让学生进行剪切、拼图。(由正方形 的边长关系到等要直角三角形)将所得到的关联起来 从而实现真正意义上的发现——他们之间存在的面积 关系。