2018-2019学年浙江省台州市椒江区人教版九年级(上)期末数学试卷
人教版2018-2019学年初三数学第一学期期末试卷及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。
2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。
2018-2019学年新人教版九年级上册期末数学试卷(含答案解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x +3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x +3)2+1的对称轴直线是该图象的顶点坐标的横坐标, ∴抛物线的对称轴是直线x=﹣3;故选:D .【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .4.在下图中,反比例函数的图象大致是( )A .B .C .D .【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k >0,反比例函数图象在第一、三象限;∴在每个象限内,y 随x 的增大而减小.故选:D .【点评】本题考查了反比例函数图象的性质:①k <0,反比例函数图象在第二、四象限,在每个象限内,y 随x 的增大而增大;②k >0,反比例函数图象在第一、三象限,在每个象限内,y 随x 的增大而减小. 5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是( ) A .必然事件B .不可能事件C .随机事件D .概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C .【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
台州市椒江区2018-2019学年初三第一学期期末考数学试卷(解析版)

台州市椒江区2018学年第一学期期末考试九年级数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的)1.下列手机手势解锁图案中,是中心对称图形的是( )A. B. C. D.【答案】B.【答案】D.3. 下列说法中错误的是( )A. 概率很小的事件不可能发生B. 不可能事件发生的概率为0C. 随机事件发生的概率大于或等于0且小于或等于1D. 必然事件发生的概率为1 【答案】A.4.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A. (1,0)B. (-1,2)C. (0,0)D. (-1,1)【答案】B .5.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?设主干长出x 个支干,每个支干有x 个小分支,由题意,所列方程正确的是( )A. 11112=++x xB. 1112=+x xC. 11112=+xD. 1112=x【答案】A .6.如图,A 、B 两点在双曲线上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S1+S2等于( )A. 4B. 4.2C. 4.6D. 5【答案】C7. 小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:下面有四个推断:①当移植的树数是1 500时,表格记录成活数是1 335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000棵这种树苗,则可能成活9 000棵;④若小张移植20 000棵这种树苗,则一定成活18 000棵.其中合理的是( )A. ①③B. ①④C. ②③D. ②④【答案】C8. 如图,点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BIC =125°,则∠BOC 的度数为( )A. 110°B. 125°C. 130°D. 140°【答案】D .9. 二次函数y =ax2+bx +c(a≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③21a ;④b>1.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个【答案】B .10. 如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC =33cm ;③扇形OCAB 的面积为12π;④四边形ABOC 是菱形.其中正确结论的序号是( )A. ①③B. ①②③④C. ②③④D. ①③④【答案】D.二、填空题(本大题共6个小题,每小题5分,共30分)11.边长为4的正六边形内接于圆M,则圆M的半径是___________.【答案】4【解析】如图所示,连接OB、OC;∵此六边形是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=OC=BC=4.12.在平面直角坐标系xOy中,若点B与点A(-2,3) 关于点O中心对称,则点B 的坐标为________. 【答案】(2,3)【解析】∵点A(-2,3)与点A关于原点O中心对称,∴点B 的坐标为:(2,-3).故答案为:(2,-3).13. 圆锥的底面半径是40cm ,母线长90cm ,它的侧面展开图的圆心角是________.【答案】160°【解析】圆锥的底面圆的周长为2π×40cm=80πcm ,设圆锥的侧面展开图的圆心角是n °,则80π=18090⨯⨯πn ∴n=160°故答案为:160°14.将抛物线161222+-=x x y 绕它的顶点旋转180°,所得抛物线的解析式是________或________ 【答案】2)3(22---=x y 【解析】∵抛物线2)3(21612222--=+-=x x x y , ∴将抛物线161222+-=x x y 绕它的顶点旋转180°, 所得抛物线的解析式是2)3(22---=x y ,即201222-+-=x x y , 故答案为:201222-+-=x x y15.如图,在平面直角坐标系中,已知点A (-4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(2)个三角形的直角顶点的坐标是________,第(2018)个三角形的直角顶点的坐标是________.【答案】(512544,);(512548068,) 【解析】∵点A(-4,0),B(0,3),∴OA=4,OB=3,∴AB=2234 =5,∴第(2)个三角形的直角顶点的坐标是(512,544,);∵5+3=1余2,∴第(5)个三角形的直角顶点的坐标是(512,5416,), ∵2018+3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(512548068,) 故答案为:(512544,);(512548068,)16. 如图,在△ABC 中,∠ACB =90°,D 为边AB 的中点,E 、F 分别为边AC 、BC 上的点,且AE =AD ,BF =BD .若DE =2,DF =2则∠EDF =________°,线段AB 的长度=________.2【答案】45;5【解析】如图,延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N.∵∠C=90°,∴∠BAC+∠B=90;∵AE=AD,BF=BD∴∠AED=∠ADE,∠BDF=∠BFD,∴2∠ADE+∠BAC=180°,2∠BDF+∠B=180°∴2∠ADE+2∠BDF=270°∴∠ADE+∠BDF=135°∴∠EDF=180°-(∠ADE+∠BDF)=45°∵∠END=90°,DE=2√2∴∠EDN=∠DEN=45°,∴EN=DN=2,在△DAM和△DBF中,DA=DB∠ADM=∠BDF,DM=DF∴△ADM ≌△BDF,∴BF=AM=BD=AD=AE∠MAD=∠B,∴∠MAE=∠MAD+∠BAC=9Q °∴EM=√2AM,在RT △EMN 中,∵EN=2,MN=DM+DN=6,∴EM=√EN2+MN2=2√10,∴AM=2√5,AB=2AM=4√5故答案为4√5三、解析题(本题共8小题,共80分,解析应写出必要演算步骤,文字说明或证明过程)17.已知m 是方程032=-x x 的一个根,求)2)(2()3(2-++-m m m 的值. 【答案】)2)(2()3(2-++-m m m 5= 【解析】∵m x =是方程032=-x x 的一个根,∴032=-m m , ∴)2)(2()3(2-++-m m m =49622-++-m m m =5622+-m m =5)3(22+-m m=518.如图,在平面直角坐标系中,△ABC 的顶点为A (-3,-2),B (-5,3),C (0,4).(1)以C 为旋转中心,将△ABC 绕C 逆时针旋转90°,画出旋转后的对应的△111C B A ,写出点1A 的坐标;(2)求出(1)中点B 旋转到点1B 所经过的路径长(结果保留根号和π).【答案】(1)如图:∴点1A 的坐标(6,1);(2)点B 旋转到点1B 所经过的路径长=ππ22618090=︒︒⨯⨯BC 【解析】(1)如图:∴点1A 的坐标(6,1);(2)点B 旋转到点1B 所经过的路径长=ππ22618090=︒︒⨯⨯BC19.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【答案】(1)1/3(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为:91; (3)∵如果在第一题使用“求助”小明顺利通关的概率为:81;如果在第二题使用“求助”小明顺利通关的概率为:91; ∴建议小明在第一题使用“求助”.【解析】(1)1/3(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为:91; (3)∵如果在第一题使用“求助”小明顺利通关的概率为:81; 如果在第二题使用“求助”小明顺利通关的概率为:91; ∴建议小明在第一题使用“求助”.20. 关于的一元二次方程01)1(222=-+-+m x m x 有两个不相等的实数根1x ,2x .(1)求实数m 的取值范围;(2)是否存在实数m ,使得021=x x 成立?如果存在,求出m 的值;如果不存在,请说明理由.【答案】(1)m <1;(2)m=-1.【解析】(1)∵方程01)1(222=-+-+m x m x 有两个不相等的实数根1x ,2x . ∴△=)1(4)1(422---m m 088>+-=m ,∴m <1;(2)存在实数m ,使得021=x x 成立;∵021=x x ,∴012=-m ,解得:m=-1或m=1,∴当m=1时,方程为02=x ,有两个相等的实数根,与题意不符,舍去,∴m=-1.21. 在平面直角坐标系xOy 中,直线y=-x+2与反比例函数)0(≠=k xk y 的图象交于点A(-2,a)和点B .(1)求反比例函数的表达式和点B 的坐标;(2)直接写出不等式2+-<x xk 的解集. 【答案】(1)B(4,-2);(2)2+-<x xk 的解集x <-2或0<x <4. 【解析】(1)把A(-2,a)代入y=-x+2中,得:2+2=a ,即a=4,把A(-2,4)代入xk y =中,得k=-8, 即xy 8-=, 联立方程组⎪⎩⎪⎨⎧-=+-=x y x y 82 解得:⎩⎨⎧=-=42y x 或⎩⎨⎧-==24y x ,则B(4,-2);(2)如图:2+-<x xk 的解集x <-2或0<x <4.22.已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.【答案】(1)证明:∵BE=CF,∴弧BE=弧CF,∴∠BAE=∠CAF,∵AF⊥BC,∴ADC=90°,∴∠FAC+∠ACD=90°,∵∠E=∠ACB,∴∠E+∠BAE=90°,∴∠ABE=90°,∴AE是⊙O的直径;(2)AC=4.【解析】(1)证明:∵BE=CF,∴弧BE=弧CF,∴∠BAE=∠CAF,∵AF⊥BC,∴ADC=90°,∴∠FAC+∠ACD=90°,∵∠E=∠ACB,∴∠E+∠BAE=90°,∴∠ABE=90°,∴AE是⊙O的直径;(2)如图,连接OC,∴∠AOC=2∠ABC,∵∠ABC=∠CAE,∴∠AOC=2∠CAE,∵OA=OC,∴∠CAO=∠ACO=∠AOC,∴△AOC是等腰直角三角形,∵AE=8,∴AO=CO=4,∴AC=4.23.农华公司以10元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农华公司应该如何确定这批农产品的销售价格,才能使日销售利润W元最大?(3)若农华公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当20≤x≤25时,农经公司的日获利Q元的最大值为1215元,求a的值.(日获利=日销售利润-日支出费用)【答案】(1)p=-15x+450;(2)故这批农产品的销售价格定为20元,才能使日销售利润最大;(3)2.【解析】(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:,∴p=-15x+450,检验:当x=15,p=225;当x=25,p=75;当x=30,p=0,符合一次函数解析式,∴所求的函数关系为p=-15x+450;(2)设日销售利润w=p(x-10)=(-15x+450)(x-10)即w=-15x2+600x-4500,∴当时,w有最大值1500元,故这批农产品的销售价格定为20元,才能使日销售利润最大;(3)日获利Q=p(x-10-a)=(-15x+450)(x-10-a),即Q=-15x2+(600+15a)x-(450a+4500),对称轴为,①若a≥10,则当x=25时,Q有最大值,即Q=1125-75a<1215(不合题意);②若0<a<10,则当x=20+a时,Q有最大值,将x=20+a代入,可得Q=15(a2-10a+100),当Q=1215时,1215=15(a2-10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.24. (1)尺规作图:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使△ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2)特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有________个;如图二,当∠1=60°时,符合(1)中条件的点C有________个.(3)拓展应用:如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值.【答案】(1)如图,点C1、C2、C3、C4为所作.;(2)①如图:符合条件的点有2个;②如图:符合条件的点有2个.故答案为2;2.(3)0=x 或222-=x 或222 x .【解析】(1)如图,点C1、C2、C3、C4为所作.;(2)①如图:符合条件的点有2个;②如图:符合条件的点有2个.故答案为2;2.(3)①当x=0时:如图1,当点M 与点O 重合时,即x=0时,当PN=PM 时有点P1;当MN=MP 时有点P2;当NP=MN 时有点P3;此时只有3个P 点,②当20 x 时:如图2,与相切于时,NP3=MN=2,且NP3⊥OB,则x=OM=ON-MN=,此时只有3个P 点.③当x≥2时,如图3,经过点O,此时x=2,只有2个P 点(P1和P3, P2,M,N 共线,舍去P2), 如图4,与OB 相交时,此时只有3个P 点,如图5, 与OB 相切于P2点时,MP2=MN=2,且MP2⊥OB, 则x=OM=时,只有2个P 点,由此可得时,只有3个P 点.综上可知:0=x 或222-=x 或222 x .。
2018-2019学年人教版九年级(上)期末数学试卷含解析

2018-2019学年人教版九年级(上)期末数学试卷含解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从侧面看圆柱的视图为矩形,据此求解即可.【解答】解:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选:C.2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个【考点】M1:圆的认识.【专题】67:推理能力.【分析】(1)直径的两个端点在圆上,符合弦的概念.(2)弦是连接圆上两点间的线段,只有过圆心的弦才是直径.(3)半圆是弧,但弧不一定是半圆.比半圆大的弧是优弧,比半圆小的弧是劣弧.(4)(5)等弧是能完全重合的两条弧,长度相等的两条弧不一定能重合.【解答】解:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其它的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆.所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合.所以(5)错误.故选:B.3.暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢【考点】X7:游戏公平性.【分析】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.【解答】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.5.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30m B.20m C.30m D.15m【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.【解答】解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=×30=15,∴AD=DH=15m.答:从A地到D地的距离是15m.故选:D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.7.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】KW:等腰直角三角形;MO:扇形面积的计算.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD+S扇形COD=2×2+=2+π,故选:A.8.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线B.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)C.二次函数y=(x+2)2+2的顶点坐标是(﹣2,2)D.点A(3,0)不在抛物线y=x2﹣2x﹣3上【考点】H3:二次函数的性质.【分析】利用二次函数的性质对四个选项逐一判断即可得到答案.【解答】解:A、抛物线y=﹣2x2+3x+1的对称轴是直线x=﹣=,正确,选项不符合要求;B、函数y=2x2+4x﹣3=(x+1)2﹣5的最低点是(﹣1,﹣5),正确,选项不符合要求;C、二次函数y=(x+2)2+2的顶点坐标是(﹣2,2),正确,选项不符合要求;D、当x=3时y=x2﹣2x﹣3≠0,错误,选项符合要求.故选:D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC =∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是()A.5个B.7个C.8个D.9个【考点】U3:由三视图判断几何体.【专题】1:常规题型;55F:投影与视图.【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.11.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【考点】SA:相似三角形的应用.【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.12.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】D5:坐标与图形性质;MC:切线的性质.【专题】16:压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.二、填空题(本大题共6个小题,每小题4分,满分24分)13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】HA:抛物线与x轴的交点.【专题】31:数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】KH:等腰三角形的性质;M5:圆周角定理.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.15.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【专题】11:计算题;558:平移、旋转与对称.【分析】根据旋转的性质得到△CAB的面积=△CFG的面积,得到阴影部分的面积=扇形CAF的面积,根据扇形面积公式计算即可.【解答】解:由题意得,△CAB的面积=△CFG的面积,由图形可知,阴影部分的面积=△CFG的面积+扇形CAF的面积﹣△CBA的面积,∴阴影部分的面积=扇形CAF的面积==π,故答案为:.16.在⊙O中,圆心角∠AOB=100°,则弦AB所对的圆周角=50°或130°.【考点】M5:圆周角定理.【分析】此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.【解答】解:根据圆周角定理,得弦AB所对的圆周角=100°÷2=50°或180°﹣50°=130°.17.如图,在平面直角坐标系中,矩形OABC顶点A、C分别在x轴、y轴的正半轴上,顶点B在反比例函数y=(x>0)的图象上,点P是矩形OABC内的一点,连接PO、P A、PB、PC,若图中阴影部分的面积10,则k为20.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】作PE⊥OC于E,EP的延长线交AB于F,由题意得到S阴=•OC•PE+•AB•PF=•CO•EF ==S矩形ABCO=10,进一步得到S矩形ABCO=20,根据反比例函数系数k的几何意义即可求得k =20.【解答】解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=•OC•PE+•AB•PF=•CO•EF==S矩形ABCO=10,∴S矩形ABCO=20,∴k=20.故答案为20.18.如图,直角三角形ABC中,∠ACB=90°,AC=6,BC=4,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD长的最小值是2.【考点】KQ:勾股定理;M5:圆周角定理;M8:点与圆的位置关系.【专题】11:计算题.【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB =5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=3,BC=4,∴OB==5,∴BD的值最小为5﹣3=2.故答案为2.三、解答题(第19题4分,第20、21题各7分,第22题8分,第23、24题各9分,第25题11分)19.计算:tan45°﹣sin260°﹣+2cos30°.【考点】T5:特殊角的三角函数值.【专题】511:实数;62:符号意识.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:原式=1﹣()2﹣(﹣1)+2×=1﹣﹣+1+=.20.如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.(1)请在答题卷指定的位置补画该工件的俯视图;(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.【考点】U4:作图﹣三视图.【分析】(1)俯视图为左右相邻的3个长方形,并且两边的长方形的宽度相同,小于中间的长方形的宽度;(2)主视图的面积为两边长为11,7的长方形的面积减去两边长为5,4的长方形的面积.【解答】解:(1)俯视图(看形状、大小基本正确)(2)需涂油漆(主视图)面积:11×7﹣5×4=57(cm2)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】X7:游戏公平性.【专题】16:压轴题.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.22.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的利润之和最大,最大利润是多少?【考点】FH:一次函数的应用;HE:二次函数的应用.【分析】(1)把(5,3)代入正比例函数即可求得k的值也就求得了y1的关系式;把原点及(1,2),(5,6)代入即可求得y2的关系式;(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.23.图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】T8:解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA 的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.24.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【考点】MD:切线的判定.【专题】16:压轴题.【分析】(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.【解答】解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.25.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入求得a的值即可;(2)过点M作MD⊥AC,垂足为D,先求得点M的坐标,然后利用勾股定理求得DM和CD的长,再依据勾股定理求得AC的长,进而求得AD的长,最后,依据锐角三角函数的定义求解即可;(3)设点Q(x,﹣x2+2x+3),然后∠BAQ=∠CAM且tan∠BAQ=,列方程求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入得:﹣3a=3,解得:a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)作MD⊥AC于D,∵CM∥AB,由抛物线y=﹣x2+2x+3可知M点的坐标为(2,3),∵C(0,3),A(3,0)∴AO=OC=3,∵∠MDC=90°∴∠OAC=∠ACO=45°,∴∠ACM=45°,∴CD=DM,∵CM=2,∴DM=CM=,∴CD=,∵AC2=OA2+OC2∴AC=3.∴AD=AC﹣CD=2,∴tan∠CAM===;③设点Q(x,﹣x2+2x+3).∵∠BAQ=∠CAM且tan∠CAM=,∴=±,整理得:x+1=±,解得:x=﹣或x=﹣.当x=﹣时,y=,∴Q(﹣,).当x=﹣时,y=﹣.∴Q(﹣,﹣).综上所述,点Q的坐标为(﹣,)或(﹣,﹣).。
每日一学:浙江省台州市椒江区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省台州市椒江区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答答案浙江省台州市椒江区2018-2019学年九年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019椒江.九上期末)(1) 尺规作图:已知:如图,线段AB 和直线 且点B 在直线上求作:点C ,使点C在直线 上并且使△ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2) 特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有个;如图二,当∠1=60°时,符合(1)中条件的点C 有个.(3) 拓展应用:如图,∠AOB=45°,点M ,N 在射线OA 上,OM=x ,ON=x+2,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值。
考点: 几何图形的动态问题;~~ 第2题 ~~(2019椒江.九上期末) 如图,在△ABC 中,∠ACB =90°,D 为边AB 的中点,E 、F 分别为边AC 、BC 上的点,且AE =A D ,BF =BD .若DE = ,DF =2则∠EDF =________°,线段AB 的长度=________.~~ 第3题 ~~(2019椒江.九上期末) 如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3 cm;③扇形OCAB的面积为12π;④四边形ABOC是菱形.其中正确结论的序号是( )A . ①③B . ①②③④C . ②③④D . ①③④浙江省台州市椒江区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:D解析:。
浙江省台州椒江区书生中学2018-2019学年九年级(上)期末数学复习试卷(二)(含答案)

D . 50°
C.(x2) 3= x5
D . m5÷ m3=m2
7.在一次中学生田径运动会上,参加跳远的
15 名运动员的成绩如下表所示
成绩(米)
4.50
4.60
4.65
4.70
4.75
4.80
人数
2
3
则这些运动员成绩的中位数、众数分别是(
A . 4.65、 4.70
B. 4..4.70、 4.75
.
13.如图,菱形 ABCD 的周长为 20cm,且 tan∠ ABD = ,则菱形 ABCD 的面积为
cm2.
14.若关于 x 的一元二次方程 kx2﹣6x+9 = 0 有两个不相等的实数根, 则 k 的取值范围
.
15.如图,把矩形纸片 OABC 放入平面直角坐标系中,使 OA 、OC 分别落在 x 轴、 y 轴上, 连接 OB,将纸片 OABC 沿 OB 折叠, 使点 A 落在点 A′的位置, 若 OB= ,tan∠ BOC
地区覆盖总人口约为 440000 万人,将 440000用科学记数法表示为(
)
A . 4.4× 106
B. 4.4× 105
C.44× 104
D . 0.44× 105
4.每年 5 月 11 日 是由世界卫生组织确定的世界防治肥胖日,某校为了解全校
2000 名学生
的体重情况,随机抽测了 200 名学生的体重,根据体质指数( BMI )标准,体重超标的有
4
1
D . 4.70、 4.70
8.关于 x 的一元二次方程 ax2+3 x﹣ 2= 0 有两个不相等的实数根,则 a 的值可以是(
)
A.0
B.﹣ 1
2018-2019学年上学期期末考试 九年级数学试题(含答案)

2018-2019学年上学期期末考试九年级数学试题(含答案)2018-201年第一学期期末考试九年级数学注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名,再用2B铅笔把对应的卡号的标号涂黑。
2.选择题和判断题的每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,不能答在试卷上。
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔和签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡,题目指定区域内的相应位置上改动,原来的答案也不能超出指定的区域,不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生可以使用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。
)1.下列图形是中心对称而不是轴对称的图形是( )。
2.下列事件是必然事件的是()。
A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是()。
A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.若函数的图像y=x经过点(2,3),则该函数的图像一定不经过()。
A.(1,6)B.(-1,6)C.(2,-3)D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )。
A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是()。
A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年浙江省台州市椒江区九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
1.(4分)下列手机手势解锁图案中,是中心对称图形的是()
A.B.
C.D.
2.(4分)已知反比例函数y,下列结论不正确的是()
A.图象经过点(﹣2,1)
B.图象在第二、四象限
C.当x<0时,y随着x的增大而增大
D.当x>﹣1时,y>2
3.(4分)下列说法中错误的是()
A.概率很小的事件不可能发生
B.不可能事件发生的概率为0
C.随机事件发生的概率大于0且小于1
D.必然事件发生的概率为1
4.(4分)如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()
A.(1,0)B.(﹣1,2)C.(0,0)D.(﹣1,1)5.(4分)某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?解:设主干长出x个支
干,每个支干有x个小分支,由题意,所列方程正确的是()
A.1+x+x2=111B.x+x2=111C.2x+1=111D.2x=111
6.(4分)如图,A、B两点在双曲线y上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()
A.4B.4.2C.4.6D.5
7.(4分)小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:
下面有四个推断:
①当移植的树数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;
②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,
可以估计树苗成活的概率是0.900;
③若小张移植10000棵这种树苗,则可能成活9000棵;
④若小张移植20000棵这种树苗,则一定成活18000棵.
其中合理的是()
A.①③B.①④C.②③D.②④
8.(4分)点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC的度数为()
A.110°B.125°C.130°D.140°
9.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c
=2;③a>;④b>1,其中正确的结论个数是()
A.1个B.2 个C.3 个D.4 个
10.(4分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3cm;③扇形OCAB的面积为12π;
④四边形ABOC是菱形.其中正确结论的序号是()
A.①③B.①②③④C.②③④D.①③④
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)边长为4的正六边形内接于⊙M,则⊙M的半径是.
12.(5分)在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.
13.(5分)圆锥的底面半径是40cm,母线长90cm,它的侧面展开图的圆心角是°.14.(5分)将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是.15.(5分)如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(2018)个三角形的直角顶点的坐标是.
16.(5分)如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、
BC上的点,且AE=AD,BF=BD.若DE,DF=2,则∠EDF=°,线段AB 的长度=.
三、解答题(本题有8大题,第17~20题各8分,第21题各10分,第22、23题各12分,第24题14分,共80分)
17.(8分)已知m是方程x2﹣3x=0的一个根,求(m﹣3)2+(m+2)(m﹣2)的值.18.(8分)如图,在平面直角坐标系中,△ABC的顶点为A(﹣3,﹣2),B(﹣5,3),C (0,4).
(1)以C为旋转中心,将△ABC绕C逆时针旋转90°,画出旋转后的对应的△A1B1C1,写出点A1的坐标;
(2)求出(1)中点B旋转到点B1所经过的路径长(结果保留根号和π).
19.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)20.(8分)关于x的一元二次方程x2+2(m﹣1)x+m2﹣1=0有两个不相等的实数根x1,x2.
(1)求实数m的取值范围;
(2)是否存在实数m,使得x1x2=0成立?如果存在,求出m的值,如果不存在,请说明理由.
21.(10分)在平面直角坐标系xOy中,直线y=﹣x+2与反比例函数y(k≠0)的图象交于点A(﹣2,a)和点B.
(1)求反比例函数的表达式和点B的坐标;
(2)直接写出不等式<x+2的解集.
22.(12分)已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E 为弧BF上一点,且BE=CF,
(1)求证:AE是⊙O的直径;
(2)若∠ABC=∠EAC,AE=8,求AC的长.
23.(12分)农华公司以10元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x之间的函数表达式;
(2)农华公司应该如何确定这批农产品的销售价格,才能使日销售利润W元最大?
(3)若农华公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当20≤x≤25时,农经公司的日获利Q元的最大值为1215元,求a的值.(日获利=日销售利润﹣日支出费用)
24.(14分)(1)尺规作图1:
已知:如图,线段AB和直线且点B在直线上
求作:点C,使点C在直线上并且使△ABC为等腰三角形.
作图要求:保留作图痕迹,不写作法,做出所有符合条件的点
C.
(2)特例思考:
如图一,当∠1=90°时,符合(1)中条件的点C有个;如图二,当∠1=60°时,符合(1)中条件的点C有个.
(3)拓展应用:
如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值.。