浙江省台州市椒江区2019-2020年七年级第一年期末测试卷(无答案)
(4份试卷汇总)2019-2020学年浙江省台州市数学七年级(上)期末考试模拟试题

2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是( ) A .1个B .2个C .3个D .4个2.如图,是由相同小正方体组成的立体图形,它的主视图为( )A .B .C .D .3.如图,点C 是AB 的中点,点D 是BC 的中点,现给出下列等式:①CD=AC-DB ,②CD=14AB ,③CD=AD-BC ,④BD=2AD-AB .其中正确的等式编号是( )A.①②③④B.①②③C.②③④D.②③4.如图,钟面上的时间是8:30,再经过t 分钟,时针、分针第一次重合,则t 为( )A .756B .15011C .15013D .180115.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x 个苹果,则列出的方程是( ) A.3x 14x 2+=-B.3x 14x 2-=+C.x 1x 234-+= D.x 1x 234+-= 6.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场B .11场C .12场D .13场7.下列代数式中:1x ,2x y +,213a b ,x y π-,54yx,0,整式有( ) 个 A.3个B.4个C.5个D.6个8.下面的计算正确的是( ) A.22541a a -=B.235a b ab +=C.()33a b a b +=+D.()a b a b -+=--9.下列各组代数式中,属于同类项的是( ) A .1xy 2与1x 2B .26m 与22m -C .25pq 与22p q -D .5a 与5b10.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数 11.如图,在数轴上点M 表示的数可能是( )A. 3.5-B. 1.5-C.2.4D. 2.4-12.以下选项中比|﹣12|小的数是( ) A.1 B.2C.12D.-12二、填空题13.57.32° = _______(________________)' ______ " 14.一个角的余角比它的补角的13还少20°,则这个角是_____________. 15.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x 辆汽车,则根据题意可列出方程为______. 16.关于x 的方程ax ﹣2x ﹣5=0(a≠2)的解是_____.17.下列正方形中的数据之间具有某种联系,根据这种联系,A 的值应是_____.18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______. 19.若|a+3|=0,则a=______.20.点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,则此时点A 表示的数是________. 三、解答题21.如图,N 为线段AC 中点,点M 、点B 分别为线段AN 、NC 上的点,且满足.(1)若,求AM 的长; (2)若,求AC 的长.22.某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”) 23.解下列方程(组):(1)321126x x -+-= (2)122(1)8x y x y +=⎧⎨+-=⎩24.计算(1)2235(6)(4)(2)-+⨯---÷-. (2322427-.(3)383672.5'︒+︒.(结果用度表示)25.化简求值:(-3x 2-4y )-(2x 2-5y+6)+(x 2-5y-1);其中 x=-3 ,y=-126.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 27.计算:(1) (8)(4)(6)(1)--++---;(2)(1531264--+)×(-24) 28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】*** 一、选择题 1.B 2.A 3.B 4.B 5.C 6.D 7.B 8.D 9.B 10.B 11.D 12.D 二、填空题 13.19 12 14.75°15. SKIPIF 1 < 0 解析:4516509x x +=- 16. SKIPIF 1 < 0 解析:52a - 17.158 18.55 19.﹣3. 20.-2 三、解答题 21.(1);(2)AC =1622.应按现售价的八八折出售23.(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩24.(1)-31;(2)7;(3)111.1︒.25.原式=-4x2-4y-7,代入得-39.26.10 927.(1)17-;(2)428.(1)﹣212;(2)52.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列几何体中,是圆柱的为A .B .C .D .2.下列换算中,错误的是( ) A.83.5°=83°50′ B.47.28°=47°16′48″ C.16°5′24″=16.09°D.0.25°=900″3.一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、CDGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A.n 2B.n (m ﹣n )C.n (m ﹣2n )D.4.某小组有m 人,计划做n 个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个,现有下列四个方程:①5m+9=4m ﹣15;②= ③=;④5m ﹣9=4m+15.其中正确的是( ) A.①② B.②④ C.②③ D.③④5.下列方程是一元一次方程的是( )A.231x y +=B.2210y y --= C.1123x x-= D.3223x x -=-6.书架上,第一层的数量是第二层书的数量的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本,设第二层原有x 本,则可列方程( ) A.2x=12x+3 B.2x=12(x+8)+3 C.2x ﹣8= 12x+3 D.2x ﹣8=12(x+8)+3 7.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n 8.下列计算正确的是( ) A .a 5+a 2=a 7 B .2a 2﹣a 2=2 C .a 3•a 2=a 6 D .(a 2)3=a 6 9.下列运算中,正确的是( )A .5a 2-4a 2=1B .2a 3+3a 2=5a 5C .4a 2b-3ba 2=a 2bD .3a+2b=5ab10.若8a =, 5b =,且 0a b +>,那么-a b 的值为( )A .3或13B .13或-13C .3或-3D .-3或-13 11.在+5,-4,-π,,,—(),, -,,—(-5) ,,这几个数中,负数( )个. A.3.B.4C.5D.612.下列各组数中互为相反数的是( ) A.-2与2(-2) B.-2与38- C.2与(-2)2D.|-2|与2二、填空题13.已知平面内两个角∠AOB =60°,∠BOC =45°,求∠AOC 的度数。
2019-2020学年浙江省台州市椒江区七年级(上)期末数学试卷 (含解析)

2019-2020学年浙江省台州市椒江区七年级(上)期末数学试卷一、选择题(共10小题).1.四个有理数1-,0,3-,4,其中最小的有理数是( )A .1-B .0C .3-D .42.下列平面图形不能够围成正方体的是( )A .B .C .D .3.2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动.据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )A .41210⨯B .41.210⨯C .51.210⨯D .60.1210⨯4.下列计算正确的是( )A .2222x y xy x y -=-B .235a b ab +=C .2(3)23a b a b -=-D .336ab ab ab --=-5.有理数a ,b 在数轴上的对应的位置如图所示, 则( )A .0a b +<B .0a b ->C .0a b -=D .0ab >6.岛A 和岛B 处于东西方向的一条直线上,由岛A 、岛B 分别测得船C 位于北偏东40︒和北偏西50︒方向上,下列符合条件的示意图是( )A .B .C .D .7.下列运用等式性质进行的变形中,正确的是( )A .若x y =,则55x y -=+B .若a b =,则ac bc =C .若23x =,则23x =D .若a b =,则a b c c= 8.如图,点B 为线段AC 上一点,11AB cm =,7BC cm =,D 、E 分别是AB 、AC 的中点,则DE 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm9.已知关于x 的一元一次方程11233x x a +=+的解为1x =-,那么关于y 的一元一次方程1(2)12(2)33y y a ++=++的解为( ) A .1y =- B .1y = C .3y =- D .3y =10.根据图形变化的规律,图中的省略号里黑色正方形的个数可能是( )A .2016B .2017C .2018D .2019二、填空题(本大题共6个小题,每小题3分,共18分)11.3-的倒数是 .12.请你写出一个解为1x =-的一元一次方程 .13.计算:67334838︒'-︒'= .14.儿子今年12岁,父亲今年40岁,则再过 年,父亲的年龄是儿子的年龄的2倍.15.已知||3x =,||2y =,且||x y y x -=-,则x y -= .16.若(2019)52p -⨯=,则201953⨯的值可以表示为 (用含p 的式子表示)三、解答题(共7题,共52分)17.计算:(1)3(8)(6)(10)---+-++(2)411|35|8(2)2-+--÷-⨯18.解方程:(1)3(21)15x -=(2)12423x x +-+= 19.先化简,再求值:223(21)(252)x x x x -+--+,其中1x =-.20.如图,平面上有线段AB 和点C ,按下列语句要求画图与填空:(1)作射线AC ;(2)用尺规在线段AB 的延长线上截取BD AC =;(3)连接BC ;(4)有一只蚂蚁想从点A 爬到点B ,它应该沿路径(填序号) (①AB ,②)AC CB +爬行最近,这样爬行所运用到的数学原理是 .21.请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,90AOB ∠=︒,90COD ∠=︒,OA 平分DOE ∠,若20BOC ∠=︒,求COE ∠的度数.解:因为90AOB ∠=︒,所以BOC ∠+ 90=︒.因为 90=︒,所以90AOD AOC ∠+∠=︒.所以BOC AOD ∠=∠.( )因为20BOC ∠=︒,所以20AOD ∠=︒.因为OA 平分DOE ∠,所以 2AOD =∠= ︒所以COE COD DOE ∠=∠-∠= ︒.22.春节临近,某市各商场掀起了促销狂潮,现有甲、乙、丙三个商场开展的促销活动方案如下表所示:商场促销活动方案甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(比如:顾客购衣服230元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减45元的优惠”(比如:某顾客购物230元,他只需付款140元)根据以上活动信息,解决以下问题:(1)这三个商场同时出售一件标价390元的上衣和一条标价300多元的裤子,李先生发现在甲、乙商场购买这一套衣服的付款额是一样的,请问这条裤子的标价是多少元?(2)请通过计算说明第(1)题中李先生应该选择哪家商场购买最实惠?23.如图,线段MN是周长为36cm的圆的直径(圆心为)O,动点A从点M出发,以3/cm s 的速度沿顺时针方向在圆周上运动,经过点N时,其速度变为1.5/cm s,并以这个速度继续沿顺时针方向运动之点M后停止.在动点A运动的同时,动点B从点N出发,以2/cm s的速度沿逆时针方向在圆周上运动,绕一周后停止运动.设点A、点B运动时间为()t s.(1)连接OA、OB,当4t>时,点A运t=时,AOB∠=︒,在整个运动过程中,当6动的路程为cm(第2空结果用含t的式子表示);(2)当A、B两点相遇时,求运动时间t.(3)连接OA、OB,当30∠=︒时,请直接写出所有符合条件的运动时间t.AOB参考答案一、选择题(每小题3分,共30分)1.四个有理数1-,0,3-,4,其中最小的有理数是( )A .1-B .0C .3-D .4解:3104-<-<<,∴最小的有理数是3-, 故选:C .2.下列平面图形不能够围成正方体的是( )A .B .C .D .解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”, 只有B 选项不能围成正方体.故选:B .3.2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动.据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )A .41210⨯B .41.210⨯C .51.210⨯D .60.1210⨯ 解:12万5120000 1.210==⨯,故选:C .4.下列计算正确的是( )A .2222x y xy x y -=-B .235a b ab +=C .2(3)23a b a b -=-D .336ab ab ab --=-解:A 、2x y 和22xy 不是同类项,不能合并,故原题计算错误;B 、2a 和3b 不是同类项,不能合并,故原题计算错误;C 、2(3)26a b a b -=-,故原题计算错误;D 、336ab ab ab --=-,故原题计算正确;故选:D .5.有理数a ,b 在数轴上的对应的位置如图所示, 则( )A .0a b +<B .0a b ->C .0a b -=D .0ab >解: 由数轴上点的位置, 得101a b <-<<<.A 、(||||)0a b a b +=--<,故A 符合题意;B 、0a b -<,故B 不符合题意;C 、0a b -<,故C 不符合题意;D 、0ab <,故D 不符合题意;故选:A .6.岛A 和岛B 处于东西方向的一条直线上,由岛A 、岛B 分别测得船C 位于北偏东40︒和北偏西50︒方向上,下列符合条件的示意图是( )A .B .C .D .解:符合题意的示意图为: .故选:D .7.下列运用等式性质进行的变形中,正确的是( )A .若x y =,则55x y -=+B .若a b =,则ac bc =C .若23x =,则23x =D .若a b =,则a b c c=55x y ∴+=+,5x -和5y +不相等,故本选项不符合题意;B 、a b =,ac bc ∴=,故本选项符合题意;C 、23x =,∴方程两边都除以2得:32x =,x 不等于23,故本选项不符合题意; D 、a b =,∴只有当0c ≠时,a c 才等于b c,当0c =时,两边不相等,故本选项不符合题意; 故选:B .8.如图,点B 为线段AC 上一点,11AB cm =,7BC cm =,D 、E 分别是AB 、AC 的中点,则DE 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm 解:11AB cm =,D 是AB 的中点,1111 5.5()22AD AB cm ∴==⨯=; 11AB cm =,7BC cm =,11718()AC AB BC cm ∴=+=+=,E 是AC 的中点,11189()22AE AC cm ∴==⨯=, 9 5.5 3.5()DE AE AD cm ∴=-=-=.故选:A .9.已知关于x 的一元一次方程11233x x a +=+的解为1x =-,那么关于y 的一元一次方程1(2)12(2)33y y a ++=++的解为( ) A .1y =- B .1y = C .3y =- D .3y =解:关于x 的一元一次方程11233x x a +=+的解为1x =-, ∴关于y 的一元一次方程1(2)12(2)33y y a ++=++中21y +=-,故选:C .10.根据图形变化的规律,图中的省略号里黑色正方形的个数可能是( )A .2016B .2017C .2018D .2019解:观察图形,可知:第2(n n 为正整数)个图形的末尾有一个白色正方形,设第2n 个图形有2n a 个黑色正方形,23a =,46a =,69a =,⋯,23n a n ∴=,∴图中的省略号里黑色正方形的个数35338n n =--=-.当675n =时,382017n -=,∴图中的省略号里黑色正方形的个数可能为2017.故选:B .二、填空题(本大题共6个小题,每小题3分,共18分)11.3-的倒数是 13. 解:3-的倒数是13-. 12.请你写出一个解为1x =-的一元一次方程 10x +=(答案不唯一) .解:10x +=.故答案是:10x +=(答案不唯一).13.计算:67334838︒'-︒'= 1855︒' .解:原式669348381855=︒'-︒'=︒'.故答案是:1855︒'.14.儿子今年12岁,父亲今年40岁,则再过 16 年,父亲的年龄是儿子的年龄的2倍. 解:设x 年后父亲的年龄是儿子的年龄的2倍,根据题意得:402(12)x x +=+,解得:16x =.答:16年后父亲的年龄是儿子的年龄的2倍, 故答案为:16.15.已知||3x =,||2y =,且||x y y x -=-,则x y -= 1-或5- . 解:||3x =,||2y =,3x ∴=±,2y =±,||0x y y x -=-,2y ∴=,3x =-或2y =-,3y =-,∴当3x =-,2y =时,325x y -=--=-;当3x =-,2y =-时,3(2)1x y -=---=-, 即x y -的值为1-或5-.故答案为1-或5-.16.若(2019)52p -⨯=,则201953⨯的值可以表示为 2019p -+ (用含p 的式子表示) 解:(2019)52p -⨯=,201952p ∴⨯=-,201953∴⨯2019(521)=⨯+2019522019=⨯+2019p =-+,故答案为:2019p -+.三、解答题(共7题,共52分)17.计算:(1)3(8)(6)(10)---+-++(2)411|35|8(2)2-+--÷-⨯ 解:(1)3(8)(6)(10)---+-++38610=-+-+918=-+9=;(2)411|35|8(2)2-+--÷-⨯122=-++3=.18.解方程:(1)3(21)15x -=(2)12423x x +-+= 解:(1)方程整理得:215x -=,移项合并得:26x =,解得:3x =;(2)去分母得:3(1)2(2)24x x ++-=,去括号得:332424x x ++-=,移项合并得:525x =,解得:5x =.19.先化简,再求值:223(21)(252)x x x x -+--+,其中1x =-. 解:原式2223632521x x x x x x =-+-+-=-+, 当1x =-时,原式1113=++=.20.如图,平面上有线段AB 和点C ,按下列语句要求画图与填空:(1)作射线AC ;(2)用尺规在线段AB 的延长线上截取BD AC =;(3)连接BC ;(4)有一只蚂蚁想从点A 爬到点B ,它应该沿路径(填序号) ① (①AB ,②)AC CB +爬行最近,这样爬行所运用到的数学原理是 .解:(1)如图所示,射线AC 即为所求;(2)如图所示,线段BD 即为所求;(3)如图所示,线段BC 即为所求;(4)有一只蚂蚁想从点A爬到点B,它应该沿路径AB爬行最近,这样爬行所运用到的数学原理是两点之间,线段最短.故答案为:①;两点之间,线段最短.21.请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,90BOC∠的∠,若20∠=︒,求COE AOB∠=︒,OA平分DOE∠=︒,90COD度数.解:因为90∠=︒,AOB所以BOC=︒.∠90∠+AOC因为90=︒,所以90∠+∠=︒.AOD AOC所以BOC AOD∠=∠.()因为20∠=︒,BOC所以20∠=︒.AOD因为OA平分DOE∠,所以2AOD=∠=︒所以COE COD DOE∠=∠-∠=︒.解:因为90∠=︒.AOB所以90∠+∠=︒BOC AOC因为90∠=︒COD所以90∠+∠=︒.AOD AOC所以BOC AOD∠=∠.(同角的余角相等)因为20∠=︒.BOC所以20∠=︒.AOD因为OA平分DOE∠所以240∠=∠=︒.DOE AOD所以50∠=∠-∠=︒COE COD DOE故答案为:AOC∠;COD∠;40;50.∠;同角的余角相等;DOE22.春节临近,某市各商场掀起了促销狂潮,现有甲、乙、丙三个商场开展的促销活动方案如下表所示:根据以上活动信息,解决以下问题:(1)这三个商场同时出售一件标价390元的上衣和一条标价300多元的裤子,李先生发现在甲、乙商场购买这一套衣服的付款额是一样的,请问这条裤子的标价是多少元?(2)请通过计算说明第(1)题中李先生应该选择哪家商场购买最实惠?解:(1)设这条裤子的标价为x元,根据题意得:(390)0.63901003+⨯=+-⨯,x x解得:380x=,答:这条裤子的标价为380元;(2)甲,乙商场的费用:(390380)0.6462+⨯=(元),丙商场的费用:390380745455+-⨯=(元),<,455462∴李先生应该选择丙商场购买最实惠.23.如图,线段MN是周长为36cm的圆的直径(圆心为)O,动点A从点M出发,以3/cm s 的速度沿顺时针方向在圆周上运动,经过点N时,其速度变为1.5/cm s,并以这个速度继续沿顺时针方向运动之点M 后停止.在动点A 运动的同时,动点B 从点N 出发,以2/cm s 的速度沿逆时针方向在圆周上运动,绕一周后停止运动.设点A 、点B 运动时间为()t s .(1)连接OA 、OB ,当4t =时,AOB ∠= 20 ︒,在整个运动过程中,当6t >时,点A 运动的路程为 cm (第2空结果用含t 的式子表示); (2)当A 、B 两点相遇时,求运动时间t .(3)连接OA 、OB ,当30AOB ∠=︒时,请直接写出所有符合条件的运动时间t .解:(1)如图1,当4t =时,点A 的运动路程为:3412⨯=,1236012036AOM ∠=⨯︒=︒, 点B 的运动路程为:248⨯=,83608036BON ∠=⨯︒=︒, 18020AOB AOM BON ∴∠=∠+∠-︒=︒;当点A 运动6s 时,路程为6318cm ⨯=,为周长的一半,∴当6t >时,运动路程为18 1.5(6)(9 1.5)t t cm +-=+,故答案为:20,9 1.5t +;(2)如图21-,当A 、B 两点第一次相遇时,132362t t +=⨯, 185t ∴=; 如图22-,当A 、B 两点第二次相遇时,19 1.5236362t t ++=+⨯, 907t ∴=,综上所述,当A 、B 两点相遇时,运动时间t 为185s 或907s ;(3)30363360cm ⨯=, 如图31-,当A 、B 两点第一次运动至使30AOB ∠=︒时, 18AM BN AB ++=,即32318t t ++=,3t ∴=;如图32-,当A 、B 两点第二次运动至使30AOB ∠=︒时, 18AM BN AB +-=,即32318t t +-=,215t ∴=; 如图33-,当A 、B 两点第三次运动至使30AOB ∠=︒时, 3618ANM NMB AB ++=+,即9 1.52354t t +++=,12t ∴=;如图34-,当A 、B 两点第四次运动至使30AOB ∠=︒时, 3618ANM NMB AB +-=+,即9 1.52354t t ++-=,967t ∴=, 综上所述,当30AOB ∠=︒时,符合条件的运动时间t 的值有3,215,12,967.。
浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人3.(3分)的平方根是()A.B.C.D.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.16.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣27.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=13.(4分)单项式的系数为.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.15.(4分)如图,以图中的A、B、C、D为端点的线段共有条.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×18.(6分)计算:19.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点米?(3)球员在这一组练习过程中,共跑了多少米?22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.浙教版2019-2020学年度七年级上册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数解:A、0的绝对值是0,故选项错误;B、绝对值为3的数是3或﹣3,故选项错误;C、﹣2的绝对值是2,故选项正确;D、正数的绝对值是它本身,故选项错误.故选:C.2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人解:12000用科学记数法表示为1.2×104.故选:B.3.(3分)的平方根是()A.B.C.D.解:∵(±)2=,∴的平方根是±,故选:C.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元解:由题意可得,这一商品的价格为:m(1+50%)×0.6=0.9m(元),故选:B.5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.1解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.6.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣2解:∵2x2+3x+7=8,∴2x2+3x=1,∴2x2+3x﹣9=1﹣9=﹣8.故选:B.7.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,故A选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、根据等式的性质2得出,c=0,不成立,故C选项符合题意;D、根据等式的性质2可得出,若=,则3x=2y,故D选项不符合题意;故选:C.9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为9或1.解:由题意得:5+4=9或5﹣4=1,则距离A点4个单位长度的点表示的数为9或1;故答案为:9或1.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=7解:∵,∴3<<4,∴a=3,b=4,∴a+b=7.故答案为:713.(4分)单项式的系数为﹣.解:单项式的系数为:﹣.故答案为:﹣.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.15.(4分)如图,以图中的A、B、C、D为端点的线段共有6条.解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6条.故答案为:6.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过90或110秒两人相距100米.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×解:原式=2﹣××(﹣3)=2+=2.18.(6分)计算:解:=﹣1+4﹣3+2=219.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.解:原式=6x2y﹣12xy2+3xy2﹣x2y=5x2y﹣9xy2,当x=﹣,y=1时,原式=+=.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.解:如图1,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,∴∠AOC+∠BOC=2α﹣10°+α=80°,∴α=30°,∴∠BOC=30°;如图2,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点60米?(3)球员在这一组练习过程中,共跑了多少米?解:(1)+40﹣30+50﹣25+25﹣30+15﹣28+16﹣18=15(米)∴球员最后到达的地方在出发点的东方,距出发点15米远;(2)+40﹣30+50=60(米)故答案为:60;(3)|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=40+30+50+25+25+30+15+28+16+18=277(米)∴球员在这一组练习过程中,共跑了277米.22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.解:(1)由题意,得∠P AB=65°,∵表示同一方向的射线是平行的,即AP∥BQ,∴∠P AB+∠QBA=180°,∴∠QBA=180°﹣∠P AB=180°﹣65°=115°,∵∠ABC=100°,∴∠CBQ=∠QBA﹣∠ABC=115°﹣100°=15°,∴C村在B村的北偏西15°方向上;(2)设每个施工队每天铺设x米,由题意,得9x﹣6x=600,解得x=200,∴9x+6x=9×200+6×200=3000,答:两段公路的总长3000米.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?解:(1)由于3000×0.9=2700>2600所以,应该是按照活动①付款.即按照标价2600元付款.答:第一次购买了标价2600元的家具;(2)因为5000×0.8=4000,3906<4000所以,不可能打八折.设付款39602元的家具的标价是x元,由题意,得0.9x=3906解得x=4340则(4340+2600)×0.8=5552(元)答:如果小华爸爸一次性购买这些家具,应付5552元;(3)2600+3906=6506(元),则能比原来节约:=.24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
(台州)2019-2020学年第一学期七年级期末测试-语文试题卷参考答案及评分建议

2019-2020学年第一学期七年级期末测试-语文试题卷参考答案及评分建议一、书写(3分)二、积累(16分)1. (4分)飘涨致纪2. (10分)(1)同物既无虑(2)随君直到夜郎西(3)岐王宅里寻常见(4)一夜征人尽望乡(5)僵卧孤村不自哀(6)断肠人在天涯(7)静以修身俭以养德(8)逝者如斯夫不舍昼夜(每空1分,如有错字、别字、加字、漏字,该空不得分)3.(2分)【A】解析:泰戈尔是印度的。
三、阅读(46分)4. (4分)A.无肠国“无肠国”里的富翁比较刻薄而且很肮脏,他们用自己的粪便当饭食,来供应奴仆。
B.女儿国“女儿国”男子反穿衣裙,作为妇人,以治内事;女子反穿靴帽,作为男人,以治外事。
女子的智慧、才能都不弱于男子,从皇帝到辅臣都是女子。
5. (2分)对长妈妈生平知之甚少的遗憾、愧疚之情,对这类社会地位低下,没有文化的淳朴善良的劳动妇女的怀念和感激之情。
(写出两种感情,每种感情各得1分)6.(3分)这是一位勤劳能干的老人,他不愿享清福,种植土货,采摘草药,会加工各式竹器(1分);为人实诚、本分,淳朴善良,别人选好了的蒜瓣忘记拿,他一定要留着等主人来,绝不再转卖他人(1分);做事认真、细致,把生姜、蒜瓣、马铃薯的土块抹得很干净,把草药用翠绿的棕叶扎着(1分)。
7. (4分)(1)运用比喻的修辞手法,把老人的心比作一块荒地(1分),生动形象地写出了老人在家闲不住的心境,没有劳动干活,心里就觉得空空荡荡,失去了依托(1分)。
(2)“搜寻”是仔细地寻找的意思(1分),这里表现出“我”对老人担子里的东西的好奇与仔细观察之状,才会发现他做事的细致、用心(1分)。
8. (4分)(1)这里的“笑”,是因为老人觉得自己的担子给旁人带来不便与麻烦感到歉意,也传达了他的善意与礼貌。
(2分)(2)此处的“笑”,是因为大家听了老人的话后,感受到他的淳朴善良与做生意实在的品质,从而表现出的一种赞赏、愉悦之情。
(2分)9. (4分)“没有吃不了的苦,只有享不了的福。
精品解析:浙江省白云学校2019-2020学年七年级上学期期末数学试题(原卷版)

人教版2019—2020学年浙江省台州市椒江区白云中学七年级第一学期数学期末质量评估考试一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,最大的是( )A. -3B. 0C. 1D. 22.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A. 0.845×104亿元B. 8.45×103亿元C. 8.45×104亿元D. 84.5×102亿元 3. 与﹣2ab 是同类项的为( )A. ﹣2acB. 2ab 2C. abD. ﹣2abc4. 下列各式中,运算正确的是( )A. ()2121a a -=-B. 2222a a a +=C. 33323a a a -=D. 23a a a +=5. 下列说法中正确的个数为( )(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A. 1个B. 2个C. 3个D. 4个6. 如果1x =是方程250x m +-=的解,那么m 的值是( )A. -4B. 2C. -2D. 47. 下列等式变形正确的是( )A. 由a b =,得33a b =--B. 由3x y -=-,得x y =-C. 由14x =,得14x =D. 由x y =,得x y a a= 8. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积。
浙教版 2019-2020学年度初一数学上册期末测试题(含答案)

2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
椒江区2019-2020七年级期末测试卷

椒江区2019—2020七年级期末质量评估数学试题一、选择题(每小题3分,共30分)1. 四个有理数-1,0,-3,4,其中最小的有理数是( )A. -1B.0C.-3D.42. 下列平面图形不能够围成正方体的是( )3. 2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动。
据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )A.41012⨯B.4102.1⨯C.5102.1⨯D.61012.0⨯4. 下列计算正确的是( )A.y x xy y x 2222-=-B.ab b a 532=+C.b a b a 32)3(2-=-D.ab ab ab 633-=--5. 有理数a ,b 在数轴上对应的位置如图所示,则( )A. 0<+b aB.0>-b aC.0=-b aD.0>ab6. 岛A 和岛B 处于东西方向的一条直线上,由岛A 、岛B 分别测得船C 位于北偏东 40和北偏西 50方向上,下列符合条件的示意图是( )7. 下列运用等式性质进行的变形中,正确的是( )A. 若y x =,则y x +=-55B.若b a =,则bc ac =C.若32=x ,则32=x D.若b a =,则cb c a = 8.如图,点B 为线段AC 上一点,cm AB 11=,cm BC 7=,D 、E 分别是AB 、AC 的中点, 则DE 的长为( )A.cm 5.3B.cm 4C.cm 5.4D.cm 5 9.已知关于x 的一元一次方程a x x +=+21331的解为1-=x ,那么关于y 的一元一次方程a y y ++=++)2(21)2(331的解为( ) A.1-=y B.1=y C.3-=y D.3=yA.B. C. D.A D E BC10.根据以下图形变化的规律,图中的省略号里黑色正方形的个数可能是( )A.2016B.2017C.2018D.2019二、填空题(本大题共6个小题,每小题3分,共18分)11. 3-的倒数是 12. 请写出一个解为1-=x 的一元一次方程:13. 计算:=-''38483367 14. 儿子今年12岁,父亲今年40岁,则再过 年,父亲的年龄是儿子的年龄的2倍。
2019-2020学年浙江省台州市七年级上册期末数学试卷

2019-2020学年浙江省台州市七年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共10小题,共40.0分)1.下列各数中,比−3小的数是()A. −3B. −2C. 0D. −42.下列各式中,是一元一次方程的是=2 C. 2x+y=5 D. 3x=2x−1A. 4x+3B. 1xx3y n是同类项,则m,n的值分别为()3.若单项式x m y与−12A. 3,0B. 3,1C. 3,3D. 不能确定4.下列现象中,可以用“两点之间,线段最短”来解释的是()A. 把弯曲的公路改直,就能缩短路程B. 植树的时候只要定出两排树的位置,就能确定同一行树所在的直线C. 利用圆规可以比较两条线段的长短关系D. 用两个钉子就可以把木条固定在墙上5.如图是一个正方体纸盒的展开图,将其围成一个正方体后,则与“5”相对的是()A. 2B. 0C. 数D. 学6.射线表示北偏东60°方向的图是()A. B.C. D.7.下列等式变形正确的是()A. 由a=b,得a−3=b−3B. 由−3x=−3y,得x=−yC. 由x4=1,得x=14D. 由x=y,得xa=ya8.已知甲、乙两数之和为5,且甲数比乙数大2,求甲、乙两个数.设乙数为x,则可列出的方程是().A. x+2+x=5B. x−2+x=5C. 5+x=x−2D. x(x+2)=59.−|−2|的相反数是()A. −2B. 2C. 12D. −1210.已知a n=(−1)n+1,当n=1时,a1=0;当n=2时,a2=2;当n=3时,a3=0,…;则a1+a2+⋯a2018的值为()A. 2018B. 2017C. 1009D. 1010第II卷(非选择题)二、填空题(本大题共6小题,共30.0分)11.−2的相反数是______.12.高铁被称为中国“新四大发明”之一,2017年初中国高铁运营里程已超过2.2万公里,占全球高铁运营里程的65%,其中“2.2万”用科学记数法可表示为____.13.多项式3x2−5x+2是__________次__________项式,常数项是___________.14.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=124°,∠A=______ .16.有一列数:−1,12,−13,14,−15,16,…,则第2019个数是____.三、计算题(本大题共1小题,共8.0分)17.计算:(1)−12×2+(−2)2÷4−(−3)(2)12+(−712)−(−18)−32.5.四、解答题(本大题共7小题,共72.0分)18.解方程:(1)7+2x=12−2x.(2)x−3=−12x−419.先化简,再求值:−a2b+(3ab2−a2b)−2(2ab2−a2b),其中|a+1|+(b−2)2=20.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?21.已知有理数a,b互为相反数,且a≠0,c,d互为倒数,有理数m和−2在数轴上表示的点相距3个单位长度,求|m|−ab +a+b2019−cd的值.22.如图,O为直线AB上一点,OC为射线,OD、OE分别为∠AOC、∠BOC的平分线.(1)判断射线OD、OE的位置关系,并说明理由;(2)若∠AOD=30°,求证:OC为∠AOE的平分线;(3)如果∠AOD:∠AOE=2:11,求∠BOE的度数.23.观察各单项式−2a,4a2,−6a3,8a4,−10a5,12a6,….(1)写出第n个单项式.(2)分别写出第2017个、第2018个单项式.24.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm.点P从点O出发,沿OM方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO 匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:2(2)在(1)题的条件下,求点Q的运动速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椒江区2019—2020七年级期末质量评估数学试题
一、选择题(每小题3分,共30分)
1. 四个有理数-1,0,-3,4,其中最小的有理数是( )
A. -1
B.0
C.-3
D.4
2. 下列平面图形不能够围成正方体的是( )
3. 2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动。
据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )
A.41012⨯
B.4102.1⨯
C.5102.1⨯
D.61012.0⨯
4. 下列计算正确的是( )
A.y x xy y x 2222-=-
B.ab b a 532=+
C.b a b a 32)3(2-=-
D.ab ab ab 633-=--
5. 有理数a ,b 在数轴上对应的位置如图所示,
则( )
A. 0<+b a
B.0>-b a
C.0=-b a
D.0>ab
6. 岛A 和岛B 处于东西方向的一条直线上,由岛
A 、岛
B 分别测得船
C 位于北偏东ο40和北偏西ο50方向上,下列
符合条件的示意图是( )
7. 下列运用等式性质进行的变形中,正确的是( )
A. B. C. D.
A. 若y x =,则y x +=-55
B.若b a =,则bc ac =
C.若32=x ,则
32=x D.若b a =,则c
b c a = 8.如图,点B 为线段AC 上一点,cm AB 11=,cm BC 7=,D 、E 分别是AB 、AC 的中点, 则DE 的长为( )
A.cm 5.3
B.cm 4
C.cm 5.4
D.cm 5
9.已知关于x 的一元一次方程a x x +=+2133
1的解为1-=x ,那么关于y 的一元一次方程a y y ++=++)2(21)2(33
1的解为( ) A.1-=y B.1=y C.3-=y D.3=y
10.根据以下图形变化的规律,图中的省略号里黑色正方形的个数可能是( )
A.2016
B.2017
C.2018
D.2019
二、填空题(本大题共6个小题,每小题3分,共18分)
11. 3-的倒数是
12. 请写出一个解为1-=x 的一元一次方程:
13. 计算:=-''38483367οο
14. 儿子今年12岁,父亲今年40岁,则再过 年,父亲的年龄是儿子的年龄的2倍。
15. 已知3=x ,2=y ,且x y y x -=-,则=-y x
16. 若p =⨯-52)2019(,则532019⨯的值可以表示为 (用含
p 的式子表示) 三、解答题(共7题,共52分)
17. (本题6分)计算:
A D E
B C
(1))10()6()8(3++-+---
(2)21)2(85314⨯-÷--+- 18. (本题8分)解方程:
(1)15)12(3=-x
(2)43
221=-++x x 19. (本题6分)先化简,再求值:)252()12(322+--+-x x x x ,其中1-=x .
20. (本题7分)如图,平面上有线段
AB 和点C ,按下列语句要求画图与填空: (1)作射线AC ;
(2)用尺规在线段AB 的延长线上截取AC BD =
; (3)连接BC ;
(4)有一只蚂蚁想从点A 爬到点B ,它应该沿路径(填序号) (①AB ,②CB AC +)爬行最近,这样爬行所运用到的数学原理是 .
21. (本题7分)请补充完成以下解答过程,并在括号内填写该步骤的理由.
已知:如图,ο90=∠AOB ,ο90=∠COD ,OA 平分DOE ∠,若ο20=∠BOC ,求COE ∠的度数. A C B
解:因为ο
90=∠AOB , 所以+∠BOC ο
90=. 因为 ο
90=, 所以ο
90=∠+∠AOC AOD .
所以AOD BOC ∠=∠.( )
因为ο20=∠BOC , 所以ο20=∠AOD .
因为OA 平分DOE ∠,
所以 =∠=AOD 2 °
所以=∠-∠=∠DOE COD COE °.
22. (本题8分)春节临近,某市各商场掀起了促销狂潮,现有甲、乙、丙三个商场开展的促销活动方案如下表所示: 商场
促销活动方案 甲 全场按标价的6折销售
乙 实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金
(比如:顾客购衣服230元,赠券200元,再购买裤子时可冲抵现金,不再送券)
丙
实行“满100元减45元的优惠”(比如:某顾客购物230元,他只需付款140元)
根据以上活动信息,解决以下问题:
(1)这三个商场同时出售一件标价390元的上衣和一条标价300多元的裤子,李先生发现在甲、乙商场购买这一套衣服的付款额是一样的,请问这条裤子的标价是多少元?
(3)请通过计算说明第(1)题中李先生应该选择哪家商场购买最实惠?
23. (本题10分)如图,线段MN 是周长为cm 36的圆的直径(圆心为O ),动点A 从点M 出发,以s cm /3的速度沿顺时针方向在圆周上运动,经过点N 时,其速度变为s cm /5.1,并以这个速度继续沿顺时针方向运动之点M 后停止。
在动点
A 运动的同时,动点
B 从点N 出发,以s cm /2的速度沿逆时针方向在圆周上运动,绕一周后停止运动。
设点A 、点B 运动时间为)(s t 。
(1)连接OA 、OB ,当4=t
时,AOB ∠= °,在整个运动过程中,当6>t 时,点A 运动的路程为 cm (第2空结果用含t 的式子表示);
(2)当A 、B 两点相遇时,求运动时间t
(3)连接OA 、OB ,当ο
30=∠AOB 时,请直接写出所有符合条件的运动时间t。