飞秒激光器的应用研究剖析
光学中的高功率飞秒激光的应用

光学中的高功率飞秒激光的应用飞秒激光是一种特殊的激光,其激光脉冲时间短至飞秒级别(1飞秒等于1亿分之一秒)。
高功率飞秒激光作为一种新兴激光技术,有很多应用,特别是在光学领域。
本文将探讨高功率飞秒激光在光学中的应用。
一、飞秒激光的基本原理飞秒激光通过特殊的激光器器件产生,其原理是采用了超短脉冲激光的工作原理。
在这种激光中,由于脉冲时间极短,激光在介质中的传播时间也很短,所以能量非常强,能达到数千瓦甚至上万瓦的高功率。
二、飞秒激光在光学加工领域的应用在光学加工领域,飞秒激光被广泛应用。
在最初的应用中,飞秒激光主要用于三维微加工,比如制造微小的微机电系统和激光微加工。
近年来,人们发现飞秒激光还可以用于材料加工的超精细切割。
与传统的机械切割相比,飞秒激光可以实现材料精细切割。
三、飞秒激光在生物医学领域的应用除了光学加工领域,飞秒激光在生物医学领域也有很多应用。
比如,它可以用于切割角膜、修补血管以及治疗皮肤疾病等。
四、飞秒激光在光谱学领域的应用飞秒激光在光谱学领域也有应用。
由于其脉冲时间极短,可以用于对材料的微观结构进行分析和研究,包括分子和晶体的内部结构以及它们之间的相互作用。
五、飞秒激光在信息处理领域的应用飞秒激光在信息处理领域也有应用。
利用飞秒激光对物质材料进行编码,在空间和时间上形成基于路径的量子逻辑门的运算,以实现量子计算。
这一应用能力说明了在全世界范围内,作为实际应用现场的飞秒激光,具有巨大的发展潜力。
六、飞秒激光的未来发展趋势随着科技的进步和人们对高质量生活的追求,飞秒激光的未来发展趋势是显而易见的。
在生物医学、光学加工和量子计算等领域,飞秒激光将会有越来越广泛的应用。
总之,飞秒激光作为一种新技术,其应用领域非常广泛,已经在很多领域得到了广泛的应用。
未来它将继续发挥重要作用,为科学技术的进步和人类社会的发展做出贡献。
飞秒激光技术在科学研究中的应用

飞秒激光技术在科学研究中的应用作为一种新兴的光学技术,飞秒激光技术因其超快速的响应和微小的光学波长而备受瞩目。
在过去的二十年里,飞秒激光技术在材料科学、化学、生物等多个领域都有广泛的应用,成为近几年来最受欢迎的研究工具之一。
本文将介绍飞秒激光技术在科学研究中的应用,并对其未来的应用前景进行展望。
一、飞秒激光技术的基本原理首先需要了解飞秒激光技术的基本原理。
飞秒激光技术是一种超快速的激光技术,其激光脉冲的持续时间仅为飞秒级别,即1秒内发生的次数为10¹⁵,因此也被称为超短激光技术。
飞秒激光技术以一定的泵浦能量输入样品光团,该能量非常的小,无法改变样品的温度,密度等基础性质。
但是,由于超快速的响应特性,飞秒激光与样品相互作用时会产生非常强烈的局部场,将样品加热到非常高的温度,并且经过短暂的时间就会冷却回去。
这一过程类似于一种“烤焦即焕新”的过程,即飞秒激光的微小功率集中于样品的局部区域,将其加温后再冷却,从而使材料的内部结构发生变化。
这样,飞秒激光技术就可以作为一种非常精确而有力的加工工具,将物质加热并产生非常短暂但高度能量密度的局部场,以实现样品上的各种操作。
二、飞秒激光技术在材料科学中的应用飞秒激光技术在材料科学中的应用十分广泛。
首先是在制造纳米器件方面的应用。
利用飞秒激光技术可以制造出非常细微的设备和结构,同时攻克了传统机械加工技术所面临的纳米尺度加工难题,具有更大的预测性和可控性。
这项技术广泛应用于半导体加工、微机电系统制造和纳米器件制造等领域。
另外,飞秒激光技术还可用于材料微观结构分析和表面改性,通过控制激光工艺参数、改变材料表面能量状态,改善材料的物理和化学性能。
例如,使用飞秒激光技术可以制造出非常精细的金属纳米结构,具有优异的可见光透过率和电学性能;同时,它还可以在不影响材料内部结构的情况下改变材料表面的形貌,从而实现材料表面的精密工艺处理,如通过制造非常细密的孔洞或精密的凹凸点阵等得到更多的物理或化学特性。
飞秒激光微加工技术研究及其应用

飞秒激光微加工技术研究及其应用随着科技的日益发展,飞秒激光微加工技术也越来越受到人们的关注。
这种技术利用飞秒激光的短脉冲和高能量密度,对材料进行微加工和微加工制造。
本文将介绍飞秒激光微加工技术的研究和应用,以及对未来的展望。
一、飞秒激光微加工技术研究飞秒激光微加工技术是一种先进的加工技术,其主要原理是通过高速的飞秒脉冲激光照射在材料表面,产生局部熔化和蒸发的现象,从而实现微加工和微加工制造。
这种技术所使用的激光脉冲时间非常短,只有几百飞秒,从而可以大大减少加工产生的热量和机械压力。
飞秒激光微加工技术的研究主要涉及到激光源的开发、加工机器的设计和开发、加工过程控制技术等方面。
激光源是飞秒激光微加工技术的核心,目前主要有铝镓镓砷(AlGaAs)、纳米抽运钛宝石(Nd:YAG)、纳米纤维激光(NFL)等类型的激光源被广泛应用于该技术领域。
此外,加工机器的设计和开发也是该技术研究的重点之一,通过优化机器结构、改进系统控制,可以提高加工的精度和效率。
二、飞秒激光微加工技术应用飞秒激光微加工技术具有高精度、高效率、高品质的特点,被广泛应用于制造、信息、能源、生命科学等领域。
以下将结合实际应用案例,介绍飞秒激光微加工技术的具体应用。
1. 精密制造精密制造是飞秒激光微加工技术的主要应用领域之一。
该技术可以用于制造微型零部件、微型机械、模具等产品。
例如,飞秒激光微加工技术可以制造微型LED芯片,利用飞秒激光脉冲加工出微结构,提高LED的光转换效率。
此外,在MEMS和MOEMS等领域,飞秒激光微加工技术也被广泛应用。
2. 信息技术飞秒激光微加工技术在信息技术领域中的应用主要涉及到光存储和光通信技术。
利用飞秒激光微加工技术可以制造出高分辨率的光栅和微孔阵列,作为信息记录介质,实现超高容量的光存储;同时也可以制造出高品质的光通信设备,实现高速、高容量、低损耗的光通信。
3. 能源科学飞秒激光微加工技术在能源科学领域中的应用主要涉及到纳米材料的制造和太阳能电池的研究。
飞秒激光技术在化学反应中的应用研究

飞秒激光技术在化学反应中的应用研究随着科技的不断进步和发展,新的机会和挑战不断涌现。
现代化学也不例外,飞秒激光技术的出现,使得化学研究有了更多的可能性。
而使用飞秒激光技术,可以更加深入的研究化学反应,探究反应机制、反应动力学等重要问题。
一、飞秒激光技术的应用飞秒激光技术是一种高新技术,其波长范围在纳米至亚纳米级别,时间尺度在飞秒至皮秒级别。
使用飞秒激光技术,可以实现对物质的高精度光学控制和探测,同时还能对物质的光学、电子、原子和分子间的相互作用进行研究。
目前,飞秒激光技术的应用范围非常广泛,例如在微加工、光子学、多光子共振成像、化学反应研究等领域有着广泛的应用。
尤其在化学反应研究中,飞秒激光技术被广泛应用于反应动力学、反应机制的研究。
二、飞秒激光技术在化学反应中的应用研究化学反应研究是化学领域中的重要方向之一,研究反应机制和反应动力学,对于实现所期望的反应条件、反应路径、反应速率等有着重要的指导意义。
可以说,化学反应的研究是化学发展的基础和保障。
在传统的化学反应研究中,化学反应的机理和速率往往是模糊的,难以观测,而使用飞秒激光技术,则可以清晰直观地观测到化学反应的机理和速率,从而深入探究其反应规律和机理。
1. 飞秒激光技术观测化学反应动力学化学反应的动力学研究是化学研究的一项重要内容。
在传统的化学反应动力学研究中,通常需要对化学反应中产物的浓度、反应物消耗速率等数据进行分析。
而使用飞秒激光技术,可以跟踪反应过程中分子内键键脆性的变化,直接测量反应的动力学参数,例如反应速率常数、激发态寿命等。
2. 飞秒激光技术探究化学反应机理化学反应的机理是反应动力学的基础。
在飞秒激光技术的帮助下,研究者们通过测量反应物和中间产物的振动频率、分子内脆性、单独反应步骤等参数,探究了众多化学反应的机理。
例如,在石墨烯制备中的反应机理研究中,飞秒激光技术被广泛应用。
研究人员可以通过飞秒激光的 impulsive Raman spectroscopy 技术,实时地测量二氧化碳和氢气在钯催化剂上的反应过程。
超快飞秒激光在实验物理中的应用研究

超快飞秒激光在实验物理中的应用研究引言超快飞秒激光是一种在纳秒、皮秒和次飞秒时间尺度内发生的极短时间内能量释放的激光。
近年来,随着科技的发展,超快飞秒激光技术在物理学、化学和生物学等领域中得到了广泛的应用。
本文将详细介绍超快飞秒激光在实验物理中的应用研究。
超快飞秒激光的基本原理超快飞秒激光是一种在纳秒、皮秒和次飞秒时间尺度内发生的极短时间内能量释放的激光。
它通过和材料相互作用,能够在非常短的时间内实现光与材料的强耦合,产生很高的光和材料之间的相互作用强度。
超快飞秒激光在实验物理中的应用1、超快飞秒激光在微观粒子物理中的应用超快飞秒激光在微观粒子物理中的应用是本文的一个重点。
依据经典电动力学理论,光束和物质之间的相互作用遵循Maxwell方程。
所以,如果我们能够控制光束的振幅和相位变化,那么就可以控制光在介质中的传播和调制过程。
近年来,超快飞秒激光在加速器物理和粒子物理中的应用越来越广泛。
它被广泛应用在光阴极场的研究和自由电子激光器的实验室研究中。
2、超快飞秒激光在量子光学中的应用超快飞秒激光在量子光学中的应用可以追溯到上世纪80年代。
在如今的实验物理中,超快飞秒激光已经成为实现量子光学实验应用的有力工具。
它可以实验性地调整光子之间的相互作用,然后测量光子的精度,实现光子之间的剪辑和干涉。
3、超快飞秒激光在原子和分子实验中的应用超快飞秒激光在原子和分子实验中的应用也得到了充分的发挥。
通过应用超快飞秒激光对原子和分子进行调控和探测,我们可以得到更精确的信息和数据。
在实验物理中,超快飞秒激光被广泛应用于反应动力学和分子结构分析的实验研究中。
它也被应用于量子纠缠和量子信息实验室。
结论超快飞秒激光是一种高度控制和可调整的工具,在实验物理中的应用越来越广泛。
此外,它还可以应用于光阴极场的研究和自由电子激光器的实验室研究中。
它也被广泛应用于反应动力学和分子结构分析的实验研究中。
最后,超快飞秒激光被广泛应用于量子纠缠和量子信息实验室。
飞秒激光3D打印的研究与应用

飞秒激光3D打印的研究与应用随着3D打印技术的不断发展,越来越多的行业开始应用3D打印技术。
尤其是飞秒激光3D打印技术的出现,为3D打印行业带来了新的技术突破,因此在医疗、军事、工业等诸多领域都得到了广泛的应用。
本文将探讨飞秒激光3D打印技术的原理、研究进展以及应用情况。
1. 飞秒激光3D打印技术的原理飞秒激光3D打印技术是一种非接触式的加工技术,其主要原理是将飞秒激光束聚焦在工作材料上,利用飞秒激光的特殊性质对工作材料进行加工。
在飞秒激光束作用下,材料表面的电子被迅速加速而凝聚在一起,形成具有高密度的等离子体。
等离子体产生高温和高压,这种高能量的作用下可以使工作材料发生相变,形成微小的结构和复杂的形状。
通过对激光束的控制和调整,可以在微纳米级别对材料进行精确的加工和控制。
2. 飞秒激光3D打印技术的研究进展随着飞秒激光3D打印技术的不断发展,一批科研人员在该领域取得了重要的创新成果。
例如,美国麻省理工学院和哈佛大学的研究人员合作利用飞秒激光3D 打印技术打印出了一种具有高效控制能力的机器人。
这种机器人的身体、腿和传感器都是一体化设计,具有诸如检测、机械臂和光学感应等多种功能。
此外,中国科学院长春光学精密机械与物理研究所也在飞秒激光3D打印技术方面取得了显著成果。
该研究所推出了一种基于飞秒激光3D打印技术的坑道模拟流体力学实验系统,能够准确模拟地下流体的动力和热学过程,实现了地下资源勘探的高精度模拟。
3. 飞秒激光3D打印技术的应用情况由于飞秒激光3D打印技术在精度和制造效率方面都具有显著的优势,因此在医疗、军事、工业以及文物保护等领域得到了广泛应用。
在医疗方面,飞秒激光3D打印技术可以快速精确地制造出人体骨骼和血管模型,提高手术过程的精细程度和安全性。
此外,利用该技术还可以制造出高精度的矫形器和义肢,帮助很多残疾人重获自由。
在军事方面,飞秒激光3D打印技术可以制造出高精度的光学器件和构建具有隐身效果的材料。
飞秒光纤激光器的应用

飞秒光纤激光器的应用飞秒光纤激光器是一种主要由光纤激光器构成,具有飞秒(10负15次秒)区持续时间的脉冲激光器。
飞秒激光器的脉宽极窄,瞬问功率极高,既使平均输出功率为lW,峰值功率也能达到千瓦级至兆瓦级以上。
飞秒激光器现已应用于以往纳秒脉冲激光器或连续波激光器无法应用的各种领域。
1990年,日本爱信精机公司以IMRA AmericaInc.的名字在美国成立了一家子公司,门从事飞秒光纤激光器的研发、生产、销售与应用开发工作。
因此“IMRA”既是美国研究法人的名字,又是爱信精机公司生产的激光器的商标名称,这是在美国研究开发、日本制造的激光器。
1、飞秒光纤激光器的优点1.1、小型轻便光纤激光器在确保必要光学长度的同时,可将光纤卷成半径约3cm的环形。
与固体激光器相比,光纤激光器的体积大幅缩小。
光纤形态每单位体积的表面积大于棒状或片状晶体激光器,散热效果好,不需要冷却器等外围装置,因此在这方面又大幅缩小了激光器的体积。
1.2、高可靠性高稳定性光纤激光器是由光纤部件组装而成。
这些光纤部件采用电弧熔接的方法,因此光学轴长期无偏移,这种连接方法确保了光纤激光器的稳定性和可靠性。
另外,IMRA激光器系统外部采购的元器件都严格选用高可靠性的光通信部件,这也对激光器系统的高可靠性提供了保障。
1.3、高光束质量单模光纤输出的光是近乎理想的点光源,输出光束的圆度和强度分布较容易获得接近理想的高质量输出光束。
飞秒光纤激光器在用于微细加工时,聚焦光束很容易达到透镜的聚焦极限,因此适于微细加工。
1.4、低功耗现已广泛使用的钛宝石飞秒激光振荡器的晶体吸收波长在530nm附近,将大功率Nd:YAG激光器的波长转换成530nm来泵浦激光器,既需要大型Nd:Y AG激光器,又需要冷却器,其电能消耗很大。
而光纤激光器则不需要冷却器,可以用二极管激光器直接泵浦。
结果表明,飞秒光纤激光器的电光转换效率优于钛宝石飞秒激光器1个数量级。
2、飞秒光纤激光振荡器虽然20世纪90年代初问世的飞秒光纤激光器的光学轴具有长期无偏移的特点,但因温度的变化等会使偏振面光纤旋转,从而导致输出功率的改变,因此需要偏振面的调整机构,并需要维护。
飞秒激光在微细加工中的应用研究

飞秒激光在微细加工中的应用研究飞秒激光是一种在微细加工领域广泛应用的技术。
相比传统的加工方法,飞秒激光具有更高的精度和更少的热影响。
在本文中,将详细介绍飞秒激光在微细加工中的应用研究进展。
第一部分:飞秒激光的基本原理飞秒激光是一种超短激光,通常指脉冲宽度在飞秒级别(10^-15秒)的激光。
飞秒激光具有很高的光强度和能量密度,可以在极短的时间内将材料加工。
同时,由于其脉冲宽度非常短,因此在加工过程中产生的热影响非常小,可以减少材料的变形和损伤。
飞秒激光的产生原理是利用激光器产生的光束通过非线性光学晶体的频率倍增和棕色运动加固化产生的。
飞秒激光的波长通常在可见光和红外光之间,具有很好的可见性和穿透力。
第二部分:飞秒激光在微细加工中的应用飞秒激光在微细加工中具有广泛的应用。
下面将介绍一些典型的应用案例。
1.梯形结构加工梯形结构是微电子器件中常见的结构之一。
传统的加工方法通常采用化学腐蚀或者电解加工,但是这些方法在材料损伤和加工精度上存在一定的问题。
飞秒激光可以精确控制梯形结构的大小和形状,同时在加工过程中不会产生任何热影响,可以用于制造高精度的微电子器件。
2.钢化玻璃加工钢化玻璃是一种具有很高强度和抗冲击性能的材料,通常应用于高端建筑和汽车领域。
传统的加工方法通常采用机械加工或者化学腐蚀,但是这些方法会损伤材料的表面光滑度和强度。
飞秒激光可以在玻璃表面制造非常小的裂纹,形成一定的弯曲形变,这样就可以在不破坏强度的情况下实现玻璃的加工和切割。
3.金属微孔加工金属微孔在医疗器械和电子器件中有广泛的应用。
传统的加工方法通常采用电化学加工和激光切割,但是这些方法在加工过程中会产生很多热影响和能量损耗。
飞秒激光可以利用光化学反应制造微孔,加工精度和质量都非常高。
第三部分:飞秒激光在未来的应用前景飞秒激光在微细加工中的应用已经非常广泛,但是还有很多潜在的应用前景。
下面将简要介绍一些未来可能的应用领域。
1.光电子器件光电子器件是将光电转换技术和微电子技术相结合的一种新型器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞秒激光器的应用研究院系:信息科学与技术系专业班:光信0801班姓名:周紫雁学号:200811820022012年5月飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser摘要飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。
通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。
首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。
通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。
虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。
在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。
结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。
关键词:飞秒激光工业应用眼科应用AbstractCurrently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan.Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects.Key words:Femtosecond laser industrial application ophthalmology application目录摘要 (I)Abstract ............................................................................................................................... I I 绪论 .. (1)1飞秒激光的物理特性及主要用途概述 (2)1.1飞秒激光的物理特性 (2)1.1.1飞秒激光物理性质 (2)1.1.2飞秒激光脉冲的产生 (2)1.1.3飞秒激光优势 (3)1.2飞秒激光器的主要应用 (4)1.2.1 生物医疗 (4)1.2.2工业机械微加工 (4)1.2.3微电子光学加工 (5)2飞秒激光器国际应用情况分析 (7)2.1飞秒激光器的全球商业化概述 (7)2.2全球激光器主要生产厂商情况 (9)3 飞秒激光器中国应用分析 (11)3.1 飞秒激光器的生产情况 (11)3.2案例分析及数据调查 (12)3.2.1 飞秒激光治疗近视的优势 (12)3.2.2 飞秒激光近视矫正应用需求分析 (13)结论 (15)致谢 (16)参考文献 (17)绪论飞秒激光的3大特点是超短、超强和高聚焦能力。
飞秒激光脉宽可短至 4 fs(1 fs=10-15 s)以内,功率高达帕瓦量级(1 Pw=10-15w),聚焦功率密度达到1020-1022W/cm2。
飞秒激光可以将其能量全部、快速、准确地集中在限定的作用区域,实现对玻璃、陶瓷、半导体、塑料、聚合物、树脂等材料的微纳尺寸加工,具有其它激光加工无法比拟的优势。
目前,飞秒激光器已经投入市场使用,并在精密仪器制造以及医疗器械上都有所应用,并且显示了其优越的性能,深得购买商的喜爱,是较为前沿的激光技术。
当前,微制造技术的快速发展向加工尺度和精度提出了挑战——需要将加工精度延伸到亚微米甚至纳米量级,并且实现真正意义上的三维立体微加工,而传统的连续和长脉冲激光主要依靠聚焦产生的高温来烧蚀材料,热扩散范围大,加工精度有限,而紫外激光对大多数材料不透明,因而使用上也受到限制。
利用飞秒激光微加工技术有望克服上述传统激光加工技术所面临的各种困难,它可以突破光学微加工方法中由于衍射极限给加工精度带来的限制,并有能力直接在透明材料内部加工出真正的三维微结构。
因此在工业应用上诸多精密仪器加工以及精密手术医疗行业都青睐于新兴的飞秒激光器。
通过调查用户需求、可以切实了解飞秒激光器的应用,了解产品发展趋势,能够为生产企业对产品进行定位 [14]。
1飞秒激光的物理特性及主要用途概述1.1飞秒激光的物理特性飞秒激光是一种以脉冲形式运转的激光,持续时间非常短,只有几个飞秒,一飞秒就是10的负15次方秒,也就是1/1000万亿秒,它比利用电子学方法所获得的最短脉冲要短几千倍。
这是飞秒激光的第一个特点。
飞秒激光的第二个特点是具有非常高的瞬时功率,可达到百万亿瓦,比目前全世界发电总功率还要多出百倍。
飞秒激光的第三个特点是,它能聚焦到比头发的直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍[2-9]。
1.1.1 飞秒激光物理性质超短脉冲激光技术从20世纪80年代开始,经历染料飞秒激光和固体飞秒激光的发展,开辟了飞秒激光的应用时代。
飞秒激光脉冲宽度极短,聚焦后可在较低的脉冲能量下获得极高的峰值功率密度(1020W/cm2以上),焦点出的光电场强度比原子内部库伦电厂还要高[14]。
产生超短脉冲的的激光需要用的锁模技术,实现锁模的方法有很多种,但一般可以分为两大类:即主动锁模和被动锁模。
主动锁模是指通过由外部向激光器提供调制信号的途径来使周期性改变激光器增益或损耗从而达到锁模目的;而被动锁模则是利用材料的非线性吸收或非线性相变的特性来产生激光超短脉冲。
目前最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模技术是一种独特的被动锁模方法。
克尔透镜锁模实际上是利用材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光曾以从而最终实现短脉冲输出。
1.1.2飞秒激光脉冲的产生单一频率的激光持续性的发光,其振幅不随时间改变。
要制造出激光脉冲,可把两个相位相同、频率不同的波相加,此时就会产生所谓的拍频,加强性干涉的部分就会大幅增强、相消性干涉的部分就会相互抵消。
与多条相位相同、频率不同的波相加时,产生的拍频也就越短,峰值的强度也就越大[10]。
要让激光产生如此短的脉冲,必须同时符合多种条件。
首先,激光放大器本身要拥有较好的激光机制,这样才有办法放大各种频率以求符合前述的激光。
目前最新的激光介质是“掺钛蓝宝石晶体”的材料,在1.5m长的共振腔中大约可以放大100万个等间隔频率的光线,如果这些光线能有相同的相位,那么干涉效果可以把光波加强成100万倍的强度,而脉冲的长度则可以缩小100万倍。
其次,要有脉冲压缩机制。
激光现在聚焦的过程中,由于光学克尔效应的关系,高强度的光线会更加的增强其效果,但其他低强度的部分则会被额外装置的光圈所阻挡,丧失其效用。
在这样的装置下,激光的高强度部分被放大得比较多,会越来越强,自然就能产生高强度短脉冲的激光。
最后,要具有腔内色散补偿的功能。
在介质中,不同波长的光线速度并不相同,折射率也不同。
光线通过介质时,也会产生不同的折射,但要产生飞秒脉冲,就要把这些不同波长的光线并不相同,折射率也不同。
光线通过介质时也会产生不同的折射,但要产生飞秒脉冲,就要把这些不同波长的光线经由棱镜的作用补偿他们的光程差,才能达到所需的加强型干涉的效果。
1.1.3飞秒激光优势超短、超强和高聚焦能力是飞秒激光的3大特点。