乳液聚合中乳胶粒粒径大小的影响因素

合集下载

乳液聚合动力学特点

乳液聚合动力学特点

乳液聚合动力学特点乳液聚合是一种重要的聚合反应方式,在高分子材料的合成中有着广泛的应用。

乳液聚合的动力学特点与其他聚合方式相比,具有一些独特之处,下面我们就来详细探讨一下。

乳液聚合的一个显著特点是反应速率快。

这主要是因为乳液聚合体系中存在着大量的乳胶粒,每个乳胶粒都可以看作是一个独立的微型反应器。

在这些微小的反应空间内,单体和引发剂的浓度相对较高,从而使得反应能够迅速进行。

而且,乳胶粒的尺寸很小,表面积与体积之比很大,这有利于反应物的扩散和传递,进一步加快了反应速率。

乳液聚合的另一个重要特点是分子量高。

在乳液聚合中,由于乳胶粒中的自由基被隔离在不同的微小空间内,使得它们之间的终止反应受到限制。

这就意味着自由基有更多的机会与单体分子进行链增长反应,从而能够合成出分子量较高的聚合物。

此外,乳液聚合体系中的水相起到了良好的传热和散热作用,能够有效地控制反应温度,减少因温度过高导致的链转移和链终止反应,有利于高分子量聚合物的生成。

乳液聚合的动力学过程可以分为三个阶段:成核期、恒速期和降速期。

在成核期,乳胶粒的形成是关键。

引发剂分解产生的自由基在水相中引发单体聚合,形成低聚物自由基。

这些低聚物自由基可以通过两种方式形成乳胶粒:一是它们相互结合形成初始乳胶粒;二是它们被已存在的乳胶粒捕获。

成核期的时间较短,但对乳液聚合的最终性能有着重要的影响。

恒速期是乳液聚合的主要阶段。

在这个阶段,乳胶粒的数量保持相对稳定,而单体不断地从水相扩散进入乳胶粒中进行聚合反应。

由于乳胶粒的体积较小,其中的单体能够迅速消耗,使得乳胶粒内的单体浓度基本保持不变,因此反应速率也保持恒定。

降速期则是随着单体在乳胶粒中的浓度逐渐降低,反应速率开始下降。

此时,乳胶粒中的单体不足以维持恒定的反应速率,聚合反应逐渐减缓直至结束。

乳液聚合的动力学还受到许多因素的影响。

首先是乳化剂的浓度和种类。

乳化剂能够稳定乳胶粒,其浓度过低可能导致乳胶粒的不稳定和凝聚,而浓度过高则可能会影响单体的扩散和反应速率。

乳化剂体系对苯丙乳液平均粒径的影响

乳化剂体系对苯丙乳液平均粒径的影响

乳化剂体系对苯丙乳液平均粒径的影响柳泉润;仇鹏;范桂利;李明威;厉生权【摘要】设计苯丙乳液配方中的乳化剂体系,讨论了乳化剂的类型和用量、加入方式及其配比等对乳液平均粒径的影响.借助马尔文激光粒度分布仪对乳液平均粒径进行测试,结果表明:乳化剂总用量越多,乳液平均粒径越小;反应型阴离子乳化剂比普通阴离子乳化剂所得乳液平均粒径小;非离子乳化剂中聚氧乙烯基数目越多,乳液平均粒径越小;乳化剂在预乳化液与打底液中的分配比例越小,乳液平均粒径越小;对于阴非离子乳化剂复配体系,阴离子乳化剂用量比例越大,乳液平均粒径越小.【期刊名称】《涂料工业》【年(卷),期】2015(045)003【总页数】4页(P37-40)【关键词】苯丙乳液;反应型乳化剂;乳化剂复配体系;平均粒径【作者】柳泉润;仇鹏;范桂利;李明威;厉生权【作者单位】中海油能源发展股份有限公司惠州石化分公司,广东惠州516086;中海油能源发展股份有限公司惠州石化分公司,广东惠州516086;中海油能源发展股份有限公司惠州石化分公司,广东惠州516086;中海油能源发展股份有限公司惠州石化分公司,广东惠州516086;中海油能源发展股份有限公司惠州石化分公司,广东惠州516086【正文语种】中文【中图分类】TQ630.4苯丙乳液除具有丙烯酸酯系聚合物乳液的优点外,还有性价比高、无毒、无味、不燃等特点,其涂膜具有良好的硬度、耐水性、耐碱性及耐擦洗性等,因此在建筑涂料、金属表面乳胶涂料、木器涂料、防火涂料、纸张粘合剂、胶粘剂和油墨等领域有广泛应用[1]。

乳胶粒的大小及分布对苯丙乳液的性能及应用有很大的影响,因此研究苯丙乳液平均粒径具有重要意义。

乳化剂体系是苯丙乳液合成原料中的主要部分,其类型和用量是影响苯丙乳液平均粒径的关键因素,同时对乳液的稳定性及涂料应用性能等也具有重要影响。

为满足本研究对苯丙乳液稳定性的要求,拟制备粒径为120~130 nm的苯丙乳液;通过配方设计,考察了不同乳化剂复配体系对苯丙乳液平均粒径的影响,从而确定最终乳化剂复配配方。

有机硅_丙烯酸酯聚合物乳液合成及粒径分析

有机硅_丙烯酸酯聚合物乳液合成及粒径分析

有机硅2丙烯酸酯聚合物乳液合成及粒径分析3张庆轩,杨普江,刘金河,杨国华(中国石油大学(华东)化学化工学院,山东青岛266555 )摘要:通过种子乳液半连续法合成了有机硅改性丙烯酸酯聚合物乳液,并对其粒子形态及分布进行分析。

结果表明:通过种子乳液半连续聚合工艺可制备出固含量42w t% ,乳化剂含量4w t% (基于单体量) 、窄分布纳米粒子的有机硅改性丙烯酸酯聚合物乳液。

随反应进行,粒径分布变窄,帄均粒径逐渐增大。

随乳化剂中S D S 与O P210的摩尔比减少,粒径增大。

关键词:有机硅改性丙烯酸酯聚合物;乳液;种子乳液半连续乳液聚合;粒径分布中图分类号: O63313 文献标识码: APrepa r a t i on an d pa r t i c l e s i ze ana ly s i s of organ o s i l i conm od if ied a cry l a te po l y m er I a texZHAN G Q i ng2x uan, Y AN G Pu2ji ang, L I U J i n2he, Y AN G Guo2hua( In s titu t e of Chem istr y & Chem ica l Enginee r ing, Ch i na U n i ve r sity of Pe t r o l eu m , Q ing dao, S han d ong 266555 , Ch i na)A b s tra c t: The o r g ano s ilicon mod i f ied ac r yla t e po l y m e r la t ex wa s syn t he s ized by the seeded sem icon t inu o u s em u l si o n po l y m e r iza t i o n and its p a rtic le size d istribu tion wa s ana lyzed1The re su lts showed tha t o rg ano silicon mod ified ac ryla te po ly m e r la tex w ith the s o l i d con ten t42w t% , em u lsifie r con ten t 4w t% ( ba sed on monom e r quan tity ), na rr ow d istribu tion nanom e t e r p a rtic le s ha s b een p rep a r ed1The p a r tic l e2size d i stribu t i o n grow s na r row, the ave r ag e size inc r ea se s gradua l ly w i th the reac t i o n1A long w ith S D S an d the O P210 mo l e ra t io in the em u l sifie r m ixtu r e reduc t ion, the p a r tic l e size inc r ea se s1Key word s: o r g ano s ilicon mod i f ied ac r yla t e po l y m e r; la t ex;size d i stribu t ionthe seeded sem icon t inu o u s em u l si o n po l y m e r iza t ion; p a r tic l e种子乳液半连续法聚合工艺对聚合物质量(聚合物组成、粒子分布等) 和反应温度有很大的操作弹性[ 1 ] ,同时, 该工艺制备的乳胶粒子较小, 因此是合成聚合物纳米乳液的合适方法。

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素概述乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。

目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。

粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。

影响乳胶粒粒径大小有以下各种因素。

1乳化剂的影响在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。

乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。

乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。

随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。

在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。

而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。

非离子型乳化剂不怕硬水,化学稳定性好。

一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。

与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。

乳液聚合中乳胶粒粒径大小及分布的影响因素

乳液聚合中乳胶粒粒径大小及分布的影响因素

乳液聚合中乳胶粒粒径大小及分布的影响因素王竹青葛圣松(山东科技大学化学与环境工程学院山东青岛 266510)摘要在乳液聚合中,乳胶粒的大小及分布对乳液的性能及其应用有很大的影响,同时也反映了乳液聚合反应进行的过程。

本文综述了影响乳胶粒粒径大小及分布的各种因素,如聚合工艺、乳化剂、单体种类、聚合温度、引发剂等,并介绍了不同粒径乳液的性能及其应用。

关键词乳液聚合;乳胶粒粒径;影响因素;应用引言乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。

目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上[1]。

粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质[2],在食品、医药、透明材料的填料等领域都有广泛的应用[3];大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质[4]。

本文综述了影响乳胶粒粒径大小的各种因素,并介绍了不同粒径乳液的性能及其应用。

1乳化剂的影响在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂[5]。

乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布[6]。

乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。

付永祥[7]通过实验总结出随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小的结论。

张文兴[8]讨论了高固含量条件下各因素对微胶乳粒径及分布的影响,通过控制乳化剂用量制备了固含量 40%、粒径50nm、分布 0.050 级别的纳米微胶乳。

在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。

核/壳乳液聚合中影响乳胶粒形态的因素

核/壳乳液聚合中影响乳胶粒形态的因素

tr oy rc e lin p ril o f u ain i i u s d e t t a y An l l t e a t o on e u h a et u e p lme / muso a t e c n g r t s d s s e mp k i / . d nO' h u h r p itd o t te lts c i o c ac]  ̄, t n s o o e—s elp lme iai n r s a c r d fc r e h l oy r t e e r h. z o
起 人 们 的兴 趣 _ 。 4
的最 大 差 异 在 于 : / 乳 液 聚合 得 到 的 乳 液 抗 粘 核 壳
不 同 的两 种 或 多 种单 体 分 子 在 一 定 条 件 下 按 阶 段 聚 合 即种 子 聚 合 或 多 阶 段 聚 合 , 乳 液 颗 粒 内 部 的 内 使
中 已经 获 得 了 广 泛 的 应 用 _3。 核 / 乳 液 聚 合 提 2 . J 壳
出 了“ 子设 计 ” 新 概 念 , 在 不 改 变 乳 液 单 体 组 粒 的 即
c : a t n me h n s , t o s tc n q e fc r t Re c o c a im meh d ,e h i u s o o e—s e muso n r p r t n a d p f mu e f i h l e l n a d p e a ai n e o mc s o l i o
K e wor y ds: e— S l p lmerz to Co e— S elsr cur muso Pa tce c n g r in Cor hel oy iai n; r h l tu t e e lin; ri l o f u at i o

丙烯酸酯乳液聚合的影响因素

丙烯酸酯乳液聚合的影响因素

丙烯酸酯乳液聚合的影响因素前言乳液聚合是在用水或其它液体作介质的乳液中,按胶束(Miceell)机理或低聚物(oligmer)机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合来生产高聚物的一种聚合方法[ 1 ]。

作为高分子合成手段之一的核- 壳乳液聚合以其独特的结构形态大大改善了聚合物乳液的性能,其应用非常广泛。

例如,(1)用于抗冲改性剂和增韧剂[ 2 ]:许多树脂本身脆性较大,限制了它们在许多领域的应用。

在脆性聚合物中引入橡胶态聚合物,是提高脆性聚合物抗冲击性和韧性的有效方法。

但是由于橡胶相与基体树脂常存在兼容性的问题,导致了橡胶相的聚集,影响了增韧改性的效果。

而在弹性粒子表面包覆一层与基体树脂兼容或能与其反应的聚合物,则就可以解决上述问题,并能增加两相接口的相互作用。

所以,以橡胶态聚合物为核,硬聚合物为壳的复合粒子被广泛用做高分子材料的抗冲改性剂和增韧剂,这也是核- 壳聚合物最多和最重要的研究领域[ 3 ];(2)特种涂料和胶黏剂[ 4 ]:由于核- 壳结构乳胶粒子的核与壳之间存在着某种特定的相互作用,在相同原料组成的情况下,这种核- 壳化结构可以显著提高聚合物的耐水、耐磨、耐候、抗污及粘合强度等力学性能,并可显著降低乳胶的最低成膜温度,且核- 壳结构聚合物一般都是由乳液聚合得到的,因此它首先被用做涂料和胶黏剂[5 ]。

以PSi 为种子、丙烯酸酯类为第二单体进行乳液聚合所得胶乳,具有很好的耐水性和耐候性,用于涂料、胶黏剂和密封剂等领域可直接作为金属、塑料和纸张等的胶黏剂[6 ]。

具有核- 壳结构的P(St/MMA)的乳液可以配成上光涂料;采用不同玻璃化温度的聚合物为核或壳,可以设计理想的具有较低成膜温度的涂料,成膜性有明显的改进和提高[ 7 ]。

将乳液混合到水泥中形成聚合物水泥砂浆,能显著改善水泥的性能,提高水泥的抗张强度,使水泥不易龟裂,还能增加水泥的粘接力和抗磨性、防止土壤侵蚀,是合成乳液的一个新用途。

乳化剂对阳离子乳液聚合及乳胶粒性能的影响

乳化剂对阳离子乳液聚合及乳胶粒性能的影响

乳化剂对阳离子乳液聚合及乳胶粒性能的影响王飞;房宽峻【摘要】以苯乙烯、丙烯酸丁酯为非离子单体,甲基丙烯酰氧乙基三甲基氯化铵(DMC)为阳离子单体,偶氮二异丁基脒盐酸盐(AIBA)为引发剂,十六烷基三甲基氯化铵(CTAC)和乙撑基双(十六烷基二甲基氯化铵)(G16—2—16)为乳化剂,采用半连续种子乳液聚合法进行阳离子乳液聚合。

探讨了乳化剂的分子结构和用量对反应速率、单体转化率以及乳胶粒粒径、Zeta电位等的影响。

结果表明:乳化剂的用量越大,反应速率越大,单体转化率越高,而乳胶粒粒径越小;使用G16—2—16作乳化剂时,单体转化率较高,乳胶粒粒径较大,Zeta电位较高。

%The semi-continuous seeded cationic emulsion polymerization was carried out with butyl acry- late and styrene as the monomers, methacryloxyethyltrimethyl ammonium chloride (DMC) as cationic monomer, 2, 2'-azobis (N, N'-dimethyleneisobutyramidine)dihydrochloride (AIBA) as initiator, EG16- 2-16:C16H33N+ (CH3)aC1- C2H4-C1 N+ (CH3)3C16H33 and [-CTAC:CI6Haa N+ (CH3)aC1 ] as emulsifi ers. Effects of the molecule structures and amount of emulsifiers on the reaction rate, instantaneous con- version, mean particle size and Zeta potential were analyzed. Results showed that with the increasing of the emulsifier concentration, the reaction rate and the instantaneous conversion increased, while the mean particle diameter decreased. The instantaneous conversion, mean particle diameter and Zeta potential obtained from the reactions carried out with G16-2-16 asemulsifier were bigger than those obtained from the reactions carried out with CTAC as emulsifier.【期刊名称】《功能高分子学报》【年(卷),期】2012(025)004【总页数】7页(P404-409,438)【关键词】阳离子乳液聚合;动力学;乳胶粒性能【作者】王飞;房宽峻【作者单位】青岛大学化学化工与环境学院,纤维新材料与现代纺织国家重点实验室培育基地,山东青岛266071;青岛大学化学化工与环境学院,纤维新材料与现代纺织国家重点实验室培育基地,山东青岛266071【正文语种】中文【中图分类】TQ316.3阳离子乳液是指采用阳离子型表面活性剂或带正电荷的高分子制得的聚合物乳液,其基本特征是乳胶粒表面带正电荷,对带负电荷的表面或粒子具有较强的吸附黏着力,因而具有广泛的用途[1-5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乳液聚合中乳胶粒粒径大小的影响因素概述乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。

目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。

粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。

影响乳胶粒粒径大小有以下各种因素。

1乳化剂的影响在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。

乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。

乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。

随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。

在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。

而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。

非离子型乳化剂不怕硬水,化学稳定性好。

一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。

与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。

因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。

两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性能优势。

为了提高聚合物乳液的稳定性,通常可将阴离子型和非离子型两种乳化剂配合使用。

两类乳化剂分子吸附在乳胶粒表面,既使乳胶粒间有静电斥力,又在乳胶粒子表面形成水化层,产生了协同效应,使得乳液具有高的稳定性。

复合乳化剂中阴离子乳化剂具有比非离子乳化剂更低的CMC 值,且其分子量也较小。

当阴离子乳化剂的比例提高时,聚合体系中存在更多的胶束,因而聚合过程中成核的几率增大,乳液的粒子数增多,粒径减小。

提高非/ 阴离子乳化剂的配比,体系的稳定性降低,乳液的粒径增大。

2单体种类的影响单体是形成聚合物的基础,单体决定着其乳液产品的物理、化学及机械性能。

硬单体使乳胶膜具有一定的硬度;软单体使乳胶膜具有一定的弹性;功能性单体赋予乳胶膜一些反应特性,如亲水性、耐水性、耐碱性、耐候性、交联性。

共聚单体不同,所得乳液的乳胶粒大小也有比较大的区别。

以苯乙烯、丙烯酸酯、丙烯酸为主要单体制备的苯丙乳液,乳胶粒粒径大约在150nm~500nm 之间。

由于其价格适中,以它为主要成膜物质所配制的涂料无毒、无污染,有很好的耐候性、保色性、耐水性、耐碱性等特点,是我国和欧洲建筑乳胶漆中使用最多的乳液之一;以醋酸乙烯和丙烯酸酯为主要单体制备的醋丙乳液,乳胶粒粒径一般比苯丙乳液大,因为其与颜料结合力好,所以在内用建筑乳胶漆中应用较多;以丁二烯和苯乙烯为主要单体制备的丁苯乳液粒径范围一般在100nm~300nm 之间,大粒径丁苯胶乳是制备性能优良的MBS 树脂关键技术之一;由醋酸乙烯酯单体聚合而成的聚醋酸乙烯酯乳液一般比其它乳液乳胶粒粒径大些,其涂膜柔软,与颜料、填料结合力大,颜料分散性好,广泛应用于涂料、黏结剂等领域。

为了改善聚合物乳液的性能,常常在体系中加入少量具有极性的功能单体,由于其富反应性的特点,能增加乳液的稳定性,提高胶膜的力学性能,尤其是有乳化作用功能单体的引入对乳胶粒粒径大小的影响很大。

功能性单体用量增多,水相聚合的可能性增大,乳胶粒子数增多。

其次,功能性单体与其他单体进行共聚反应,功能性单体倾向于聚集在乳胶粒子表面,使吸附在已经聚合的微胶乳表面的乳化剂减少,致使参与乳化单体的乳化剂增加,胶束量增大,乳液粒径降低。

同时,功能性单体增多,乳胶粒周围形成的水化层较厚,可以有效阻碍乳胶粒发生聚结,乳胶粒的稳定性增大,体系中聚结粒子较少,乳液粒径降低。

增加功能单体丙烯酸的用量可以提高聚合反应速度和单体转化率,并可降低乳胶粒的粒径。

随着功能性单体用量的增加,亲水性过强,破坏了乳化剂亲水亲油平衡,降低了乳胶粒子的稳定性。

因此,若功能性单体质量分数过高,乳液的粒径反而增加。

3引发剂的影响引发剂在乳液聚合中占据非常重要的位置。

引发剂的浓度从小到大变化,乳胶粒的平均粒径先减小,后又增大,粒径分布逐渐变窄。

引发剂浓度较低时,聚合过程主要是以胶束成核机理为主,引发剂浓度较大的体系,被引发生成的乳胶粒数目较多,因此平均粒径减小。

若进一步增大引发剂用量,则体系中自由基的浓度增加,除了按胶束成核外,自由基引发水相中单体,按低聚物机理成核的几率增大,生成乳胶粒数目就更多。

但较大的自由基浓度使得水相中自由基扩散进入乳胶粒的速率增大,从而又延长了“活”的乳胶粒的寿命,有利于小胶粒的聚结增长。

引发剂浓度的增加,可显著提高单体反应的转化率,但浓度过高,容易引起暴聚。

随引发剂用量的递增,乳液的粒径逐渐减小,分布逐渐变窄。

随引发剂用量继续增大,单体转化率增加,同时乳液粒径也增大。

4聚合温度的影响在乳液聚合中,聚合温度的高低对乳液体系稳定性,聚合速度及乳胶粒粒径都有很大的影响。

聚合温度越高,引发剂分解速率越快,自由基和乳胶粒的形成速率随之增加,可生成更多的乳胶粒,乳胶粒粒径理应减小。

但是,聚合反应温度提高,乳胶粒子变软,聚合过程中粒子因碰撞而聚结的可能性增大;另一方面,温度升高,乳胶粒子对乳化剂的吸附作用减弱,乳胶粒周围的双电层减薄,粒子聚并也会增多。

聚合温度升高,粒径先减小后增大。

5电解质的影响聚合体系的离子强度是控制聚合物微球粒径十分重要的因素。

随着离子强度的增大,颗粒间静电排斥力下降,体系变得不稳定,使之彼此聚集而形成更稳定的大颗粒。

选取适宜的电解质浓度有利于增大胶乳的粒径。

增大离子强度,可以增大微球的粒径。

但电解质用量过大时,水相中反离子浓度增大,它们会强迫胶粒的双电层,使电动势降低,乳胶粒子稳定性降低,从而发生乳胶粒的结合,使粒径增大,体系出现絮凝现象,稳定性下降,严重者会凝聚和破乳。

微米级大粒径单分散高分子微球在标准计量、情报信息、分析化学等许多领域都有广泛的应用前景。

6聚合技术与乳胶粒粒径聚合工艺的影响乳液聚合的基本工艺有间歇聚合、半连续聚合、连续聚合、预乳化以及种子乳液聚合等。

相同的聚合体系,采用不同的聚合工艺,所得的乳液的粒径各不相同。

间歇乳液聚合反应物一次性加入,使聚合体系中乳化剂在反应初始大量富余,除了已经形成的部分种子聚合物外,随着反应进行又有大量新的乳胶粒生成,致使所得乳液乳胶粒较小,分布不均。

半连续聚合工艺,反应体系中无乳化剂剩余,没有新的乳胶粒生成,且体系中的单体处于“饥饿”状态,所以聚合组成及乳胶粒分布都比较单一,粒径也较间歇聚合大。

种子乳液聚合技术在乳胶粒子设计方面具有很多独到之处,尤其是制备某些特殊聚合物粒子,如核/ 壳型结构、大尺寸粒子等,其优点更无与伦比。

通过设计,可以制备不同形态的乳胶粒,得到期望性能的乳液,在涂料、电子、生物技术和医药载体等方面具有重要作用。

乳胶粒的直径随着单体浓度的增加而有了明显的增加。

种子乳液聚合法制备乳液时,乳化剂用量少,总反应时间短,所得乳胶粒的粒径大、分布窄,而无种子半连续聚合工艺所得的乳胶粒径较小,且分布较宽。

乳液聚合新技术与乳胶粒粒径随着乳液聚合理论的发展,乳液聚合技术也在不断地发展创新,在传统乳液聚合工艺的基础上,目前国内外已开发出核—壳乳液聚合、无皂乳液聚合、有机—无机复合乳液聚合、基团转移聚合、互穿网络聚合和微乳液聚合等新的聚合工艺。

核—壳结构聚合物乳液合成的典型方法是根据核和壳的组成采用分段聚合方法来制备,将核作为种子,然后将壳层单体加到种子聚合物上聚合而成,这种结构的聚合物具有比共混物或共聚物更优异的性质。

这种聚合方法在乳胶粒粒径的大小和分布上可以较好的控制,广泛用于涂料和黏合剂等。

乳化剂的存在使乳液在应用过程中存在许多缺点,如耐水性差,附着力差,难于成膜及降低聚合物性能等。

高纯度乳液(无残余单体,引发剂和乳化剂)能赋予产品更好的成膜性,抗溶剂性能,高光泽和机械性能等。

因此,无皂乳液聚合日益受到人们的重视,已被广泛地应用于胶体粒子性质的研究、水性涂料助剂、涂料、粘合剂等领域中。

无皂乳液聚合制备的微球粒径较大,一般大于500nm。

采用无皂乳液聚合的方法制备的大粒径、单分散聚合物微球可用作电镜及光学显微镜粒径测定仪等仪器的标准粒子;在医学和生物化学中的应用也日益广泛。

微乳液体系是Schulman 和Hoar 于1943 年首先报道了一种用油、水和乳化剂以及醇混合配置的透明均一体系,一直到1959 年他们才将该体系命名为微乳液。

微乳液一般为透明或半透明,粒径在10nm~100nm 之间。

为了保持乳液体系的热力学稳定性,微乳液聚合需用的乳化剂量相对较多。

超微乳液聚合生成的聚合物粒子粒径大约在20nm~40nm 之间。

微乳液已广泛应用于化妆品、粘合剂、燃料乳化上光蜡等方面,特别是在近年来兴起的药物微胶囊化、纳米级金属材料、聚合物粉末的制备和提高石油采收率工业中有着重要的应用。

目前,关于乳液聚合新技术的研究已成为高分子科学领域里的一个研究热点,随着乳液聚合技术的发展,对乳液粒径与应用关系的研究也将会有更大的发展。

相关文档
最新文档