影响乳液聚合的因素

合集下载

乳液聚合爆聚现象

乳液聚合爆聚现象

乳液聚合爆聚现象
乳液聚合爆聚现象是指在乳液聚合过程中,由于聚合反应速度过快或温度过高等原因,导致聚合体内部能量积累过多,最终导致聚合体猛烈分解的现象。

这种现象不仅会导致生产过程中的安全问题,还会影响产品质量和产量,因此需要引起足够的重视。

乳液聚合爆聚现象的发生原因主要有以下几点:
1.聚合反应速度过快。

在乳液聚合过程中,如果聚合反应速度过快,会导致聚合体内部能量积累过多,从而引发爆聚现象。

2.温度过高。

在乳液聚合过程中,如果温度过高,会导致聚合反应速度加快,从而加剧聚合体内部能量积累,最终引发爆聚现象。

3.聚合体内部存在不稳定因素。

在乳液聚合过程中,如果聚合体内部存在不稳定因素,如氧化物、自由基等,会导致聚合体内部能量积累过多,最终引发爆聚现象。

为了避免乳液聚合爆聚现象的发生,我们可以采取以下措施:
1.控制聚合反应速度。

在乳液聚合过程中,可以通过控制反应物的投入
速度、添加稳定剂等方式来控制聚合反应速度,从而避免爆聚现象的发生。

2.控制温度。

在乳液聚合过程中,可以通过控制反应器的温度、加热方式等方式来控制温度,从而避免聚合反应速度过快,最终避免爆聚现象的发生。

3.添加稳定剂。

在乳液聚合过程中,可以添加稳定剂来稳定聚合体内部的结构,从而避免聚合体内部能量积累过多,最终避免爆聚现象的发生。

总之,乳液聚合爆聚现象是一种严重的安全问题,需要引起足够的重视。

通过控制聚合反应速度、温度和添加稳定剂等方式,可以有效地避免爆聚现象的发生,从而保障生产过程的安全和产品质量。

乳液聚合的影响因素讲课讲稿

乳液聚合的影响因素讲课讲稿

乳液聚合的影响因素乳液聚合的影响因素(2007-03-09 15:48:57)转载分类:现代水性涂料一、乳化剂影响(1)乳化剂浓度[s]的影响[s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6[s]越大,分子量Mn越高,聚合反应速率Rp越大。

(2)乳化剂种类的影响特性临界参数CMC,聚集数及单体的增溶度各不相同CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。

二、引发剂的影响引发剂浓度[I]增大,Mn降低Rp提高三、搅拌速度的影响搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。

(1)搅拌速度对乳胶粒直径的影响在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。

所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。

(2)搅拌速度对聚合反应速率的影响一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。

(3)搅拌对乳液稳定性的影响过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。

四、反应温度的影响温度高,Mn降低,Rp增大温度高,乳胶粒数目Np增大,粒径Dp减小。

温度高,乳液稳定性降低。

五、单体相比的影响相比M0为乳液聚合中初始加入的单体和水的质量比乳胶粒的平均直径随相比的增大而增大单体转化率随相比的增大而降低六、电解质的影响电解质的用量盐析降低CMC 提高乳化剂有效比率。

丙烯酸酯乳液聚合的影响因素

丙烯酸酯乳液聚合的影响因素

丙烯酸酯乳液聚合的影响因素前言乳液聚合是在用水或其它液体作介质的乳液中,按胶束(Miceell)机理或低聚物(oligmer)机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合来生产高聚物的一种聚合方法[ 1 ]。

作为高分子合成手段之一的核- 壳乳液聚合以其独特的结构形态大大改善了聚合物乳液的性能,其应用非常广泛。

例如,(1)用于抗冲改性剂和增韧剂[ 2 ]:许多树脂本身脆性较大,限制了它们在许多领域的应用。

在脆性聚合物中引入橡胶态聚合物,是提高脆性聚合物抗冲击性和韧性的有效方法。

但是由于橡胶相与基体树脂常存在兼容性的问题,导致了橡胶相的聚集,影响了增韧改性的效果。

而在弹性粒子表面包覆一层与基体树脂兼容或能与其反应的聚合物,则就可以解决上述问题,并能增加两相接口的相互作用。

所以,以橡胶态聚合物为核,硬聚合物为壳的复合粒子被广泛用做高分子材料的抗冲改性剂和增韧剂,这也是核- 壳聚合物最多和最重要的研究领域[ 3 ];(2)特种涂料和胶黏剂[ 4 ]:由于核- 壳结构乳胶粒子的核与壳之间存在着某种特定的相互作用,在相同原料组成的情况下,这种核- 壳化结构可以显著提高聚合物的耐水、耐磨、耐候、抗污及粘合强度等力学性能,并可显著降低乳胶的最低成膜温度,且核- 壳结构聚合物一般都是由乳液聚合得到的,因此它首先被用做涂料和胶黏剂[5 ]。

以PSi 为种子、丙烯酸酯类为第二单体进行乳液聚合所得胶乳,具有很好的耐水性和耐候性,用于涂料、胶黏剂和密封剂等领域可直接作为金属、塑料和纸张等的胶黏剂[6 ]。

具有核- 壳结构的P(St/MMA)的乳液可以配成上光涂料;采用不同玻璃化温度的聚合物为核或壳,可以设计理想的具有较低成膜温度的涂料,成膜性有明显的改进和提高[ 7 ]。

将乳液混合到水泥中形成聚合物水泥砂浆,能显著改善水泥的性能,提高水泥的抗张强度,使水泥不易龟裂,还能增加水泥的粘接力和抗磨性、防止土壤侵蚀,是合成乳液的一个新用途。

常规乳液聚合的影响因素

常规乳液聚合的影响因素

常规乳液聚合的影响因素卢志敏国明(华南师大学化学与环境学院,510631)摘要:就常规乳液聚合的几个重要影响因素:单体、乳化剂、引发剂、缓冲剂、温度、搅拌强度以及聚合工艺进行了比较详细的综述。

关键词:乳液聚合;单体;乳化剂;引发剂;缓冲剂;温度;搅拌强度;聚合工艺中图分类号:TQ 630.1 文献标识码:A 文章编号:1009-1696(2005)12-0023-06 乳液聚合技术作为获取高聚物的重要方法之一,它起始于20世纪初,并于30年代开始广泛工业化。

目前,乳液聚合大多分为常规水包油型乳液聚合、反相的油包水型乳液聚合、介于溶液聚合与乳液聚合之间的多相乳液聚合、以液氨、甲酰胺、甲酸等为分散介质的非水分散介质乳液聚合、有机分散介质分散乳液聚合、辐射乳液聚合、无胶束乳液聚合、双连续乳液聚合、乳液定向聚合、杂化乳液聚合、原子转移自由基乳液聚合等,它们的影响因素各有异同,本文将对常规乳液聚合的影响因素进行讨论。

常规乳液聚合就是以油相为分散相,水为连续相的水包油型乳液聚合。

虽然常规乳液聚合最简单的配方只是由单体、水、水溶性引发剂和乳化剂4部分组成,但其体系具有特定的复杂性,影响因素很多,以下将对单体、乳化剂、引发剂、缓冲剂、温度、搅拌速率和聚合工艺等因素进行介绍。

1单体1.1 主要单体能进行乳液聚合的单体种类很多,在常规乳液聚合中应用得比较广泛的有乙烯基单体、共轭二烯单体、丙烯酸及甲基丙烯酸系单体。

这些单体在乳液聚合中作为主要单体,它们在水中溶解度很小,与水的表面力相差很大,在静置时分为两层。

加入乳化剂后由于单体可以进入胶束,单体在乳化剂溶液中的溶解度增加,单体就可以稳定地分散在体系中,形成水包油体系,混合单体的乳化稳定性与乳液共聚稳定性结果一致。

如要乳液聚合顺利进行,单体还必须符合以下3个条件:(1)可以增溶溶解但不是全部溶解于乳化剂水溶液;(2)可在增溶的温度下进行聚合;(3)与水或乳化剂无任何活化作用,即不水解。

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。

功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。

因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。

聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。

在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。

凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。

在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。

严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。

凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。

目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。

乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。

当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。

乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。

乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。

此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。

影响丙烯酸酯乳液聚合的因素

影响丙烯酸酯乳液聚合的因素

问题 , 连续加料时 , 控制单体滴加速率低 于链增 长速率 , 聚合反应受单体扩散制约 , 因此没有“ 冲 料” 现象。对于竞聚率差异较大单体问共聚体系, 反应快 的单体慢速添加, 反应慢的快速添加。另
外, 以单 体 滴 加 方 式 进 行 的乳 液 聚 合 反 应 , 体 单
时, 综合性能好『 7 j 。方华[ 8 1 了高 固含量丙烯酸 合成
胶 体 与 聚 合 物
第 2 卷 6
4 而 非离 子型 乳化 剂一 般 为 2 %, %~6 %。在 丙烯 酸 酯乳 液 聚合 过程 中 ,阴离子 乳 化剂 一 般 在 1 %

度, 聚合 各个 阶段应采 用不 同的搅拌 强度 。
24 单体 加料方 式 的影 响 .
3 %就足够 , 非离 子乳 化剂则 要 5 而 %以上[ 6 ] 。杨
了耐 水 性 、 碱 性 、 度 、 污 性 能 , 耐 硬 抗 乙丙 乳 液 在
耐水性 、 耐寒性及力学性能等方 面显著优越于醋
酸 乙烯 酯 均 聚 物 , 丙乳 液 因在 纯丙 中引 人 了有 硅 机 硅链 节 , 有 非 常优 异 的耐候 性 、 老化 性 、 具 耐 耐
丙酯 、 丙烯酸聚合 时使用可聚合乳化剂烯丙氧基 壬基 酚聚氧 乙烯(0醚硫酸铵 (N 8) 1) D S-6有效 改 善 了乳液的性能 。另外高分子乳化剂可以克服 小分子乳化剂易于迁移的缺点 , 用高分子乳化剂 合成的丙烯酸酯共聚乳液胶粘剂 寸 水性高[ 5 1 。
沈海 军 李绵贵
( 湖北省 化学研究 院 武汉 407 ) 3 04
摘 要 阐述了单 体、 聚合条件和聚合工艺对丙 烯酸酯乳液聚合 的影响 。
关键词 单体 ; 聚合条件 ; 聚合工 艺 ; 丙烯 酸酯 乳液

乳液聚合生产工艺

乳液聚合生产工艺

作为O/W型乳化剂
乳化剂的基本特征参数
CMC值:
能够形成胶束的最低浓度称 为临界胶束浓度 。当乳化剂浓 度达到CMC值以后,再增加乳 化剂的浓度只能增加胶束的数量 而不能改变乳液中界面的性质 。 从乳化剂的结构而言,疏
水基团越大,则CMC值越小。
乳化剂浓度变化与乳化剂行为的关系
乳化剂的基本特征参数
当乳化剂浓度在CMC值以
下时,溶液的表面张力与界面张 力均随乳化剂浓度的增大而降低。 而当乳化剂浓度达到CMC值后, 随着乳化剂浓度的增长,其表面
张力和界面张力变化相对很小。
此时,溶液的其他性质,如电导 率、粘度、渗透压等性质随乳化 剂浓度增长的变化规律在CMC
十二烷基硫酸钠水溶液的物理性质变化
值二边也有显著不同。
乳液聚合的影响因素
1、乳化剂的影响(种类和数量) 乳化剂的种类不同,其胶束稳定机理,临界胶束浓度 CMC 、胶束大小及对单体的增容度亦各不相同,从而会 对乳胶粒的稳定性、直径、聚合反应速度和聚合物分子量
产生不同的影响。
乳化剂的浓度对乳液聚合得到的分子量有直接影响,例 如:乳化剂浓度越大,胶束数目越多,链终止的机会小, 链增长的时间长,故此时乳液聚合得到的分子量很大。
• 分散阶段(聚合前段)
• 乳胶粒长大阶段(聚合II段)
• 乳胶粒生成阶段(聚合I段) • 聚合完成阶段(聚合III段)
乳液聚合过程和机理
(1)分散阶段
加入乳化剂,浓度低于CMC时形成真溶液,高于CMC 时形成胶束。
加入单体 按在水中的溶解度以分子 状态溶于水中,更多的溶 解在胶束内形成增溶胶束, 还有的形成小液滴,即单 体液滴。 单体、乳化剂在单体液滴、 水相及胶束间形成动态平 衡。

乳液聚合的影响因素

乳液聚合的影响因素

乳液聚合的影响因素(2007-03-09 15:48:57)转载分类:现代水性涂料一、乳化剂影响(1)乳化剂浓度[s]的影响[s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6[s]越大,分子量Mn越高,聚合反应速率Rp越大。

(2)乳化剂种类的影响特性临界参数CMC,聚集数及单体的增溶度各不相同CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。

二、引发剂的影响引发剂浓度[I]增大,Mn降低Rp提高三、搅拌速度的影响搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。

(1)搅拌速度对乳胶粒直径的影响在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。

所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。

(2)搅拌速度对聚合反应速率的影响一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。

(3)搅拌对乳液稳定性的影响过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。

四、反应温度的影响温度高,Mn降低,Rp增大温度高,乳胶粒数目Np增大,粒径Dp减小。

温度高,乳液稳定性降低。

五、单体相比的影响相比M0为乳液聚合中初始加入的单体和水的质量比乳胶粒的平均直径随相比的增大而增大单体转化率随相比的增大而降低六、电解质的影响电解质的用量盐析降低CMC 提高乳化剂有效比率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响聚醋酸乙烯乳液质量的因素
单体质量的影响
醋酸乙烯单体应该用新精馏的,并控制一定的质量指标。

外观——无色透明液体
活化度(10ml单体加过氧化苯甲醚——<30min
沸点——72-73℃——20ml在70℃时测定)
含醛(以乙醛计)——<0.02%
含酸(以乙酸计)——<0.01%
醋类是醋酸乙烯单体中的主要杂质,能起到明显的阻聚作用,阻聚作用使得聚合物的分子量不易长大,并且使聚合过程变复杂。

在本体聚合和悬浮聚合时经常使用乙醛调节分子量大小。

酸对乳液聚合也有影响,活化度实际上是醛、酸和其他杂质在单体中的综合影响,杂质多聚合诱导期变长。

杂质少,诱导期短,活化时间也短。

活化度太差的单体在乳液聚合反应进行时会出现聚合反应时行缓慢,回流一直很大,使连续加入单体有困难。

加单体太慢或中途停止加单体则反应放热少而回流带出的热量多,反应温度就会下降,反应难于控制,无法平稳进行。

引发剂的影响
在乳液聚合中都用水溶性的引发剂,如过硫酸盐和过氧化氢,而不能用溶解于单体中的过氧化苯甲酰和偶氮二异丁腈,引发剂溶解在单体中不好。

过氧化氢在存放中易变化,而硫酸盐比过氧化氢易控制,在操作时加水溶解后即加入反应釜内,因此比较稳定,所以一般多采用过硫酸钾、过硫酸铵等。

一般情况下过硫酸钾的用量为单体量的0.2%,实际上在反应中只加入2/3,其余1/3是在反应最后阶段加入的,目的是为了减少乳液中的游离单体。

引发剂用量根据设备情况、投料量确定,反应设备越大,投料量越大,引发剂的用量就相应减少些。

做小试验的时候,引发剂使用的比例比中试、实际生产的比例要大一点。

而在每次反应时间中初加的部分也需视反应情况而稍有不同。

用过硫酸盐为引发剂时,乳液的pH值需加以控制,因为在反应中加入过硫酸盐会使反应液的酸性不断增加,而pH值太低(如小于2时),则反应速度很慢,有时会破坏了乳液聚合反应的正常进行,使乳液粒子变粗,甚至会使反应时间过长或使反应无法进行。

若所用聚乙烯醇是碱醇解的产品,水溶液呈弱碱性,则在反应前可不调整pH值,而在反应结束后加入部分碳酸氢钠中和至pH值4-6间。

乳化剂的影响
乳化剂是一种表面活性剂,在乳液聚合过程中能降低单体和水的表面张力,并增加单体在水中的溶解度,形成胶束和乳化的单体液滴。

乳化剂的选择对乳液的稳定性和质量有很大影响,乳化剂的用量多少也对乳液的稳定性有影响,乳化剂用量太少乳液的稳定性差,而用量太大耐水性则差。

聚乙烯醇是聚醋酸乙烯乳液聚合中最常用的乳化剂,由于对乳液的质量要求不同,聚乙烯醇的规格和用量也有所不同。

聚乙烯醇在乳液中起乳化作用,也起保护胶体的的作用,但也有使胶体增稠的作用,所以其用量不仅以乳化的角度也从增稠的角度,聚乙烯醇地一般用量是为单体的5%左右。

PVA的聚合度和使用量对粘度都有影响。

聚合度的高低对乳液的粘度影响较大,用聚合度高的聚乙烯醇可以得到粘度较大的乳液。

当然聚乙烯醇的用量对乳液的粘度也有同样的影响,但聚乙烯醇的用量大了就会使耐水性下降,所以当需要粘度较高的乳液时,最好用聚合度较大的聚乙烯醇而避免聚乙烯醇的用量增加过多。

一般常用平均聚合度1500以上的聚乙烯醇,如果制备粘度很大的乳液时,最好用平均聚合度2000以上的聚乙烯醇。

聚乙烯醇一般用醋酸乙烯在甲醇中醇解来制取。

所以聚乙烯醇聚合度的大小取决于聚醋酸乙烯分子量的大小,而在醇解时总是有部分乙酰基残留下来,聚乙烯醇分解的程度就用醇解度多少或残留乙酰基多少来表示。

醇解度在99.5%以上的纺丝用的聚乙烯醇,由于聚乙烯醇分子结构中的乙酰基基本上被羟基取代,因此结晶性较大,其水溶液在低温时很容易成胶冻,用这样的聚乙烯醇制成的乳液防冻性就很差,冰冻成块融化后也不易还原,即一经冰冻,乳液就被破坏了。

如果醇解留下一部分乙酰基,则聚乙烯醇分子结构上带有部分不对称结构和极性不同的基团,破坏了分子结构的规整性,结晶性就较小,乳化作用也较好,所以用作乳化剂的聚乙烯醇都是这类低醇解度或称高乙酰基的聚乙烯醇。

这种聚乙烯醇在冷水中也能溶解,制成的乳液稳定性好,防冻性能也较好,最常用的是醇解度88%-90%,即乙酰基为10%-14%的产品。

如果使聚乙烯醇的羟基与少量的丁醛基缩合,也同样使聚乙烯醇分子上带上结构不同的基团,经这样改性的聚乙烯醇乳化性能很好,制成乳液的稳定性也很好,而且比高乙酰基聚乙烯醇有更好的耐水性。

但丁醛不能缩合太多,否则水溶性变差,并且有一个特点:在冷水中溶解性大,在热水中溶解性小。

所以在生产乳液时温度要逐渐上升至95℃,如丁醛基缩合过多,就会在加热时析出,使乳液破坏。

所以,一般丁醛基仅缩合3%-5%左右。

使用乳化剂除聚乙烯醇外也可用其他非离子型或阴离子型的表面活性剂,非离子型的大都是环氧乙烷缩合物,如脂肪醇或烷基苯酚的环氧乙烷聚合物或环氧乙烷的嵌段共聚物。

常用的如乳化剂。

OP/TX-10等,是烷基酚的环氧乙烷缩合物。

阴离子型常用的有十二烷基硫酸钠、十二烷基苯磺酸钠、丁二酸乙基乙酯磺酸钠等。

用两种乳化剂混合使用可形成混合胶束,乳化效果和稳定性比单独使用一种的要好,所以在乳液制备中较多的使用两种或一种非离子和一种阴离子型的乳化剂混合使用。

增塑剂的影响
增塑剂的使用对聚醋酸乙烯乳液来说是必要的,加入增塑剂后能改善胶膜的机械性能,使胶膜有较好的柔韧性和附着力,而主要的是能降低乳胶的最低成膜温度。

如不加增塑剂的聚醋酸乙烯乳液在低于15℃的条件下就不能很好成膜,而加入10%的苯二甲酸二丁酯后,就能使最低成膜温度降至5℃以下。

在聚醋酸乙烯乳液中较普遍使用的增塑剂有邻苯二甲酸二丁酯、磷酸三甲酚酯等。

磷酸三甲酚酯除了防火涂料及其他特殊要求外很少使用,是由于磷酸三甲酚酯的增塑效果比苯二甲酸二丁酯差些,对醋酸乙烯乳液的混溶性也较差些。

增塑剂的用量视要求不同而异,一般是单体量的10%-25%,加入的方法通常在乳液反应完毕之后降低温度至50℃左右时慢慢加入,然后搅拌1-2h使之均匀,因为增塑剂被吸收到聚合物粒子中去需要一段时间,也可以在乳化反应前加
入增塑剂的水溶液,搅拌均匀后再加入单体和引发剂开始反应,在一般情况下两者对乳液的质量影响没有什么显著的差别。

一般增塑剂在反应液中最好不超过5%-7%,否则会引起副作用,如降低聚合速度、降低分子量等。

因此从操作来说反应完毕后加入较为方便简单。

用其他合成树脂作增塑剂的,或用其他一些单体和醋酸乙烯共聚以起到内增塑作用。

这种共聚乳液没有增塑剂挥发、迁移等缺点,性能也要比外增塑剂的更好些。

用水量的影响
水是分散介质,醋酸乙烯单体或聚醋酸乙烯树脂的颗粒是分散在水中的,这样使反应热易于分散,放热反应较易控制,有助于制得均匀的高分子产物。

用水量影响乳液含量和粘度,因此,应根据使用要求确定水的用量。

操作工艺的影响
在醋酸乙烯聚合时,开始反应时加入过硫酸盐作引发剂,由于回流和连续慢慢加入单体,温度可在一段时间内无需加热和冷却而保持在80℃左右,随着反应继续进行,需被加少量过硫酸盐以维持反应,温度不会下降,经过反复试验,就能在不同的设备条件下摸索出最适宜的加单体的速度。

回流大小、每小时补加过硫酸盐的数量等操作控制条件。

使反应能稳定在78-82℃之间,使聚合反应能平稳地进行。

故在实际操作中需很好地控制热量平衡,操作时如果反应剧烈,温度上升很快,则应少加或不加过硫酸盐,并适当加快单体加入速度;如果温度有些偏低,则就要稍多加些过硫酸盐,并适当减慢单体加入速度。

反应时如果回流很小,可以加快醋酸乙烯的加入,反之就要适当减慢加入单体的速度,甚至暂住片刻,待回流正常后再继续加入单体。

把乳化剂水溶液先和单体一起搅拌乳化,再加引发剂引发聚合的工艺虽然也可以,但在诱导期过后反应十分激烈,要制成质量好的乳液是十分困难的。

因此可以先将乳化好的乳液放一部分在反应釜内,加入部分引发剂引发聚合,然后慢慢连续加入乳化好的乳化液,并定时补加一定量的引发剂。

这样要增加一道破乳化工序,但这种工艺可以用于连续聚合,在特殊的设备中连续进料、连续聚合,用一定的方法除去游离单体后即可连续出料。

相关文档
最新文档