黑龙江省哈尔滨工大附中2019-2020学年九年级(上)开学数学试卷及答案
哈尔滨市2019-2020学年九年级上月考数学试卷(10月)含解析

哈尔滨市2019-2020学年九年级上月考数学试卷(10月)含解析(解析版)一、选择题:1.﹣2的倒数的相反数是()A.B.C.2 D.﹣22.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A.k>﹣B.k>C.k<﹣D.k<5.下列命题:①圆上任意两点间的部分叫弧②圆心角相等则它们所对的弧相等③等弧的所对的弦相等④直径是圆的对称轴⑤顶点在圆上,两边和圆相交的角是圆周角.其中正确的有()个.A.1 B.2 C.3 D.46.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m7.如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC B.FA:CD=AE:BC C.FA:AB=FE:EC D.AB=DC 8.小李将1000元钱存入银行,年利率为x,第二年他把本息和全部存入银行,两年后不计利息税,他得到本息共a元,则依题意可列方程为()A.1000(x+x)=a B.1000(1﹣2x)=a C.1000(1+x)2=a D.1000(1+2x)2=a10.如图,点P沿半圆弧AB从A向B匀速运动,若运动时间为t,扇形OAP的面积为s,则s与t的函数图象大致是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.将456 000 000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.化简计算:2﹣4=.14.分解因式:ax2﹣a=.15.一个扇形的半径为2cm,面积为πcm2,则此扇形的圆心角为.16.不等式组的解集为.17.松雷中学举行捐书活动,其中A班和B班共捐书200本,A班捐书数量是B班捐书数量2倍还多14本,则A班捐书有本.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.纸片△ABC中,∠B=60°,AB=8cm,AC=7cm,将它折叠,使A与B重合,则折痕长为cm.20.如图,AB∥CD,∠CBE=∠CAD=90°.AC=AD=6,DE=4,则BD长为.三、解答题:(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.先化简,再求值:,其中a=tan60°﹣tan45°.22.如图,在所给网格图(•哈尔滨模拟)为迎接年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,样本中表示成绩类别为“中”的人数,并将条形统计图补充完整;(2)若该中学九年级共有l 000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?24.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.(1)观察图形,写出图中与△ABM全等三角形;(2)选择(1)中的一对全等三角形加以证明.25.(10分)(秋•哈尔滨校级月考)某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.(1)若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?(2)在(1)的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?26.(10分)(秋•哈尔滨校级月考)如图,AB为⊙O直径,CD为弦,弦CD⊥AB于点M,F为DC延长线上一点,连接CE、AD、AF,AF交⊙O于E,连接ED交AB于N.(1)求证:∠AED=∠CEF;(2)当∠F=45°,且BM=MN时,求证:AD=ED;(3)在(2)的条件下,若MN=1,求FC的长.27.(10分)(秋•哈尔滨校级月考)如图,在平面直角坐标系中,矩形OABC的顶点O 为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,A、D的坐标分别为(5,0)和(3,0).(1)已知抛物线y=2x2+bx+c经过B、D两点,求此抛物线的解析式;(2)点P为线段CE上的动点,连接AP,当△PAE的面积为时,求tan∠APE的值;(3)将抛物线y=2x2+bx+c平移,使其经过点C,设抛物线与直线BC的另一个交点为M,问在该抛物线上是否存在点Q,使得△CMQ为等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;并直接写出满足(2)的P点是否在此时的抛物线上.-学年九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题:1.﹣2的倒数的相反数是()A.B.C.2 D.﹣2【考点】倒数;相反数.【分析】首先找到:﹣2的倒数是﹣,再找到﹣的相反数即可.【解答】解:﹣2的倒数是﹣,﹣的相反数是,故选:A.【点评】此题主要考查了倒数与相反数的定义,关键是熟练掌握倒数的定义:乘积是1的两数互为倒数;相反数的定义:只有符号不同的两个数叫做互为相反数.2.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方、同底数幂的乘法和同类项合并计算即可.【解答】解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.【点评】此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.4.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A.k>﹣B.k>C.k<﹣D.k<【考点】反比例函数的性质.【分析】先根据函数y=的图象分别位于第二、四象限列出关于k的不等式,求出k 的取值范围即可.【解答】解:∵函数y=的图象分别位于第二、四象限,∴3k+1<0,解得k<﹣故选:C.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.5.下列命题:①圆上任意两点间的部分叫弧②圆心角相等则它们所对的弧相等③等弧的所对的弦相等④直径是圆的对称轴⑤顶点在圆上,两边和圆相交的角是圆周角.其中正确的有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【解答】解:①圆上任意两点间的部分叫弧,正确;②在同圆或等圆中,圆心角相等则它们所对的弧相等,错误;③等弧的所对的弦相等,正确;④直径所在直线是圆的对称轴,故错误;⑤顶点在圆上,两边和圆相交的角是圆周角,正确.正确的有3个,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解圆的有关定义及性质,难度不大.6.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据图示,可得∠ABC=∠α=30°,然后在Rt△ABC中,用AC的长度除以sin30°,求出飞机A与指挥台B的距离为多少即可.【解答】解:∵∠ABC=∠α=30°,∴AB==,即飞机A与指挥台B的距离为2400m.故选:D.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,要熟练掌握,解答此题的关键是要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.7.如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC B.FA:CD=AE:BC C.FA:AB=FE:EC D.AB=DC【考点】平行线分线段成比例;平行四边形的性质.【分析】根据已知及平行线分线段成比例定理进行分析,可得CD∥BF,依据平行线成比例的性质即可得到答案.【解答】解:A、根据对顶角相等,此结论正确;B、根据平行线分线段成比例定理,得FA:FB=AE:BC,所以此结论错误;C、根据平行线分线段成比例定理得,此项正确;D、根据平行四边形的对边相等,所以此项正确.故选B.【点评】此题综合运用了平行四边形的性质以及平行线分线段成比例定理.8.小李将1000元钱存入银行,年利率为x,第二年他把本息和全部存入银行,两年后不计利息税,他得到本息共a元,则依题意可列方程为()A.1000(x+x)=a B.1000(1﹣2x)=a C.1000(1+x)2=a D.1000(1+2x)2=a【考点】由实际问题抽象出一元二次方程.【分析】首先表示出一年后的本息和,然后表示出第二年的本息和即可.【解答】解:∵1000元钱存入银行,年利率为x,∴方程为:1000(1+x)2=a,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是了解有关增长率问题的一般解法,难度不大.10.如图,点P沿半圆弧AB从A向B匀速运动,若运动时间为t,扇形OAP的面积为s,则s与t的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以写出s与t的函数函数解析式,从而可以得到s与t的函数图象,本题得以解决.【解答】解:由题意可得,设半圆的半径为r,,(t≥0)即s与t的函数图象是射线,故选C.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,写出相应的函数解析式,知道相应的函数图象是什么.二、填空题(共10小题,每小题3分,满分30分)11.将456 000 000用科学记数法表示为.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于456 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:456 000 000=4.56×108.故答案为:4.56×108.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.在函数y=中,自变量x的取值范围是.【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.化简计算:2﹣4=.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并同类二次根式得出答案.【解答】解:原式=2×2﹣4×=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.分解因式:ax2﹣a=.【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再利用平方差公式进行二次分解.【解答】解:ax2﹣a,=a(x2﹣1),=a(x+1)(x﹣1).【点评】主要考查提公因式法分解因式和利用平方差公式分解因式,分解因式要彻底,直到不能再分解为止.15.一个扇形的半径为2cm,面积为πcm2,则此扇形的圆心角为.【考点】扇形面积的计算.【分析】设扇形的圆心角是n°,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.【解答】解:设扇形的圆心角是n°,根据题意可知:S==π,解得n=90°.故答案为:90°.【点评】本题考查了扇形的面积公式,正确理解公式S=是解题的关键,此题难度不大.16.不等式组的解集为.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣1,由②得x≤2,故此不等式组的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.【点评】本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.松雷中学举行捐书活动,其中A班和B班共捐书200本,A班捐书数量是B班捐书数量2倍还多14本,则A班捐书有本.【考点】一元一次方程的应用.【分析】设B班捐书x本,由A班捐书数量是B班捐书数量2倍还多14本得出A班捐书(2x+14)本,根据A班和B班共捐书200本列出方程,解方程即可.【解答】解:设B班捐书x本,则A班捐书(2x+14)本,根据题意得(2x+14)+x=200,解得x=62.2x+14=2×62+14=138.答:A班捐书138本.故答案为138.【点评】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【考点】列表法与树状图法.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.纸片△ABC中,∠B=60°,AB=8cm,AC=7cm,将它折叠,使A与B重合,则折痕长为cm.【考点】翻折变换(折叠问题).【分析】当△ABC是锐角三角形时,如图1中,EF是折痕,作CM⊥AB垂足为M,作AH⊥BC于H,再求出BH、CH,在RT△BCM中QC BM、CM,再根据EF∥CM得=,由此即可解决.当△ABC是钝角三角形时,如图2中,EF是折痕,作CM⊥AB垂足为M,作AH⊥BC于H,方法同上.【解答】解:当△ABC 是锐角三角形时,如图1中,EF 是折痕,作CM ⊥AB 垂足为M ,作AH ⊥BC 于H ,在RT △ABH 中,∵∠AHB=90°,∠B=60°,AB=8,∴BH=AB=4,AH=BH=4,在RT △AHC 中,∠AHC=90°,AH=4,AC=7,∴HC===1, ∴BC=5, 在RT △BCM 中,∵∠CMB=90°,∠B=60°,BC=5,∴BM==,MC=,∵EF ∥CM ,AE=EB=4,∴=,∴=,∴EF=.当△ABC 是钝角三角形时,如图2中,EF 是折痕,作CM ⊥AB 垂足为M ,作AH ⊥BC 于H ,由(1)可知,BH=4,AH=4,CH=1,∴BC=BH ﹣CH=3,在RT △BCM 中,∵∠CMB=90°,∠B=60°,BC=3,∴BM==,MC=, ∵EF ∥CM ,AE=EB=4,∴=,∴=,∴EF=.故答案为或【点评】本题考查翻折变换、30度直角三角形的性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是添加辅助线构造直角三角形,学会应用平行线分线段成比例定理求线段的长,属于中考常考题型.20.如图,AB∥CD,∠CBE=∠CAD=90°.AC=AD=6,DE=4,则BD长为.【考点】四点共圆;全等三角形的判定与性质;勾股定理.【分析】先求出CE,再由∠CBE=∠CAE=90°,判断出点A,B,C,E在以点O为圆心,CE为直径的圆上,借助∠BAC=∠ACD=45°,得出∠BOC是直角,求出BC,另为判断出三角形DEH是等腰直角三角形,求出EH,再用平行线分线段成比例求出AM,即可得出BG,用勾股定理求出CG,进而求出DG,最后勾股定理即可得出BD.【解答】解:如图,在Rt△ACD中,AC=AD=6,∴CD=6,∠ACD=∠ADC=45°,∵AB∥CD,∴∠BAC=∠ACD=45°,连接CE,在Rt△ACE中,AC=6,AE=AD﹣DE=2.∴CE==2,取CE的中点O,连接OB,∵∠CBE=∠CAE=90°,∴点A,B,C,E在以点O为圆心,CE为直径的圆上,∴∠BOC=2∠BAC=90°,OB=OC=CE=∵OB=OC,∴BC=OB=2,过点E作EH⊥CD,∵∠ADC=45°,∴△DEH是等腰直角三角形,∵DE=4,∴EH=DH=DE=2,过点A作AM⊥CD,∴EH∥AM,∴=,∴AM=EH=3,过点B作BG⊥CD,∴四边形ABGH是矩形,∴BG=AM=3,在Rt△BCG中,BC=2,BG=3,∴CG==,∴DG=CD﹣CG=6﹣=5,在Rt△BDG中,BG=3,DG=5,∴BD==2.故答案为:2.【点评】此题是四点共圆题目,主要考查了勾股定理,等腰直角三角形的性质,平行线的性质,圆周角的性质,矩形的判定,解本题的关键是得出∠BOC=90°,作出辅助线是解本题的难点.三、解答题:(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.先化简,再求值:,其中a=tan60°﹣tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=tan60°﹣tan45°=﹣1时,原式===1+.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图,在所给网格图(3)△A2B1C2中A2B1=4,在直角△MA2C2中,A2M=MC2=2,A2C2=2,同理B1C2=A2C2=2∴△A2B1C2的周长为4+4.(6分)【点评】注意,作图形变换这类题的关键是找到图形的对应点.23.为迎接年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,样本中表示成绩类别为“中”的人数,并将条形统计图补充完整;(2)若该中学九年级共有l 000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)先根据成绩类别为“差”的人数和所占的百分比计算出样本容量为50,然后用成绩类别为“中”的人数所占百分比乘以50即可,再将条形统计图补充完整;(2)先计算出成绩类别为“中”的人数所占的百分比,然后乘以2000即可.【解答】解:(1)样本容量为8÷16%=50,所以成绩类别为“中”的人数等于50×20%=10(人);如图;(2)1000××100%=200,所以估计该校九年级共有200名学生的数学成绩可以达到优秀.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体和扇形统计图.24.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.(1)观察图形,写出图中与△ABM全等三角形;(2)选择(1)中的一对全等三角形加以证明.【考点】正多边形和圆;全等三角形的判定.【分析】(1)先证明△ABM≌△DEN,同理得出△ABM≌△FEM≌△CBN,(2)选择△ABM≌△DEN证明,根据正六边形得出∠ABM=∠DEN,AB=DE,∠BAM=∠EDN,证明全等即可.【解答】解:(1)与△ABM全等的三角形有△DEN,△FEM≌△CBN;(2)证明△ABM≌△DEN,证明:∵六边形ABCDEF是正六边形,∴AB=DE,∠BAF=120°,∴∠ABM=30°,∴∠BAM=90°,同理∠DEN=30°,∠EDN=90°,∴∠ABM=∠DEN,∠BAM=∠EDN,在△ABM和△DEN中,,∴△ABM≌△DEN(ASA).【点评】本题考查了正多边形和圆以及全等三角形的判定,掌握正多边形的性质和全等三角形的判定是解题的关键.25.(10分)(秋•哈尔滨校级月考)某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.(1)若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?(2)在(1)的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据采购价格=单价×数量,可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设再购进空调a台,则购进风扇(70﹣a)台,根据采购价格=单价×数量,可列出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意,得,解.答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.(2)设再购进空调a台,则购进风扇(70﹣a)台,由已知,得1800a+150(70﹣a)≤30000,解得:a≤11,故该经营业主最多可再购进空调11台.【点评】本题考查了二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)列出关于x、y的二元一次方程组;(2)列出关于a的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式)是关键.26.(10分)(秋•哈尔滨校级月考)如图,AB为⊙O直径,CD为弦,弦CD⊥AB于点M,F为DC延长线上一点,连接CE、AD、AF,AF交⊙O于E,连接ED交AB于N.(1)求证:∠AED=∠CEF;(2)当∠F=45°,且BM=MN时,求证:AD=ED;(3)在(2)的条件下,若MN=1,求FC的长.【考点】圆的综合题.【分析】(1)首先连接BE,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AEB=∠BEF=90°,又由AB⊥CD于,可得:,继而证得∠CMB=∠BMD,则可证得结论;(2)连接AD,BD,根据已知条件得到∠ADE=∠ABE=∠EAB=45°,证得CD垂直平分BN,得到BD=ND,由等腰三角形的性质得到∠DBN=∠DNB,推出△AEN∽△ADE,根据相似三角形的性质得到∠ANE=∠DAE,等量代换得到∠DAE=∠AED,于是得到结论;(3)设AB=2R,根据等腰直角三角形的性质得到AE=BE=R,求得AN=AE=R,得到R=2+,解得BE=2+2,等量代换即可得到结论.【解答】证明:(1)连结BE,∵AB是⊙O的直径,∴∠AEB=∠BEF=90°,又∵AB⊥CD于M,∴,∴∠CEB=∠BED,∴∠AED=∠AEB﹣∠BED=∠BEF﹣∠CEB=∠CEF,即:∠AED=∠FEC;(2)连接AD,BD,∵AB为⊙O直径,∴AE⊥BE,∵∠F=45°,∴∠EHF=45°,∴∠BHM=∠EHF=45°,∵AB⊥CD,∴∠EBA=45°,∴∠EAB=45°,∴∠ADE=∠ABE=∠EAB=45°,∵BM=MN,∴CD垂直平分BN,∴BD=ND,∴∠DBN=∠DNB,∴∠AED=∠ABD=∠ANE=∠BND,∵∠EAB=∠ADE=45°,∠AEN=∠AED,∴△AEN∽△ADE,∴∠ANE=∠DAE,∴∠DAE=∠AED,∴AD=DE;(3)由(2)知,△ABE,△EFH,△BNH是等腰直角三角形,∵MN=1,∴BN=2,BH=,设AB=2R,∴AE=BE=R,∵∠AEN=∠ANE,∴AN=AE=R,∴R+2=2R,∴R=2+,∴BE=2+2,∴EF=EH=BE﹣BH=2+,∵∠AED=∠FEC,∵∠FCE=∠EAD,∴∠FEC=∠FCE,∴CF=EF=2+.【点评】本题考查了垂径定理,圆周角定理,等腰三角形的判定和性质,等腰直角三角形的判定和性质,线段垂直平分线的性质,证得△ABE,△EFH,△BNH是等腰直角三角形是解题的关键.27.(10分)(秋•哈尔滨校级月考)如图,在平面直角坐标系中,矩形OABC的顶点O 为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,A、D的坐标分别为(5,0)和(3,0).(1)已知抛物线y=2x2+bx+c经过B、D两点,求此抛物线的解析式;(2)点P为线段CE上的动点,连接AP,当△PAE的面积为时,求tan∠APE的值;(3)将抛物线y=2x2+bx+c平移,使其经过点C,设抛物线与直线BC的另一个交点为M,问在该抛物线上是否存在点Q,使得△CMQ为等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;并直接写出满足(2)的P点是否在此时的抛物线上.【考点】二次函数综合题.【分析】(1)先在RT△CDO中求出CO,设BE=DE=x,在RT△ADE中利用勾股定理求出x,即可得到B、D两点坐标代入抛物线解析式即可.(2)如图1中,作PM⊥AB于M,AN⊥CE于N.,先求出PM,再利用=,求出EM,PE,由△PME∽△ANE得==,求出EN、AN即可解决问题.(3)如图2中,设平移后的抛物线为y=2x2+bx+4,因为△CMQ是等边三角形,所以点Q只能是顶点,顶点Q(﹣,),根据HQ=CH,列出方程即可解决问题.【解答】解(1)如图1中,∵四边形ABCD是矩形,∴BC=AO=5,CO=AB,∠CBA=∠BAO=∠BCO=90°,∵△CED是由△CEB翻折,∴CD=AB=5,DE=BE,在RT△CDO中,∵OD=3,CD=5,∴CO==4,设BE=ED=x,在RT△AED中,∵DE2=AE2+AD2,∴x2=(4﹣x)2+22,∵x=,∴点B(5,4),把D(3,0),B(5,4)代入y=2x2+bx+c得解得∴抛物线解析式为y=2x2﹣14x+24.(2)如图1中,作PM⊥AB于M,AN⊥CE于N.由(1)可知AE=,BE=∴×AE×PM=,∴PM=,∵PM∥BC,∴=,∴,∴EM=,∴PE==,∵∠PME=∠ANE,∠PEM=∠AEN,∴△PME∽△ANE,∴==,∴==,∴EN=,AN=,PN=PE+EN=,∴tan∠APE==.(3)如图2中,设平移后的抛物线为y=2x2+bx+4,∵△CMQ是等边三角形,∴点Q只能是顶点,顶点Q(﹣,),∴HQ=CH,∴•|(﹣)|=4﹣,∴b=±,∴满足条件的点Q为:Q1(,),Q2(﹣,),此时抛物线为y=2x2x+4,∵点P坐标(,),显然点P不在其抛物线上.【点评】本题考查二次函数性质、翻折变换、勾股定理、相似三角形的判定和性质、等边三角形的判定和性质,解题的关键是添加辅助线构造直角三角形或相似三角形,第三个问题记住抛物线平移a相同,学会用方程的思想解决问题,属于中考压轴题.。
黑龙江省哈尔滨市工大附中2020-2021学年九年级上学期数学开学考试试卷

黑龙江省哈尔滨市工大附中2020-2021学年九年级上学期数学开学考试试卷一、单选题1.﹣5的倒数是()A. ﹣5B. 5C. 15D. −152.下列计算,正确的是()A. a2⋅a3=a6B. 2a2−a=aC. a6÷a2=a3D. (a2)3=a63.下列四个图案中,是轴对称图形的是()A. B. C. D.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.5.如图,已知⊙O的直径AB与弦AC的夹角为35∘,过C点的切线PC与AB的延长线交于点P,则∠P等于()A. 15∘B. 20∘C. 25∘D. 30∘6.一块面积为900平方米的矩形绿地,长比宽多10米,设绿地的长为x米,根据题意,可列方程为()A. x(x−10)=900B. x(x+10)=900C. 10(x+10)=900D. 2[x+(x+10)]=9007.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A. 83√3m B. 4 m C. 4 √3m D. 8 m8.⊙O是△ABC的外接圆,则点O是△ABC的()A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点9.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. √33B. √55C. 2√33D. 2√5510.如图,在△ABC中,点D在边AB上,DE⁄⁄BC,DF⁄⁄AC,联结BE,BE与DF相交于点G,则下列结论一定正确的是()A. ADDB=DEBC B.AEAC=BFBC C.BDAD=BFDE D.DGGF=BFFC二、填空题11.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为________km.12.若式子x+ √x−1在实数范围内有意义,则x的取值范围是________.13.计算√7−√28的结果是 .14.分解因式:3x2−27= .15.如图,四边形ABCD内接于⊙O,连接OB,OD,∠BOD=136°.延长BC至点E,则∠DCE的度数为.16.不等式组{x2⩽−1−x+7>4的解集是________.17.某扇形的圆心角是45°,面积为18π,该扇形的半径是________.18.如图,AB是半⊙O的直径,点C,D均在半⊙O上,OD⊥AC于点E,若BC=3DE,则ACDE的值为.19.矩形ABCD中,连接BD,cos∠ADB=2√55,点E为AD中点,点F为BC上一点,连接EF,若CD=2,EF=√5,EF与BD交于点G,则BG的长为.20.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD的边长为 cm.三、解答题21.先化简,再求代数式(1−3x+2)÷x2−1x+2的值,其中x=4sin45°﹣2cos60°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1).在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为15 2;(2).在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3;(3).连接CE,请直接写出线段CE的长.23.为评估九年级学生的学习状况,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1).求该中学抽取了多少名学生的成绩进行调查;(2).求样本中成绩类别为“中”的人数,并将条形统计图补充完整;(3).该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的成绩达到优秀?24.已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1).如图1,求证:四边形ADEF是平行四边形;(2).如图2,若AB=AC,∠A=36°,不添加辅助线,请你直接写出与DE相等的所有线段(AF除外). 25.禹驰商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需950元;若购进A 种纪念品5件,B种纪念品6件,需800元。
哈尔滨市20192020学年九年级上期中考试数学试题及

哈尔滨市2019-2020 学年九年级上期中考试数学试题及答案一、选择题(每题 3 分,共 30 分)1.-2 的绝对值是 ()A.1B .2C .2D .1 222.以下运算正确的选项是()A. x2x6x8B. x4x x4C.x2 x4x8D.( x2 )3x63.在以下绿色食品、回收、节能、节水四个标记中, 是轴对称图形的是()A. B. C. D.4.以下图是由 6 个相同的小立方块搭成的几何体,则这个几何体的俯视图是(.)5. 把抛物线y x2向左平移 1 个单位,而后向上平移 3 个单位,则平移后抛物线的表达式为()A.C.y(x 1)23B. y( x 1)23 y( x 1)23D. y( x 1)236 .对于反比例函数y = 2 图象的性质,下列结论不正确的是()xA.经过点( 1,2)B.y 随 x 的增大而减小C.在一、三象限内D.若 x> 1,则 y<27.如图,在△ABC中,点D、 E 分别在AB、 AC边上, DE∥ BC,若 AD∶ AB=3∶ 4, AE=6,则AC等于 ( )A. 3B. 4C. 6D. 88.如图, CD为⊙ O的直径,且 CD⊥弦 AB,∠ AOC=50°,则∠ B 大小为 ( )A.25 °°°°AD EB C7题图8题图9题图10题图9.在自习课上,小芳同学将一张长方形纸片ABCD按如下图的方式折叠起来,她发现D、 B 两点均落在了对角线AC的中点 O处,且四边形AECF是菱形 . 若 AB= 3cm,则暗影部分的面积为()A. 1cm2B. 2cm2C. 2 cm2 D . 3 cm210.为鼓舞市民节俭用水,我市自来水企业按分段收费标准收费,右图反应的是每个月收取水费 y(元)与用水量 x( 吨 ) 之间的函数关系.以下结论中:①小聪家五月份用水7 吨,应交水费15.4 元;② 10 吨以上每吨花费比10 吨以下每吨花费多;③ 10 吨以上对应的函数分析式为y=3.5x-13 ;④小聪家三、四月份分别交水费29 元和19.8 元,则四月份比三月份节俭用水 3 吨,此中正确的有()个A . 1B. 2C.3D. 4二、填空题 ( 每题 3 分.合计30 分 )11.南海是的固有领海,面积约 3600000km2,将 3600000 用科学记数法可表示为.12.计算 2712 的结果是.13.分解因式:3a26ab 3b2=.14.袋中有相同大小的 5 个球,此中 3 个红球, 2 个白球,从袋中随意地摸出一个球,这个球是红色的概率是.15.如图,路灯距离地面8 米,身高米的小明站在距离灯的底部(点O) 20 米的 A 处,则小明的影子AM长为米.15题图16题图16.如图,⊙ O的半径为 4cm,正六边形 ABCDEF内接于⊙ O,则图中暗影部分面积为2cm .(结果保存π)17.一套夏装的进价为200 元,若按标价的八折销售,可赢利72 元,则标价为每套__________元 .18.△ ABC中, DF 是 AB 的垂直均分线,交BC 于 D, EG是 AC的垂直均分线,交BC于 E,若∠ DAE=20°,则∠ BAC等于°19.等腰△ ABC中, AB=AC,点 O 为高线 AD上一点,⊙ O与 AB、 AC相切于点 E、 F,交 BC于点 G、 H,连结 EG,若 BG=EG=7, AE: BE=2:5,则 GH的长为.S△DEC1, BC=______ 20. △ ABC中, AB=AC, AD⊥ BC,∠ BAC=∠ACG=4∠ EDC, CG=AD=4,S△ACG4三、解答题 ( 此中 21~ 22题各 7 分, 23~24 题各 8 分, 25~ 27 题各 10 分,合计60 分 )21. 先化简,再求值13x21的值,此中 x 4 sin 45 2cos60 .x 2x222.在正方形网格图①、图②、图③中各画一个等腰三角形.要求:每个等腰三角形的一个极点为格点 A,其他极点从格点 B. C. D.E. F. G. H 中选用,而且所画的三角形均不全等.图①图②图③23.为了响应国家提出的“每日锻炼1 小时”的呼吁,某校踊跃展开了形式多样的“阳光体育”运动,小明对该班同学参加锻炼的状况进行了统计,(每人只好选此中一项)并绘制了下边的图 1 和图 2,请依据图中供给的信息解答以下问题:⑴小明此次一共检查了多少名学生?⑵经过计算补全条形统计图 .⑶若该校有 2000 名学生,请预计该校喜爱足球的学生约有多少人?24. 在△ ABC和△ EDC中, AC=CE=CB=CD,∠ ACB=∠ ECD=90°, AB与 CE交于 F, ED与 AB、 BC 分别交于 M,H(1)求证: CF=CH(2)如图( 2)△ ABC不动,将△ EDC绕点 C 旋转到∠ BCE=45°时,试判断四边形ACDM的形状并证明 .25.某玩具厂接到 600 件玩具的订单后,决定由甲、乙两车间共同达成生产任务,已知甲车间工作效率是乙车间的 1.5 倍,乙车间独自达成此项生产任务比甲车间独自达成多用 5 天 .(1)求甲、乙两车间均匀每日各能制作多少件玩具?(2)两车间同时动工 2 天后,暂时又增添了100 件的玩具生产任务,为了不超出7 天达成任务,两车间从第 3 天起各自调整工作效率,提升工作效率后甲车间的工作效率是乙车间工作效率的 2 倍少 2 件,求乙车间调整工作效率后每日起码生产多少件玩具.26. 如图,△ ABC 中, AC=AB ,以 AB 为直径的⊙ O 分别交直线 AC 、 BC 于 D 、 E 两点 .( 1)如图 1,若∠ C=60°,求证: AD=BE ;( 2)如图 2,过点 A 作 AF 平行 BC ,交⊙ O 于点 F ,点 G 为 AF 上一点,连结 OG 、 OF ,若∠ GOF=90°3∠ ABC ,求证 AC=2AG ;2(3)在( 2)的条件下 , 在 AB 的延伸线上取点 M,连结 GM ,使∠ M=2∠ GOF,若 AD : CD=1:3,BC=2 6 , 求 BM 的长 .27. 已知:抛物线yx 2 bx c 与 x 轴交点 A(-1 , 0) 和点 B(3 , 0) ,与 y 轴交于点 C .( 1)求抛物线的分析式;( 2) P 为直线 BC 上方抛物线上一点,过点 P 作 PH ⊥x 轴于点 H ,交 BC 于点 D ,连结 PC 、PB ,设△ PBC 的面积长为 S ,点 P 的横坐标为 t ,求 S 与 t 的函数关系式,并直接写出自变量 t 的取值范围;(3)如图在( 2)的条件下,在线段OC上取点 M,使 CM=2DH,在第一象限的抛物线上取点N,连结 DM、 DN ,过点 M作 MG⊥ DN交直线 PD于点 G,连结 NG,∠ MDC=∠NDG,∠CMG=∠ NGM,求线段 NG的长 .参照答案11.3.6 × 20612. 3 13.3(a-b)214. 315.5 16.° 19.106521. 原式 = 1, x=2 2 -1, 将 x=2 2 -1 代入得:2 .22.1 x423. 解:( 1) 20÷ 40%=50(人),因此,此次一共检查了 50 名学生;( 2) 50-20-10-15=5 (人),补全统计图如图; (3)10× 100%=20%, 2000× 20%=400(人),答:预计该校喜爱足球的学生约有 400 人.5024.1 ,∵ AC=CE=CB=CD 且∠ ACB=∠ ECD=90°∴∠ A=∠ D=45° ∠ACB-∠ ECB=∠ ECD-∠ ECB 即∠ 1=∠ 2 又∵ AC=CD ∴△ ACF ≌△ DCH ∴ FC=HC 2,假定四边形 ACDM 是平行四边形 ∵四边形 ACDM 是平行四边形∴∠ A=∠D ,∠ AMD=∠ ACD ∵∠ AMD=∠E+∠ B+∠ECB ∠ACD=∠ 1+∠ 2+∠ ECB ∴∠ E+∠ B=∠ 1+∠ 2 又∵∠ E=∠B=45°,∠ 1=∠ 2 ∴∠ 1=∠ 2=45° 则当△ EDC 旋转 45°时四边形 ACDM 是平行四边形 . 25. ( 1)设乙工效为 x 件 / 天,则甲工效为 件 / 天 . 600 600 件 / 天;乙工效为 40 件 / 天 .5,解之得: x=40. 因此甲工效为 60x( 2)设乙调整后工效为 a 件/ 天,则甲工效为 (2a-2) 件 / 天;(40+60) × 2+5(2a-2)+5a ≥ 600+100, 解之得: a ≥34. 因此乙车间每日起码生产 34 件玩具 .26. ( 1)证明:由于 AC=AB,∠C=60°,因此△ ABD 为等边三角形因此∠ A=∠B, 因此弧 AE=弧 BD.由于弧 AE=弧 AD+弧 DE ,弧 BD=弧 BE+弧 DE.因此弧 AD=弧 BE. 因此 AD=BE.( 2)证明:设∠ ABC=ɑ,由于 AC=AB,因此∠ B=∠ C,由于 AF//BC, 因此∠ OAF=∠ B,由于 OA=OF,因此∠ A=∠ B=ɑ, 因此∠ AOF=180° -2 ɑ,由于∠ FOG=90° - 3,因此∠ AOG=∠2 AOF-∠ FOG=90° - 1.2由于∠ AGO=∠ F+∠ FOG=90° - 1, 因此∠ AOG=∠ AGO ,因此 OA=AG,因此 AB=2AG.因此2AC=2AG.27.(2)作 PH⊥x 轴于 H,交 BC于点 F,P(m, -t 2+2t+3) , F(t,-t+3)PF=-t 2+3t ,S△PBC=S△PCF+S△PBFS=1(t 2t t1(t 2t t)1 t23 t(0<t<3)2 3 )2 3 ) (322。
2019-2020学年哈尔滨市工大附中九年级(上)开学数学试卷(附解析)

2020年哈尔滨市工大附中九年级(上)数学试卷(附解析)一.选择题(共10小题)1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能2.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.3.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米4.如图,AB是⊙○的直径,CD是⊙○的弦.若∠BAD=21°,则∠ACD的大小为()A.21°B.59°C.69°D.79°5.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°6.如图,⊙O的直径CD垂直于弦EF,垂足为A,若∠OEA=40°,则∠DCF等于()A.100°B.50°C.40°D.25°7.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则AC的长为()A.4B.C.D.8.下列说法正确的是()A.经过半径的一端并且垂直于这条半径的直线是圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等D.90°的圆周角所对的弦是这个圆的直径9.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=10.已知如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC =45°,给出以下结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④二.填空题(共10小题)11.已知tanα=,α是锐角,则sinα=.12.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是.13.过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为cm.14.在△ABC中,若cos A是方程2x2﹣5x+2=0的一个根,则∠A=.15.在阳光下,身高1.5m的小强在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为18m.则旗杆的高度为m.16.在正方形网格中,△ABC的位置如图所示,则sin∠A的值为.17.如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD 于点C,AB=2,半圆O的半径为2,则BC的长为.18.在△ABC中,若AB=,tan∠B=,AC=,则BC=.19.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=.20.如图,在△ABC中,点Q、D分别在边AC、AB上,CD、BQ相交于点H,若点Q为AC中点,BD=DH=2,AD=AC,tan∠ADC=,则HQ的长为.三.解答题(共4小题)21.先化简再求值;,其中a=6tan60°﹣cos45°.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABE,点E在小正方形的顶点上,且△ABE 的面积为;(2)在图中画一个等腰三角形△ABF,点F在小正方形的顶点上,且tan∠AFB=,连接EF,请直接写出线段EF的长.23.我市城市规划期间,欲拆除沿江路的一根电线杆AB(如图),已知堤坝D距电线杆AB 水平距离BD=14米,背水坡CD的坡度i=2:1,坝高CF=2米,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由(在地面上以点B为圆心,以AB长为半径的圆形区城为危验区城).24.如图,在平行四边形ABCD中,延长BA至点E,使AE=AB,点F、P在边AD所在的直线上,EF∥CP.(1)求证:DF﹣DP=BC;(2)的条件下,若CD=15,EF=20,tan∠AFE=,BC=14,求DF的长.25.某社区计划对面积为1800m2的区域进行绿化经招标,甲、乙两个工程队中标,全部绿化工作由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,如果施工总费用不超过10万元,那么乙工程队至少需施工多少天?26.已知:四边形ABCD内接于⊙O,AC、BD相交于点E,AB=AC.(1)如图1,求证:2∠ACB+∠BDC=180°;(2)如图2,连接BO并延长交⊙O于点H,若AC⊥BD,求证:AH=CD;(3)如图3,在(2)的条件下,连接HE,若BE:DE=9:4;AB=30,求HE长.27.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB廷长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN=AN,求线段PM的长.。
2019-2020学年黑龙江省哈尔滨九年级上第一次月考数学试卷及答案解析

【解答】解:下列实数0, , ,π,其中,无理数有 ,π,
故选:B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样无限不循环小数.
2.下列各个式子运算的结果是8a5的是( )
A.2a2+6a3B.(2a2)3C.8a7﹣8a2D.2a•4a4
10.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=( )
A.1:3B.1:4C.1:5D.1:6
二.填空题(共10小题,满分30分,每小题3分)
11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.
12.函数y= 中,自变量x的取值范围为.
17.如图,在半径为5的⊙O中,弦AB=6,点C是优弧 上一点(不与A,B重合),则tanC的值为.
18.扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于cm2.
19.⊙O的直径为2,弦AB的长为1,弦BC的长为 ,则∠ABC的度数为.
20.如图,在△ABC中,AB=4,D是边AB中点,∠ACD=∠B,∠BAC的角平分线AE与线段CD交于点F,那么 的值是.
三.解答题(共7小题)
21.先化简,再求代数式(1﹣ )÷ 的值,其中x=2sin60°﹣tan45°.
22.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A(2,2),B(4,1),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个等腰△PAB,使点P的横坐标大于点A的横坐标.
黑龙江省哈尔滨市2019-2020学年九年级数学中考模拟试卷含答案

黑龙江省哈尔滨市2019-2020学年九年级数学中考模拟试卷考生须知:1.本试卷满分120分,时间为120分钟2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效,在草稿纸上,试题纸上答案无效4.选择题必领使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀 一、选择题:(每小题3分,共计30分) 1.下列各数中,小于-2的数是() A. B.-π C.-1 D.1 2.下列运算中,正确的是()A. B. C. D.3.下列四个图形中既是轴对称图形,又是中心称图形的是()A B C D 4.如图是一个由5个相同的正方体组成的立体图形,则它的俯视图为()21-623a a a =∙()633xx=1055x x x =+448-a a a -=÷5.关于二次函数y=-2(x-3)+5的最大值,下列说法正确的是()A.最大值是3B.最大值是-3C.最大值是5D.最大值是-56.反比例函数y=图象上的两个点为()、(),且,则下列式子一定成立的是()A. B. C. D.不能确定7.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100m,点A、D、B在同一直线上,CD⊥AB,则A、B两点的距离是()A.200mB.200mC.mD.8.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()第7题第8题第9题A. B. C. D.9.如图,四边形ABCD内接于⊙0,ABCO是平行四边形,则∠ADC=()A.45°B.50°C.60°D.75°40.小颖家到学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟。
2019~2020年度哈尔滨南岗区上学期九年数学试卷答案

11
则 MQ=NQ,CR= AC= AD=AT
22
∵FM=EN ∴MQ-FM=NQ-EN 即 FQ=EQ
∴OE=OF.............................................1 分
∵AC=AD AH⊥CD
∴∠CAH=∠DAH,CH=DH ∴OT=OR ∴Rt△EOT≌Rt△FOR................1
4或8
5 13
11
三、解答题(其中 21-22 题各 7 分,23-24 题各 8 分,25-27 题各 10 分,共计 60 分) 21.(本题 7 分) 解:
原式
x 1
x2
2x
1
..................................
..............................2
分
x
x
x 1 x x (x 1)2
1 ............................................................................2 分 x 1
∵ x 2 2 1 .........................................................................1 分 2
解得 m≤32...............................................................................2 分 ∴m 最多取 32.............................................................................1 分 答:最多可购买篮球 32 个. 26.(本题 10 分) (1)证明:如图 1 连接 CO,DO
2019-2020学年黑龙江省九年级(上)月考数学试卷(10月份)(五四学制)解析版

2019-2020学年黑龙江省九年级(上)月考数学试卷(10月份)(五四学制)一.选择题(每题3分,共30分)1.(3分)113的倒数是()A.113B.﹣113C.D.2.(3分)下列运算正确的是()A.a2÷a3=a B.(a2)3=a5C.3ab2﹣3a2b=0D.a2•a4=a63.(3分)下列图形中,是中心对称图形的是()A.B.C.D.4.(3分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>3B.k≥3C.k≤3D.k<35.(3分)如图,弦AB和CD相交于点P,∠B=30°,∠APD=80°,则∠A等于()A.30°B.50°C.70°D.100°6.(3分)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米7.(3分)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣38.(3分)在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)已知甲、乙两地之间某条公路长为90km,某天小李、小张两人沿此条公路从甲地出发去乙地,小李骑摩托车,小张骑电动车.图中OA、BC分别表示小张、小李离开甲地的路程s(km)与时间t(h)的函数关系的图象,下列说法:①小李比小张晚出发1小时;②小张的速度是20km/h;③小李的速度是45km/h;④小张出发小时时,两个人相遇.其中正确的说法有()A.4个B.3个C.2个D.1个二.填空题(每题3分,共30分)11.(3分)将113 000 000用科学记数法表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)因式分解:2x2﹣18=.14.(3分)计算:=.15.(3分)一辆标价为59000元的新能源汽车,按标价打九折后,还能盈利987元,则该新能源汽车的每台进价为.16.(3分)不等式组的解集是.17.(3分)如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=10,则CD长为.18.(3分)一个扇形的弧长为20πcm,面积为300πcm2,则这个扇形的圆心角的度数是.19.(3分)在△ABC中,若AB=,tan∠B=,AC=,则BC=.20.(3分)如图,在△ABC中,AB=AC,AD⊥BD,垂足为点D,连接CD,∠ABD+∠ACD=90°,AD=9,CD=2,则线段AB的长度为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.(7分)先化简,再求代数式的值,其中a=12sin30°,b=﹣5tan45°.22.(7分)如图是8×4的正方形网格,网格中每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上(小正方形的顶点叫作格点).(1)在图中确定点D(点D在小正方形的顶点上),并画出以A、B、C、D为顶点的四边形,使其是轴对称图形(画一个即可);(2)经过(1)中四边形ABCD边上的两个格点画一条直线,使其将四边形ABCD分成两个图形,其中一个只为轴对称图形,另一个只为中心对称图形(画一条即可).(3)四边形ABCD的周长为.23.(8分)如图,AB为⊙O的直径,BC、AC是⊙O的弦,∠ACB的平分线交⊙O于点D,连接AD,BD;(1)求证:AD=BD;(2)若AB=10,AC=6,求BC,AD的长.24.(8分)如图,在△ABC中,∠ACB=90°,DE⊥BC,垂足为点D,交AB于E,点F在线段DE的延长线上,连接AF、CE,且AF=AE=EC.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,连接CF交线段AB于点M,在不添加任何辅助线的情况下,直接写出四条长度等于的线段.25.(10分)和兴商店准备从希望机械厂购进甲、乙两种零件进行销售,若一个甲种零件的进价比一个乙种零件的进价多50元,用4000元购进甲种零件的数量是用1500元购进乙种零件的数量的2倍.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)和兴商店将甲种零件每件售价定为220元,乙种零件每件售价定为155元,商店根据市场需求,决定向该厂购进一批零件.且购进乙种零件的数量比购进甲种零件的数量的2倍还多6个,若本次购进的两种零件全部售出后,总获利大于3390元.求该商店本次购进甲种零件至少是多少个?26.(10分)如图,⊙O是△ABC的外接圆,CD是⊙O的切线,点C为切点,CD∥AB;(1)如图1,当圆心O在△ABC内部时,求证:△ABC是等腰三角形;(2)如图2,当圆心O在AB边上时,点F在上,连接AF、BF、CF,求证:AF=BF+CF;(3)如图3,在(2)的条件下,连接OF并延长交射线CD于点H,连接OC、AF相交于点E,AC=,HC=CE,求的值.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣3ax+3与x轴交于点A、点B,与y轴交于点C,OA=1;(1)求抛物线的解析式;(2)点D是x轴上方抛物线上一点,连接AC,DE∥AC交x轴于点E,当OE=BE时,求点D 的坐标;(3)在(2)的条件下,点F在第二象限的抛物线上,连接FD,CK⊥DF垂足为点K,连接OK,当tan∠FKO=时,求线段FD的长.参考答案与试题解析一.选择题(每题3分,共30分)1.解:113的倒数是,故选:D.2.解:∵a2÷a3=,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵3ab2﹣3a2b≠0,∴选项C不符合题意;∵a2•a4=a6,∴选项D符合题意.故选:D.3.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.4.解:∵反比例函数y=的图象位于第一、第三象限,∴k﹣3>0,解得:k>3,则k的取值范围是k>3.故选:A.5.解:如右图,∵∠BPC=∠APD=80°,∠B=30,∴∠C=180°﹣80°﹣30°=70°,∴∠A=∠C=70°.故选:C.6.解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.7.解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y =3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选:A.8.解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选:C.9.解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.解:①由图可知,小李比小张晚出发1小时;故①正确;②小张的速度:60÷3=20(km/h);故②正确;③小李的速度:90÷(3﹣1)=45km/h;故③正确;④由图可知点B(1,0),A(3,60),C(3,90),设OA的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设BC的解析式为s=mt+n,则,解得.所以,s=45t﹣45,解得,t=,则小张出发小时时,两个人相遇,故④错误,故选:B.二.填空题(每题3分,共30分)11.解:113 000 000=1.13×108,故答案为1.13×108.12.解:∵2x﹣3≠0,∴x≠,故答案为:x≠.13.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).14.解:原式=(3﹣2)=2.故答案为:2.15.解:设该新能源汽车的每台进价为x元,依题意得:59000×0.9﹣x=987解得x=52113故答案是:52113.16.解:,解不等式①得,x>﹣1,解不等式②得,x≤2,所以不等式组的解集是﹣1<x≤2.故答案为:﹣1<x≤2.17.解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,故答案为:26.18.解:设这个扇形的半径为R,圆心角是n°,∵一个扇形的弧长为20πcm,面积为300πcm2,∴×R=300π,解得:R=30,由弧长公式得:=20π,解得:n=120,故答案为:120°.19.解:如图,作AH⊥C于H.当高AH在△ABC内时,∵tan∠B==,∴可以假设AH=3k,BH=7k,∵AB2=AH2+BH2,∴58=58k2,∵k>0,∴k=1,∴AH=3,BH=7,在Rt△ACH中,CH===6,∴BC=BH+CH=7+6=13,当高AH在△ABC′外时,BC′=BH﹣HC′=7﹣6=1,故答案为13或1.20.解:过点A作AH⊥CD于H,∴∠ACD+∠HAC=90°,且∠ABD+∠ACD=90°,∴∠HAC=∠ABD,且AC=AB,∠AHC=∠ADB=90°,∴△ADB≌△CHA(AAS)∴AH=BD,CH=AD=9,∵CD=2∴HD=7,∴AH===4=BD,∴AB===故答案为:三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.解:=÷=×=.当a=12sin30°=12×=6,b=﹣5tan45°=﹣5×1=﹣5时,原式==.22.解:(1)如图所示,四边形ABCD即为所求;(2)如图所示,直线CE即为所求;(3)四边形ABCD的周长为2+6+2×2=8+4,故答案为:8+4.23.解:(1)在⊙O中,∵CD是∠ACB的平分线,∴∠ACD=∠BCD,∴AD=BD(2)∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,由勾股定理得:BC===8,在Rt△ADB中,AD=BD=AB=5,答:BC,AD的长分别为8,5.24.(1)证明:∵在△ABC中,∠ACB=90°,∴∠EAC+∠B=∠ECA+∠ECB=90°,∵AE=CE,∴∠EAC=∠ECA,∵CE=AE=AF.∴∠F=∠FEA=∠EAC=∠ECA.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)解:连接CF交线段AB于点M,∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵∠B=∠DCE=30°,∠BDE=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEM=∠DEC=60°,EF=CE,∠EMF=∠CDE=90°,∴△EFM≌△ECD(AAS),∴EM=DE,FM=CD,∴FM=DE,∵CM=CF,∴CM=DE,∴等于的线段有FM,CM,CD,DB.25.解:(1)设每个乙种零件的进价为x元,则每个甲种零件的进价为(x+50)元,依题意,得:=2×,解得:x=150,经检验,x=150是分式方程的解,且符合题意,∴x+50=200.答:每个甲种零件的进价为200元,则每个乙种零件的进价为150元.(2)设该商店本次购进甲种零件m个,则购进乙种零件(2m+6)个,依题意,得:(220﹣200)m+(155﹣150)(2m+6)>3390,解得:m>112.∵m为正整数,∴m的最小值为113.答:该商店本次购进甲种零件至少是113个.26.证明:(1)如图1,连接CO并延长交AB于M,∵CD是⊙O的切线,∴CM⊥CD,∵CD∥AB,∴CM⊥AB,∴=,∴AC=BC,∴△ABC是等腰三角形;(2)如图2,连接OC,同理得OC⊥AB,∵O在AB上,即AB是⊙O的直径,∴∠ACB=90°,∴△ACB是等腰直角三角形,∴∠ABC=45°,∴∠AFC=∠ABC=45°,过C作CG⊥CF,交AF于G,∴△FCG是等腰直角三角形,∴CG=CF,FG=CF,∵∠ACB=∠GCF=90°,∴∠ACG=∠BCF,在△ACG和△BCF中,∵,∴△ACG≌△BCF(SAS),∴AG=BF,∴AF=AG+FG=BF+CF;(3)如图3,延长BF交CD于I,∵AB是⊙O的直径,∴∠AFB=90°,∵∠AFC=∠ABC=45°,∴∠CFI=∠CGF=45°,∵∠FCI=∠ECG=90°﹣∠ECF,CF=CG,∴△CEG≌△CIF(ASA),∴CE=CI,∵CH=CE,即,设CH=3x,CE=2x,则CI=2x,HI=3x﹣2x=x,∵∠ICF=∠CAF,∠CFI=∠AFC=45°,∴△CIF∽△ACF,∴,即=,CF=∵CD∥AB,∴,即,BF=,∴==,∴BF=CF,由(2)知:AF=BF+CF=2CF,∵△CIF∽△ACF,∴,∴=,x=,即HI=,∵HI∥OB,∴==,∴=.27.解:(1)∵OA=1,点A在x负半轴上,∴A(﹣1,0),将A(﹣1,0)代入y=ax2﹣3ax+3并解得:a=﹣∴抛物线的解析式为y=+x+3;(2)在y=+x+3中,令y=0,得+x+3=0,解得x1=﹣1,x2=4∴B(4,0),令x=0,得y=3,∴C(0,3),∵OE=BE∴E(2,0)∵A(﹣1,0),C(0,3),∴直线AC解析式为y=3x+3,∵DE∥AC,设直线DE解析式为y=3x+b,将E(2,0)代入可得:b=﹣6,∴直线DE解析式为y=3x﹣6,解方程组得,,∵点D是x轴上方抛物线上一点,∴D(3,3);(3)如图2,连接CD,延长CK交x轴于H,设DF交y轴于点G,连接GH,∵CK⊥DF,∴∠CKG=∠HKG=90°=∠HOG,∴点O,H,K,G四点共圆,∴∠FKO=∠GHO,∵tan∠FKO=,∴tan∠GHO=,在Rt△HOG中,tan∠GHO==,设OH=3m,则OG=5m,由(2)知C(0,3),D(3,3),∴OC=3,CD=3,∴CG=OC﹣OG=3﹣5m,∵C(0,3),D(3,3),∴CD⊥y轴,∴∠OCD=90°,∴∠ODG+∠CGD=90°,∵∠CKG=90°,∴∠OCH+∠CGD=90°,∴∠OCH=∠CDG,在△COH和△DCG中,,∴△COH≌△DCG(ASA),∴OH=CG,∴3m=3﹣5m,∴m=,∴OG=5m=,∴G(0,),∵D(3,3),∴直线DG的解析式为y=x+①,∵抛物线的解析式为y=+x+3②,联立①②解得,或(点D的纵横坐标),∴F(﹣,),∵D(3,3),∴FD==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年工大附中九年级(上)开学数学试卷一.选择题(共10小题)1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能2.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.3.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米4.如图,AB是⊙○的直径,CD是⊙○的弦.若∠BAD=21°,则∠ACD的大小为()A.21°B.59°C.69°D.79°5.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°6.如图,⊙O的直径CD垂直于弦EF,垂足为A,若∠OEA=40°,则∠DCF等于()A.100°B.50°C.40°D.25°7.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则AC的长为()A.4B.C.D.8.下列说法正确的是()A.经过半径的一端并且垂直于这条半径的直线是圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等D.90°的圆周角所对的弦是这个圆的直径9.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=10.已知如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC =45°,给出以下结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④二.填空题(共10小题)11.已知tanα=,α是锐角,则sinα=.12.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是.13.过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为cm.14.在△ABC中,若cos A是方程2x2﹣5x+2=0的一个根,则∠A=.15.在阳光下,身高1.5m的小强在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为18m.则旗杆的高度为m.16.在正方形网格中,△ABC的位置如图所示,则sin∠A的值为.17.如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD 于点C,AB=2,半圆O的半径为2,则BC的长为.18.在△ABC中,若AB=,tan∠B=,AC=,则BC=.19.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=.20.如图,在△ABC中,点Q、D分别在边AC、AB上,CD、BQ相交于点H,若点Q为AC中点,BD=DH=2,AD=AC,tan∠ADC=,则HQ的长为.三.解答题(共4小题)21.先化简再求值;,其中a=6tan60°﹣cos45°.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABE,点E在小正方形的顶点上,且△ABE 的面积为;(2)在图中画一个等腰三角形△ABF,点F在小正方形的顶点上,且tan∠AFB=,连接EF,请直接写出线段EF的长.23.我市城市规划期间,欲拆除沿江路的一根电线杆AB(如图),已知堤坝D距电线杆AB 水平距离BD=14米,背水坡CD的坡度i=2:1,坝高CF=2米,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由(在地面上以点B为圆心,以AB长为半径的圆形区城为危验区城).24.如图,在平行四边形ABCD中,延长BA至点E,使AE=AB,点F、P在边AD所在的直线上,EF∥CP.(1)求证:DF﹣DP=BC;(2)的条件下,若CD=15,EF=20,tan∠AFE=,BC=14,求DF的长.25.某社区计划对面积为1800m2的区域进行绿化经招标,甲、乙两个工程队中标,全部绿化工作由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,如果施工总费用不超过10万元,那么乙工程队至少需施工多少天?26.已知:四边形ABCD内接于⊙O,AC、BD相交于点E,AB=AC.(1)如图1,求证:2∠ACB+∠BDC=180°;(2)如图2,连接BO并延长交⊙O于点H,若AC⊥BD,求证:AH=CD;(3)如图3,在(2)的条件下,连接HE,若BE:DE=9:4;AB=30,求HE长.27.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB廷长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN=AN,求线段PM的长.参考答案与试题解析一.选择题(共10小题)1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:∵点到圆心的距离5,大于圆的半径3,∴点在圆外.故选C.2.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.【分析】根据勾股定理,可得AB的长,根据角的正弦,等于角的对边比斜边,可得答案.【解答】解:由勾股定理得AB==5,sin A=,故选:D.3.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米【分析】在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.4.如图,AB是⊙○的直径,CD是⊙○的弦.若∠BAD=21°,则∠ACD的大小为()A.21°B.59°C.69°D.79°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,又由∠BAD=21°,求得∠ABD的度数,然后利用在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ACD的大小.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠BAD=21°,∴∠ABD=90°﹣∠BAD=69°,∴∠ACD=∠ABD=69°.故选:C.5.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°【分析】根据余弦为邻边比斜边,可得答案.【解答】解:由cos B==,得BC=7cos B=7cos35°,故选:C.6.如图,⊙O的直径CD垂直于弦EF,垂足为A,若∠OEA=40°,则∠DCF等于()A.100°B.50°C.40°D.25°【分析】根据垂径定理得出弧DF度数是50°,再根据圆周角定理求出∠DCF即可.【解答】解:∵⊙O的直径CD垂直于弦EF,∴弧DE=弧DF,∵∠OEA=40°,∴∠EOD=50°,∴弧DF的度数是50°,∴由圆周角定理得:∠DCF=×50°=25°,故选:D.7.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则AC的长为()A.4B.C.D.【分析】由圆周角定理得出∠AOC=2∠B=120°,由等腰三角形的性质和三角形内角和定理得出∠OAC=∠OCA=30°,由垂径定理得出AP=CP,由勾股定理得出AP=2,即可得出答案.【解答】解:∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠OAC=∠OCA=30°,∵OP⊥AC,∴AP=CP,OA=2OP=4,∴AP==2,∴AC=2AP=4,故选:C.8.下列说法正确的是()A.经过半径的一端并且垂直于这条半径的直线是圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等D.90°的圆周角所对的弦是这个圆的直径【分析】根据切线的判定定理,垂径定理,圆周角定理判断即可.【解答】解:A、经过半径的外端并且垂直于这条半径的直线是圆的切线,故不符合题意;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故不符合题意;C、在同圆或等圆中,如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等,故不符合题意;D、90°的圆周角所对的弦是这个圆的直径,故符合题意;故选:D.9.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=【分析】先根据矩形的性质得AD∥BC,CD∥AB,再根据平行线分线段成比例定理,由DE∥BC得到=,=,则可对A、C进行判断;由DF∥AB得=,则可对B进行判断;由于=,利用BC=AD,则可对D进行判断.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,CD∥AB,∵DE∥BC,∴=,=,所以A、C选项结论正确;∵DF∥AB,∴=,所以B选项的结论错误;=,而BC=AD,∴=,所以D选项的结论正确.故选:B.10.已知如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC =45°,给出以下结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④【分析】①AB是直径,易知∠AEB=90°,而∠ABE=45°,AB=AC,从而易求∠ABC 和∠ACB,进而可求∠EBC;②连接AD,由于AB=AC,∠ADB=90°,利用等腰三角形三线合一定理可知BD=CD;③在Rt△BCE中,易求∠EBC和∠C,利用BE=tan67.5°•CE,可知BE≠2CE,利用∠BAC=45°,∠AEB=90°,易证△ABE是等腰直角三角形,从而可知AE≠2CE;④由于∠ABE=45°,BAD=22.5°,易得劣弧AE=2劣弧BD,而劣弧BD=劣弧DE,从而易证劣弧AE=2劣弧DE.【解答】解:①∵∠A=45°,AB是直径,∴∠AEB=90°,∴∠ABE=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠EBC=67.5°﹣45°=22.5°,此选项正确;②连接AD,∵AB=AC,AB是直径,∴∠ADB=90°,∴BD=CD,此选项正确;③∵AB是直径,∴∠AEB=90°,由①知∠EBC=22.5°,∠C=67.5°,∴BE=tan67.5°•CE,∴BE≠2CE,在Rt△ABE中,∠AEB=90°,∠BAE=45°,∴∠ABE=45°,∴AE=BE,∴AE≠2CE,此选项错误;④∵∠ABE=45°,∠BAD=22.5°,∴劣弧AE=2劣弧BD,∵劣弧BD=劣弧DE,∴劣弧AE=2劣弧DE,此选项正确.正确的有①②④,故选:B.二.填空题(共10小题)11.已知tanα=,α是锐角,则sinα=.【分析】据锐角三角函数的定义,设∠A=α,放在直角三角形ACB中,设BC=5x,AC =12x,由勾股定理求出AB,再根据锐角三角函数的定义求出即可.【解答】解:∵tanα==,∴设BC=5x,则AC=12x,在Rt△ABC中,AB==13x,故sinα==.故答案是.12.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是1.【分析】首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,解出即可.【解答】解:连OD,OE,OF,如图,设半径为r.则OE⊥AC,OF⊥AB,OD⊥BC,CD=r.∵∠C=90°,BC=3,AC=4,∴AB=5,∴AE=AF=4﹣r,BF=BD=3﹣r,∴4﹣r+3﹣r=5,∴r=1.故填1.13.过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为3cm.【分析】根据垂径定理及勾股定理即可求出.【解答】解:由已知可知,最长的弦是过M的直径AB最短的是垂直平分直径的弦CD已知AB=10cm,CD=8cm则OD=5cm,MD=4cm由勾股定理得OM=3cm.14.在△ABC中,若cos A是方程2x2﹣5x+2=0的一个根,则∠A=60° .【分析】先求出方程的解,根据已知得出cos A=,求出即可.【解答】解:2x2﹣5x+2=0,(2x﹣1)(x﹣2)=0,2x﹣1=0,x﹣2=0,x1=,x2=2,∵∠A是锐角,且cos A的值是方程2x2﹣5x+2=0的一个根,∴cos A=,∴∠A=60°,故答案为:60°.15.在阳光下,身高1.5m的小强在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为18m.则旗杆的高度为13.5m.【分析】利用在同一时刻身高与影长成比例计算.【解答】解:根据题意可得:设旗杆高为xm.根据在同一时刻身高与影长成比例可得:=,解得:x=13.5(m).故答案为:13.5.16.在正方形网格中,△ABC的位置如图所示,则sin∠A的值为.【分析】过C作CD⊥AB于D,根据三角形ABC的面积为定值可求出CD的长,利用勾股定理可以求出AC的长,再根据正弦的定义即可求出sin∠A的值.【解答】解:过C作CD⊥AB于D,∵AB==4,BC=2,∴×AB•CD=BC×4,∴CD=,∵AC==2,∴sin∠A===,故答案为.17.如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD 于点C,AB=2,半圆O的半径为2,则BC的长为1.【分析】连接OD,根据切线的性质得出OD⊥AD,求出OD∥BC,根据相似三角形的判定得出△BCA∽△ODA,得出比例式,代入求出即可.【解答】解:连接OD,∵AD切半圆O于点D,∴OD⊥AD,∵BC⊥AD,∴OD∥BC,∴△BCA∽△ODA,∴=,∴=,∴BC=1,故答案为:1.18.在△ABC中,若AB=,tan∠B=,AC=,则BC=13或1..【分析】如图,作AH⊥C于H.分两种情形分别求出BC即可解决问题.【解答】解:如图,作AH⊥C于H.当高AH在△ABC内时,∵tan∠B==,∴可以假设AH=3k,BH=7k,∵AB2=AH2+BH2,∴58=58k2,∵k>0,∴k=1,∴AH=3,BH=7,在Rt△ACH中,CH===6,∴BC=BH+CH=7+6=13,当高AH在△ABC′外时,BC′=BH﹣HC′=7﹣6=1,故答案为13或1.19.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=2.【分析】连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD =OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE 中,利用∠DAC的正切值求解即可.【解答】解:连接OD,OC,AD,∵半圆O的直径AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴AD===2,在Rt△ADE中,∵∠DAC=30°,∴DE=AD•tan30°=2×=2.故答案为:2.20.如图,在△ABC中,点Q、D分别在边AC、AB上,CD、BQ相交于点H,若点Q为AC中点,BD=DH=2,AD=AC,tan∠ADC=,则HQ的长为2.【分析】如图,过点B作BE⊥CD,过点A作AF⊥CD,过点Q作QP⊥CD,则BE∥AF∥QP,由勾股定理可求BE,DE的长,由相似三角形的性质可求QP=,HP=7,由勾股定理可求HQ的长.【解答】解:如图,过点B作BE⊥CD,过点A作AF⊥CD,过点Q作QP⊥CD,则BE ∥AF∥QP,∵tan∠ADC==tan∠EDB=,∴设BE=a,DE=3a,∴BE2+DE2=BD2,∴16a2=4,∴a=,∴BE=,DE=,∴EH=,∵AD=AC,AF⊥CD,∴DF=CF,∵tan∠ADC==,∴设AF=b,DF=3b=CF,∵点Q为AC中点,∴AC=2QC,∵QP∥AF,∴△QPC∽△AFC,∴,且AC=2QC,∴QP=AF=b,PC=CF=b,∵BE∥QP,∴△BEH∽△QPH,∴,即,∴HP=b,∵CD=DH+HP+CP∴6b=2+b+b∴b=2∴QP=,HP=7,∴HQ===2,故答案为:2.三.解答题(共4小题)21.先化简再求值;,其中a=6tan60°﹣cos45°.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将化简后的a的值代入计算可得.【解答】解:原式=﹣•=﹣=,a=6tan60°﹣cos45°=6﹣2×=6﹣2,则原式===.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABE,点E在小正方形的顶点上,且△ABE 的面积为;(2)在图中画一个等腰三角形△ABF,点F在小正方形的顶点上,且tan∠AFB=,连接EF,请直接写出线段EF的长.【分析】(1)依据以AB为腰的等腰三角形△ABE,点E在小正方形的顶点上,且△ABE 的面积为,即可得到△ABE;(2)依据等腰三角形△ABF,点F在小正方形的顶点上,且tan∠AFB=,即可得到△ABF,运用勾股定理即可得到EF的长.【解答】解:(1)如图所示,△ABE即为所求;(2)如图所示,△ABF即为所求;Rt△BEF中,EF==5.23.我市城市规划期间,欲拆除沿江路的一根电线杆AB(如图),已知堤坝D距电线杆AB 水平距离BD=14米,背水坡CD的坡度i=2:1,坝高CF=2米,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由(在地面上以点B为圆心,以AB长为半径的圆形区城为危验区城).【分析】根据坡度的概念求出DF,得到BF的长,根据正切的定义求出AG,得到AB的长,比较大小得到答案.【解答】解:不需要将此人行道封上.∵背水坡CD的坡度i=2:1,坝高CF=2,∴DF=1,∴BF=BD+DF=15,由题意得,四边形BFCG为矩形,∴GC=BF=15,BG=CF=2,在Rt△AGC中,tan∠ACG=,则AG=GC•tan∠ACG=5,∴AB=AG+BG=5+2≈10.66,BE=BD﹣DE=14﹣2=12,∵10.66<12,∴不需要将此人行道封上.24.如图,在平行四边形ABCD中,延长BA至点E,使AE=AB,点F、P在边AD所在的直线上,EF∥CP.(1)求证:DF﹣DP=BC;(2)的条件下,若CD=15,EF=20,tan∠AFE=,BC=14,求DF的长.【分析】(1)证出∠EAF=∠CDP,∠F=∠P,由AAS证明△AEF≌△DCP,得出DP=AF,即可得出结论;(2)过点E作EG⊥AD于点G,与平行四边形的性质得出AE=AB=CD=15,AD=BC =14,由三角函数求出EG=12,FG=16,由勾股定理求出AG=9,得出AF=7,即可得出DF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAF=∠CDA,∴180°﹣∠BAF=180°﹣∠CDA,∴∠EAF=∠CDP,∵AE=AB,∴AE=DC,∵EF∥CP,∴∠F=∠P,在△AEF和△DCP中,,∴△AEF≌△DCP(AAS),∴DP=AF,∵DF﹣AF=AD,∴DF﹣DP=BC;(2)过点E作EG⊥AD于点G,如图所示:∵四边形ABCD是平行四边形,∴AE=AB=CD=15,AD=BC=14,在Rt△EFG中,tan∠AFE==,∴sin∠AFE==,cos∠AFE=,∴EG=sin∠AFE×EF=×20=12,FG=cos∠AFE×EF=×20=16,∴在Rt△EFG中,由勾股定理得:AG═=9,∴AF=FG﹣AG=16﹣9=7,∴DF=AF+AD=7+14=21.25.某社区计划对面积为1800m2的区域进行绿化经招标,甲、乙两个工程队中标,全部绿化工作由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,如果施工总费用不超过10万元,那么乙工程队至少需施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34:方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据工作时间=工作总量÷工作效率结合在独立完成面积为400m2区域的绿化时甲队比乙队少用4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设乙工程队需施工y天,则甲工程队需施工(18﹣0.5y)天,根据总费用=甲队每天所需费用×甲队工作时间+乙队每天所需费用×乙队工作时间结合施工总费用不超过10万元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原分式方程的解,∴2x=100.答:乙工程队每天能完成绿化的面积为50m2,甲工程队每天能完成绿化的面积为100m2.(2)设乙工程队需施工y天,则甲工程队需施工(18﹣0.5y)天,根据题意得:0.6(18﹣0.5y)+0.25y≤10,解得:y≥16.答:乙工程队至少需施工16天.26.已知:四边形ABCD内接于⊙O,AC、BD相交于点E,AB=AC.(1)如图1,求证:2∠ACB+∠BDC=180°;(2)如图2,连接BO并延长交⊙O于点H,若AC⊥BD,求证:AH=CD;(3)如图3,在(2)的条件下,连接HE,若BE:DE=9:4;AB=30,求HE长.【考点】MR:圆的综合题.【专题】553:图形的全等;554:等腰三角形与直角三角形;556:矩形菱形正方形;559:圆的有关概念及性质;55D:图形的相似;67:推理能力.【分析】(1)由等腰三角形的性质和三角形内角和定理可得结论;(2)由余角的性质可得∠ABH=∠CBD,可得=,可得结论;(3)如图3,延长AO交DB于N,连接DH,作HF⊥AC于F,由全等三角形的性质和相似三角形的性质可求DE=8,BE=18,DC=AH=10,由矩形的性质和全等三角形的性质可求HD,由勾股定理可求解.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC+∠ABC+∠ACB=180°,且∠BAC=∠BDC,∴2∠ACB+∠BDC=180°;(2)∵BH是直径,∴∠BAH=90°,∴∠H+∠ABH=90°,∵AC⊥BD,∴∠CBD+∠BCA=90°,且∠H=∠BCA,∴∠ABH=∠CBD,∴=,∴AH=CD;(3)如图3,延长AO交DB于N,连接DH,作HF⊥AC于F,∵BE:DE=9:4,∴设BE=9x,DE=4x,∵AB=AC,∴,且AO是半径,∴∠BAO=∠EAO,∵OA=OB,∴∠ABO=∠BAO,∴∠BAO=∠EAO=∠ABO=∠DBC,∵∠DAC=∠DBC,∴∠CAO=∠CAD,且∠AED=∠AEN=90°,AE=AE,∴△ADE≌△ANE(ASA)∴DE=EN=4x,∴BN=5x,∵∠BAO=∠DAC,AB=AC,∠ABD=∠ACD,∴△ABN≌△ACD(ASA)∴CD=BN=5x,∵∠BAC=∠BDC,∠ABD=∠ACD,∴△ABE∽△CDE,∴,∴∴AE=24,∴CE=AC﹣AE=6,∴x=2,∴DE=8,BE=18,DC=AH=10,∵HF⊥AC,AC⊥DB,∠ADB=90°,∴四边形HFED是矩形,∴HD=EF,HF=DE,∵AH=DC,HF=DE,∴Rt△AHF≌Rt△CDE(HL)∴AF=CE=6,∴EF=AC﹣AF﹣EC=30﹣12=18=HD,∴HE===2.27.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB廷长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN=AN,求线段PM的长.【考点】FI:一次函数综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)证明△DBK是等腰直角三角形,求出OK即可解决问题.(2)构建一次函数求出点F的坐标即可解决问题.(3)如图3中,作AH⊥DB交DB的延长线于H,PT⊥BD于T,延长PM交BD的延长线于K.利用全等三角形的性质首先证明当MN=MK时,PM+MN=AN,求出直线PK 的解析式,构建方程组求出交点坐标即可.【解答】解:(1)如图1中,∵直线与x、y轴交于点A、B,∴B(0,3),A(﹣2,0),∵直线y=x+b交x、y轴于点E、K,∴K(0,b),E(﹣b,0),∴OE=OK=﹣b,∴∠OKE=45°,∵BD∥x轴,∴BD⊥BK,∴∠DBK=90°,∴BK=BD,∵DK=5,∴BD=DK=5,∴OE=OF=2,∴b=﹣2,∴直线DE的解析式为y=x﹣2.(2)如图2中,∵BF⊥AB,∴直线BF的解析式为y=﹣x+3,由解得,∴F(3,1),∵线段BF是由BP顺时针旋转90°得到,∴p(2,6).(3)如图3中,作AH⊥DB交DB的延长线于H,PT⊥BD于T,延长PM交BD的延长线于K.当MN=MK时,∠MNK=∠ANH=∠K,∵∠PTK=∠H=90°.AH=PT=3,∴△AHD≌△PTK(AAS),∴DH=TK,AN=PK,∴HT=DK=4,∵PM+MN=PM+MK=PK=AN,∴K(9,3),∵P(2,6),∴直线PK的解析式为y=﹣x+,由,解得,∴M(,),∴PM==.。