数轴上画出表示无理数

合集下载

人教版八年级下册17.1在数轴上表示无理数教学设计

人教版八年级下册17.1在数轴上表示无理数教学设计
2.数轴上表示无理数:介绍如何在数轴上表示无理数,并通过实例演示。
"在数轴上表示无理数时,我们可以用近似值来表示。比如,π约等于3.14,我们可以在数轴上找到3和4之间的某个点来表示π。"
3.比较无理数的大小:讲解如何利用数轴比较无理数的大小。
"通过数轴,我们可以直观地比较两个无理数的大小。例如,π和√2,我们可以发现π大于√2,因为在数轴上π的位置在√2的右边。"
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计具有代表性的练习题。
"请同学们在数轴上表示出以下无理数:π、√3、√5。然后比较它们的大小,并在小组内讨论如何估算它们的近似值。"
2.解答与指导:在学生练习过程中,及时解答他们的问题,并进行个别指导。
"同学们,如果在数轴上表示无理数时遇到困难,可以参考教材上的示例,或者向我提问。我会及时帮助你们解决问题。"
5.预习下一节课内容,了解无理数在数学中的应用,为课堂学习做好准备。
"提前预习下一节课的内容,了解无理数在数学中的应用,为课堂学习打下基础,提高学习效果。"
请同学们认真完成作业,通过作业巩固所学知识,提高自己的数学素养。在完成作业的过程中,如果遇到问题,可以与同学互相讨论,共同解决。同时,也希望同学们能够主动思考,积极探索,将所学知识运用到实际生活中。祝大家学习进步!
教学设想:
1.引入阶段:通过生活实例或数学故事引入无理数的概念,激发学生兴趣,为后续学习打下基础。
-例如,可以讲述古希腊数学家毕达哥拉斯发现无理数的故事,让学生了解无理数的发现过程,感受数学的探索精神。
2.基本概念教学:采用讲解、举例、讨论等形式,帮助学生理解无理数的定义、性质和特点。

勾股定理(讲义及答案)及解析

勾股定理(讲义及答案)及解析

一、选择题1.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )A .29cmB .5cmC .37cmD .4.5cm2.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .64.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .95.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .3cmB .14cmC .5cmD .4cm6.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .127.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 9.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( ) A .5 B .4 C 7D .4或5 10.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________15.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________18.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.19.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.23.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.25.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A的坐标;(2)判断DF与OE的数量关系,并说明理由;的周长.(3)直接写出ADG28.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.29.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D 是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.30.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】解:根据题意,如图所示,最短路径有以下三种情况:(1)沿AA',A C'',C B'',B B'剪开,得图1:22222AB AB BB'=+'=++=;(21)425(2)沿AC,CC',C B'',B D'',D A'',A A'剪开,得图2:22222'=+'=++=+=;AB AC B C2(41)42529DD,B D'',C B'',C A'',AA'剪开,得图3:(3)沿AD,'22222'=+'=++=+=;AB AD B D1(42)13637综上所述,最短路径应为(1)所示,所以225AB '=,即5cm AB '=.故选:B .【点睛】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.2.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.3.C解析:C【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2()a b + =21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。

数轴上有表示无理数的点吗微教案

数轴上有表示无理数的点吗微教案

在数轴上找表示无理数的点教学目标学生能在数轴上找到表示π这样的无理数的点。

教学过程1、引入问题我们知道,实数可以分成有理数和无理数。

如:在实数5395,,,,,25119π--中,5395,,,,325119--π是无理数。

我们还知道每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点表示出来呢?2、探索解决问题的方法活动1:在数轴上找表示无理数π的点直径为1个单位长度的圆其周长为π。

画一条数轴,把一个用软铁丝做成的直径为1的圆放在原点,从原点处剪开把铁丝向右拉直,铁丝的另一端落在数轴上的位置就是π所对应的位置,由此我们把无理数π用数轴上的点表示了出来。

想一想:怎样在数轴上找到表示无理数,,,3210ππππ-的点? 设计意图:通过直径为1个单位长度的圆的周长剪开后从坐标原点拉出的方法,让学生知道无理数π可以在数轴上表示,同时与π有关的许多数都可以在数轴上表示。

活动2:前面学习过用两个面积为1的小正方形拼成一个面积为2的大正方形,如图:大正方形的边长为2在数轴上,以原点为一个顶点,一个单位长度为边长画一个正方形,则其对角线的长度就是2。

以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就表示2-。

试一试:-设计意图:通过具体操作,让学生知道无理数2也可以在数轴上表示。

同时与2有关的许多数都可以在数轴上表示。

3、总结通过本课的学习,我们知道了如何在数轴上表示π,2及与他们相关的无理数。

事实上,类似于以上做法,我们可以把每一个无理数在数轴上表示出来。

另外,我们在探索过程中或者借助了圆的周长,或者借助了正方形的周长、对角线与面积的关系,请同学们注意这种化归思想,从而培养自己的创新能力。

数轴表示根号13

数轴表示根号13
∴AC= AB2+BC2= 32+12= 10,
∴AM=AC= 10, ∴OM=AM-OA= 10-1. ∵圆弧交数轴的正半轴于点 M, ∴点 M 在数轴上对应的数为 10-1.
在 Rt△ABD 和 Rt△ACD 中,AD2=AB2-BD2=AC2-CD2,
故有 52-x2=(133)2-(134-x)2,解得 x=3, 所以 AD2=AB2-BD2=16,即 AD=4(负值已舍), 所以△ABC 的面积为12BC·AD=12×134×4=238.
长为 n的线段是直角边分别为正整数 a,b(a2+b2=n)的直角三 角形的斜边,可按如下的方法在数轴上画表示 n的点. (1)在数轴上找一点 A,使 OA=a;(2)过点 A 作直线 l 垂直于 OA; (3)在 l 上取点 B,使 AB=b;(4)以原点 O 为圆心,以 OB 为半径 作弧,弧与数轴正半轴的交点 C 即为表示数 n的点.
解:∵在长方形 ABCD 中,AB=3,AD=1, ∴AC= AB2+BC2= 32+12= 10. ∵圆弧交数轴的正半轴于点 M, ∴点 M 在数轴上对应的数为 10. 以上解答正确吗?若正确,请说明理由;若不正确,请写出 正确解答.
[答案] 不正确.因为数轴的原点不是 A 点,正确解答如下: 设数轴的原点为 O. ∵在长方形 ABCD 中,AB=3,AD=1,
• 思考:如何在数轴上表示 13 的点。
• 【归纳总结】 在数轴上表示无理数的“三步法”: • (1)“拆分”:利用勾股定理拆分出哪两条线段长的平方
和等于所画线段(斜边)长的平方(如利用勾股定理画出长 为的线段,其关键是找到两个整数a和b,使a2+b2=n). • (2)“构造”:以数轴原点为直角三角形斜边的一端点, 构造直角三角形. • (3)“画弧”:以数轴原点为圆心,以斜边长为半径画弧, 即可在数轴上找到表示该无理数的点.

带根号的无理数在数轴上的表示问题

带根号的无理数在数轴上的表示问题

带根号的无理数在数轴上的表示问题
人教版数学八年级教科书上册第83页中有这样一段话:“以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与正半轴的交点就表示2,与负半轴的交点就表示-2 (为什么?)”,勾股定理在人教版数学八年级下册第十八章才讲,如果学生真的问起“为什么?”,老师如何回答?(老师不可能在这里证明勾股定理吧),2好办,可用面积为1的两个小正方形拼成一个面积为2的大正方形,此时大正方形的边长为2,学生可以理解,3在数轴上如何表示?,5呢?,6呢?。

针对这个问题,
可事先进行数学活动(人教版数学八年级教科书上册第89页):(1)让学生画一个直角三角形,使它的两条直角边分别是3和4,由学生用直尺量出斜边的长(斜边的长为5),老师引
导学生找出关系式:32+42=52,(2)让学生画一个直角三角形,使它的两条直角边分别是6和8,由学生用直尺量出斜边的长(斜边的长为10),老师引导学生找出关系式:62+82=102,(3)让学生画一个直角三角形,使它的两条直角边分别是5和12,由学生用直尺量出斜边的长(斜边的长为13),由学生分析讨论找出关系式:52+122=132。

从而得出结论:任意一个直角三角形,都有两条直角边的平方和等于斜边的平方。

从而可以利用这个结论在数轴上作出表示无理数2,3,5,6,┉的点。

6.3无理数可以在数轴上表示出来吗?——实数(2012.10.23)

6.3无理数可以在数轴上表示出来吗?——实数(2012.10.23)

6.3无理数可以在数轴上表示出来吗?——实数背景材料:自从学习了实数的知识,小贝有一种体会——实数的内容简直是太丰富了!别的不说,光是“实数与数轴上的点是一一对应的”这一句话,就让小贝琢磨了好几天,她几乎花了这几天中所有的业余时间来消化理解这个结论.今天晚上写完作业后,小贝找出纸笔、计算器和绘图工具,她准备亲自动手,将一些无理数表示在数轴上.首先,小贝搜罗来六个无理数:π;2π-研究怎样在数轴上表示出这些数.根据小贝的设想,先在原点上方画一个直径是1个单位长度的圆,使圆与数轴接触的点恰好是原点0,因为圆的直径是1,所以圆的周长是π,将圆从原点沿数轴向右滚动一周,那么现在圆与数轴接触的点到原点的距离就是π,这样就可以在数轴上表示出π来了.可是设想毕竟是设想,真到了实践的时候却出了问题:在原点处画的圆是“死的”,动不了!这可咋办?小贝充分发扬了不怕麻烦勤动手的优良习惯,索性用卡纸做出一个直径是1个单位长度的圆形纸片,这下好了,将圆形纸片在数轴上滚动一周,记下了此时圆与数轴的接触点,满意地在那里标记上“π”.下一个数是2π-,有了圆形纸片,标记这个数就好办多了,因为2π-是负数,且它的绝对值是π的一半,所以这次纸片滚动的方向是向左的,滚动半周就可以了..记得学习平方根的时候老师讲过,作一个边长为1的正方形,那么正方形的对角线长这时小贝发现,以上面的π为基础,可以表示出很多与它们有关的无理数:如-π,1,π.732≈2.236.618,最后在数轴上把这三个数一一表示出来.2532-1-2120-π43知识解读:一、实数的概念及分类通过前面两节的学习,我们知道很多数经过开平方或开立方后所得的结果都是无限不循环小数,因而、π等.有理数和无理数合在一起统称为实数.像有理数一样,无理数也有正负之分.例如3π、5、37是正无理数,-3、3-π是负无理数.所以实数也可以细分为:实数的性质:(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数).(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小.在数轴上,右边的实数大于左边的实数.(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数不能开偶次方.(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 二、实数的运算在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用. 实数a 的相反数是-a ;一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是022;-π的相反数是π;1221;π-=π;0=03的倒3.当数从有理数扩充到实数以后,在进行实数的运算时,有理数的运算法则和性质等同样适用.例如:(32)23223=;3323=3222332263-三、实数的比较大小在比较实数大小的时候,要注意方法的运用.1.代数法:正数大于非正数,零大于负数,对于两个负数,绝对值大的反而小.2.数轴法:数轴右边的数比左边的数大.用数轴法比较实数的大小,先将实数表示在数轴上,再根据数的位置直接判断大小.3.特殊值法:例如,当0<x <1时,x 2、x 、1x的大小顺序是( )A .1x <x <x 2B .1x <x 2<xC .x 2<x <1xD .x <x 2<1x因为0<x <1,故可取x =0.5,则x 2=0.25,1x =2,由0.25<0.5<2,可得x 2<x <1x,故选C .4.分类讨论法:若a 是整数,那么a 2__________a .(请选符号>,≥,<,≤填空)因为对于a ,题目并未明确给出是正整数还是负整数,取值具有不确定性,因此需要分类讨论:当a是负整数时,得a 2>a ;当a 是0或1时,得a 2=a a a =2;当a 是大于1的整数时,得a 2>a ,综上可知,当a 是整数时,a 2≥a .5.作差法:0a b a b ->⇔>,0a b a b -=⇔=,0a b a b -<⇔<.例如,已知2005200620072008a ⨯=-⨯,2005200720062008b ⨯=-⨯,2005200820062007c ⨯=-⨯,则a ,b ,c 的大小关系是_______________. ∵a b -20052006200520072005200720052006()20072008200620082006200820072008⨯⨯⨯⨯=---=-⨯⨯⨯⨯200520072006()0200820062007=->,所以a b >,同理可得,b c >所以a b c >>.6.作商法:若0a >,0b >,1a a b b >⇔>,1a a b b =⇔=,1a a b b <⇔<.例如,比较78和910的大小,78÷910=7072<1,∴78<910.7.倒数法:分子一样,通过比较分母从而判定两数的大小.例如,比较34,56,78的大小,41133=,61155=,81177=,易得:468357>>,所以:357468<<.8.乘方法:例如,比较和先将两个数平方,得到45和75,∵45<75,∴<9.同一法:将分数化为同分子或同分母的分数,再比较大小.例如,比较5个分数23,58,1523,1017,1219的大小,先找出分子的最小公倍数60,再将这些分数进行等值变换,5个分数依次等于:6090,6096,6092,60102,6095,∴60102<6096<6095<6092<6090,即1017<58<1219<1523<23.此外,比较数的大小时,还常常采用传递的原理(若a >b ,b >c ,则a >c )帮助解题. 四、实数与数轴的关系我们知道,所有的有理数都可以表示在数轴上.结合小贝的一系列实践操作,不难发现以下结论:数轴上任意一点表示的数,不是有理数就是无理数.数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,所以“实数与数轴上的点是一一对应的”.相关链接:(一)“无理数”的由来在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人的创造所破坏.唯独数学,每一代人都在古老的大厦上添加一层楼.——【德】汉克尔公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭.这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位.希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处.毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”.而这种“孔隙”经后人证明简直多得“不可胜数”.于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了.不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽.不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数.15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数.然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”.人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.从有理数到实数,是数的发展史上一次巨大的飞跃,这一次飞跃经历了曲折而漫长的过程,这是科学家们努力探索的结果.在学习中,要学习这种勇于探索,积极创新的精神,为造福于社会而努力学习.用电子计算机计算π与2的值(二)超越数e在我们中学阶段,接触到的无理数最多的是含有根号的无理数,就连神秘的黄金分割数,也可以用512的形式表示出来.再有就是我们很熟悉(小学阶段就已经学过)的无理数“π”了.与众多的含根号的无理数相比,π显得有点孤独.其实,除了这些无理数外,还有一些可能不为你所知的无理数呢.下面为读者介绍的是在数学中的另一个常数e .e 是自然对数的底数,有些著作上称它为欧拉数,因为数学家欧拉(1707-1783)研究过它.用e 表示这个数,是欧拉在1728年一篇未发表的手稿《遗作》中引入的,1731年他在给哥德巴赫的信中用过e 表示自然对数的底后,e 便一直沿用至今.毕达哥拉斯(约公元前580-前500)古希腊哲学家、数学家、天文学家发展到1737年,欧拉已经证明了e 及e 2是无理数.到了1873年,巴黎大学的爱尔米德教授(1822-1901)就证明了e 是超越数.而e 就具有下列性质:11111xx e x x +⎛⎫⎛⎫+<<+ ⎪ ⎪⎝⎭⎝⎭(x 为正数).当x 取1,000,000时,便可求得e =2.71828.e 也可以定义为极限值:e =lim 11xx x ⎛⎫+ ⎪→∞⎝⎭.若利用牛顿所发明的幂级数,则可得:11122!3!4!e =++++…,这将能得到更精确的近似值:e =2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312....因为圆周率的定义直观,易于理解,所以π几乎是家喻户晓的一个数,知道π的人多数能背诵到3.14.e 则不同,在高等数学中大放异彩的常数e ,在现实中往往却不被人所知.它们时而出现在街角,时而见诸报端,只要你留意,生活中处处皆是数学.在Google2004年的首次公开募股,集资额不是通常的整头数,而是$2,718,281,828,这当然是取e 的前十位数字.顺便一提,Google2005年的一次公开募股中,集资额是$14,159,265,这是与圆周率π有关的一个数字了.阅读思考:问题1.(1983年,河北省初中数学竞赛试题)22π 3.140.614140.10010001000017,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .3问题2.已知实数a 、b 、c 在数轴上的位置如图所示,化简|a +b |-|c -b |的结果是( )A .a +cB .-a -2b +cC .a +2b -cD .-a -c问题3.有一个数值转换器原理如图所示,则当输入x 为64时,输出的y 是( )输出y输入xA .8B . C.D .问题4.若a 、b 为实数,且b=问题5.下面有四个命题:①有理数与无理数之和是无理数; ②有理数与无理数之积是无理数; ③无理数与无理数之和是无理数; ④无理数与无理数之积是无理数.请你判断哪些是正确的,哪些是不正确的,并说明理由.问题6b ,求4321237620b b b b +++-. 问题7.(1995年第6届希望杯全国数学邀请赛试题)设[]x 表示不大于x 的最大整数,如[π]3=,则100______⎡++++=⎣.参考答案:问题1.解:π0.1001000100001,是无理数.选D .【规律】(1)无理数应满足:①是小数;②是无限小数;③不循环.(2)无理数不是都带根号的数(例如π就是无理数). 问题2.解:从图中可知c <0,a <0,b >0,c <b ,|a |<|b |,a +b >0,c -b <0, 所以|a +b |=a +b ,|c -b |=b -c ,所以|a +b |-|c -b |=(a +b )-(b -c )=a +b -b +c =a +c . 因此选A .【启示】这是一道数形结合的题目,解题的关键在于认真观察图形,只有认真细致地观察才能准确地找出数轴上所给定的点表示的实数的取值范围,以及各实数之间的大小关系,从而准确地去掉绝对值符号.问题3.解:输入64,64的算数平方根是8,8是有理数,所以取8的算数平方根,得是无理数,输出,得y =,因此选B .问题4.解:依题意,a 2=1,即a =±1(舍去负值),故a =1,代入得b =123. 问题5.解:设a b ,是有理数,αβ,是无理数.①若a b α+=,则b a α=-,此式左边是无理数,右边是有理数,它是不成立的, 故a α+是无理数.①正确.②当0a =时,0a α=是有理数,②不正确.③当αβ==时,0αβ+=是有理数,故③不正确.④当αβ==2αβ=是有理数,故④不正确.问题6.解:∵91416<<,即34<<3.3b +,两边同时平方得21496b b =++,∴265b b +=.∴4321237620b b b b +++-()()43222636620b b b b b =+⋅+++-()()2226620b b b b =+++-25520=+- 10=.问题7.解:∵1===,2=====⎦, [][]910153⎡⎤=====⎣⎦, []16244⎡⎤====⎣⎦,……999⎡⎤====⎣⎦,10=. ∴原式1325374951161371581791910625=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+=.。

聚焦无理数与数轴上点的问题

聚焦无理数与数轴上点的问题

聚焦无理数与数轴上点的问题山东于秀坤学习了实数,我们知道实数与数轴上的点是一一对应的关系,对于一个有理数可以比较容易用数轴上的点表示,对于无理数又如何用数轴上的点表示呢?一些同学感到有些困难,下面就让我们一起来探究这方面的问题.一、用数轴上的点表示无理数利用数轴上点表示无理数,一般的方法是利用直角三角形的斜边积累来表示.主要涉及勾股定理的应用.例1用数轴上的点表示2和-2.解:如图1,以原点为一个顶点,以单位长度为边长画一个正方形OABC,以原点O为圆心,正方形对角线OB为半径画弧,与正半轴的交E点就表示2,与负半轴的交点F就表示-2.图1理由:因为在Rt△OAB中,OB2=0A2+AB2=1+1=2,所以OB=2,又OE=OB,所以OE=2,所以点E表示2.同样点F表示-2.例2 用数轴上的点表示3和-3.解:如图2,以单位长1为边作等腰直角三角形OAB,根据勾股定理得OB=2,再以B为直角顶点作Rt△OBC,使BC=1,根据勾股定理,得OC2=OB2+BC2=3.所以OC=3.图2以O为圆心,OC长为半径,画弧交数轴的正半轴于点F,负半轴于点E,则点F表示的数为3,点E表示的数为-3.例3 用数轴上的点表示π.解:如图3,将直径为单位长度1的圆,从原点沿数轴向右滚动一周,圆上的一点原点到点O′,从图中可以看出,OO′的长是这个圆的周长π,所以O′点表示无理数π.实际上,圆的周长为OO′=1×π=π.如果圆向左滚动一周,则与负半轴的交点表示-π.图3其它的无理数都可探究方法用数轴上的点表示.你可以试一试:在数轴上表示:5,13.二、写出数轴上的点所表示的无理数例4 如图4,在△OAB中,∠OAB=90°,OA=2,AB=1,BC⊥OB,BC=1,且E、O、A、D在同一数轴上,OC=OE=OD.试说出点D、E各表示的是什么数?图4解:在Rt△OAB中,OA=2,AB=1,由勾股定理得OB=5,在Rt△OBC中,OB=5,BC=1,由勾股定理,得OC2=OB2+BC2=6,所以OC=6,所以OD=OE=OC=6,所以点D表示的数是6,点E表示的数是-6.。

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

能画出长为 13的线段,就能在数轴上画出表示 13的点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
步骤:
1 在数轴上找到点A,使OA=3;
2 作直线l⊥OA,在l上取一点B,使AB=2;
3 以原点O为圆心,以OB为半径作弧,弧与
13 3
数轴交于C点,则点C即为表示 13的点.
l
正整数的角三角形的斜边; 2 以原点为圆心,以无理数斜边为半径画弧与数轴
存在交点,弧与数轴的交点即为表示无理数的点.
原点左边的点表示负无理数,原点右边的点表示 正无理数.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展
利用勾股定理可以作出这样一幅美丽的“海螺型” 图案,它被选为第七届国际数学教育大会的会徽.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
复习回顾
勾股定理
如果直角三角形的两条直角边长分别 b
c
为a,b,斜边长为c,那么a²b²c². a
变 求斜边:c a2 b2 形 求直角边:a c2 b2 ,b c2 a2
已知两边可求第三边
利用勾股定理还能解决哪些问题呢?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 2.如图,O为数轴原点,A、B两点分别对应3、3,作腰 长为4的等腰△ABC,连接OC,以O为圆心,OC长为半
径画弧交数轴于点M,则点M对应的实数为 7 .
3 2 1 O 1 2M3
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.如图,已知△ABC是腰长为1的等腰直角三角形, 以Rt△BAC的斜边AC为直角边,画第二个等腰 Rt△ACD,再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE.依此类推,则第2018个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
CBAຫໍສະໝຸດ 数轴上的点有的表示有理数,有的表示
无理数,你能在数轴上画出表示 13 的
点吗?
L
解:
B
0 1 2 A•3 4
试 1请你在作业纸上画图,在数轴上表示 13 的点

试 2请同学们归纳出如何在数轴上画出表示 13 的点
的方法?
3你能在数轴上表示 17 的点吗?试一试!
扩展
利用勾股定理作出长为 2 , 3, 5 的线段.
葛藤又是一种聪明的植物, 它绕树干攀升的路线,总是沿着 最短路径——螺旋线前进的。若 将树干的侧面展开成一个平面, 如图(2),可清楚的看出葛藤 在这个平面上是沿直线上升的。
(1) (2)
聪明的葛藤
有 一棵树直立在地上,树高2丈,粗3尺,有一 根葛藤从树根处缠绕而上,缠绕7周到达树顶,
请问这根葛藤条有多长?(1丈等于10尺)
C
20尺
A
3×7=21(尺) B
有一个人拿一根杆子进城,横着拿不能 进,竖着拿也不能进,干脆将其折断, 才解决了问题。
学生活动(五)
小明家住在18层的高楼,一天,他与妈妈去买竹竿。
买最 长的 吧!
快点回家, 好用它凉衣
服。
糟糕,太 长了,放 不进去。
如果电梯的长、宽、高分别是4尺、3尺、12尺,那么,你能 帮小明估计一下买的竹竿至多是多少尺吗?(结果取整数)
C
2
A
4
B
A1

A
4
B1
C1
1
B2 C
AC1 =√42+32 =√25 ;
AC1 =√62+12 =√37 ;
D D1
C1
2

A 1 A1
4
B1
AC1 =√52+22 =√29 .
数学奇闻
聪明的葛藤 葛藤是一种刁钻的植物,它自 己腰杆不硬,为了得到阳光的沐 浴,常常会选择高大的树木为依 托,缠绕其树干盘旋而上。如图 (1)所示。
A
A
C
12
3
12 C
D 4
BD 4
B3
C
B
人教版八年级(下)第十七章
试一试:
在我国古代数学著作 《九章算术》中记载了一道 有趣的问题,这个问题的意 思是:有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?
1 12
3 45
• 用同样的方法,你能 否在数轴上画出表示
• 1 ,…2
3
45
1
0 1 2 32 5 3 4 5
二、圆柱(锥)中的最值问题
例2、 有一圆形油罐底面圆的周长为24m,高为6m, 一只老鼠从距底面1m的A处爬行到对角B处 吃食物,它爬行的最短路线长为多少?
B
C
B
A
A
四、长方体中的最值问题
例3、如图,一只蚂蚁从实心长方体的顶点A出发, 沿长方体的表面爬到对角顶点C1处(三条棱长如图 所示),问怎样走路线最短?最短路线长为多少?
D1 A1 D
A
4
分析: 根据题意分析蚂蚁爬行的路
C1 线有三种情况(如图①②③ ),由勾股
B1
1 C
定理可求得图1中AC1爬行的路线最
2 B
短.
D1
C1

1
D
相关文档
最新文档