染色质免疫共沉淀(ChIP)实验具体方法及步骤
染色体免疫共沉淀

染色体免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是基于体内分析发展起来的方法,也称结合位点分析法,在过去十年已经成为表观遗传信息研究的主要方法。
这项技术帮助研究者判断在细胞核中基因组的某一特定位置会出现何种组蛋白修饰。
ChIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
它的原理是在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
实验步骤:第一步:用甲醛把细胞内的DNA结合蛋白与DNA交联起来具体步骤与注意事项1. 准备好一盘细胞量达到1 x 106的培养皿(注意:培养细胞时要适当处理细胞使得目的基因处于被转录的状态)2. 于培养基中加入适量的甲醛,使甲醛终浓度达到1%,37℃下交联10分钟。
(注意:交联的时间太短或太长都会影响最终的结果)3. 尽量的去掉培养基,然后用加了蛋白酶抑制剂的预冷PBS清洗细胞两次;4. 把细胞刮下,置于离心管中,4°C 2000 rpm 离心4分钟;5. 去掉上清液,加入200微升裂解液(注意:每1 x 106个细胞加200微升裂解液),冰上裂解10分钟;第二步:用超声波的方法把DNA破碎成合适的大小(250bp至800bp),因为在第一步中用甲醛交联了细胞内的大分子,所以结合蛋白质的DNA片段相对没那么容易被打断。
具体步骤与注意事项6. 用超声波破碎细胞裂解液中的DNA至DNA的长度为250bp至800bp(注意:整个操作过程必须在冰上进行,破碎中途不断的跑胶检测DNA分子长度是否达到250bp至800bp)第三步:用特异性抗体与DAN结合蛋白结合,用免疫沉淀的方法法分离出复合体。
纯化出复合体中的小片段DNA具体步骤与注意事项7. 把破碎好的细胞裂解液置于冰冻离心机中4°C 13000 rpm 离心10分钟,再把上清转移到2ml的离心管中;8. 用CHIP稀释液把细胞裂解液稀释10倍,并将此液称为原液(注意:稀释后取出200微升原液作为Input样品);9. 为了更好的去掉结果背景,往原液中加入75微升的蛋白A/G琼脂糖珠,4°C孵育30分钟,再稍微离心一下,收集上清液(以下称为A液);10. 把A液分为两份,一份加入结合目的基因的蛋白的抗体,一份加入Fl ag标签抗体,4°C孵育过夜;11. 分别加入40微升的蛋白A/G琼脂糖,4°C摇晃孵育1小时;(注意:孵育的时间不能太长,而且摇晃的速度要快)12. 700 至1000 r pm 4°C冰冻离心1分钟,去掉上清,反复清洗琼脂糖珠四次(注意:务必把上清液彻底的去掉,否则残留的上清液会造成假阳性);第四步:用PCR扩增特异DNA序列,以确定目的基因是否与抗原蛋白结合并最终被沉淀下来。
染色质免疫共沉淀XChIP实验设计

染色质免疫共沉淀 X ChIP 实验设计ChIP是一种强大的确定蛋白或者组蛋白修饰在基因组上定位的实验方法。
染色质被分离出来后采用抗体与抗原的结合来判定目的蛋白是否结合在特定的DNA序列上或者判定目的蛋白结合位点在全基因组范围的分布(微阵列或DNA序列)。
这种方法具有空间性与时效性。
该实验设计为如何在细胞中进行ChIP实验提供了详细的步骤。
1交联和细胞收获。
甲醛可以将蛋白质交联到DNA上。
交联结果的好坏决定于交联时间的把握。
-30分钟。
过度的交联会减少抗原的结合性和我们建议样品交联的时间一般为2超声断裂的效率。
抗原决定簇也会被掩盖。
加入甘氨酸可以消除甲醛使交联反应终止。
1.准备两个长满细胞的150cm2的细胞培养皿(1*107-5*107个细胞/皿)。
将甲醛直接滴入PBS洗过的细胞培养皿中,使其终浓度为0.75%,然后在室温缓慢旋转10分钟,使蛋白和DNA发生交联。
2加入甘氨酸使其终浓度为125mM,在室温晃动孵育5分钟。
3使用10ml预冷PBS清洗细胞2次4使用细胞刮将细胞收获放入5ml预冷PBS中,并转入50ml的管子。
5.在皿里加入3mlPBS,将剩余的细胞转移到50ml管子里6 1,000g离心5分钟7.将上清倒去,使用FA裂解液将沉淀重悬浮(1x107cells/750μl).初始细胞要有1*107-5*107个,采用终浓度为0.75%甲醛和如上描述的甘氨酸处理。
预冷PBS洗3次,1,000g离心5分钟,沉淀用FA裂解液重悬浮。
2。
超声破碎超声裂解细胞悬液可以将DNA均一的打断成500-1000bp的片段。
不同的细胞系需要不同的超声时间才能达到最优效果。
交联细胞要通过时间梯度的超声来选择最优超声条件。
样品通过时间梯度,DNA的分离如部分3所描述。
片段大小序在1.5%的琼脂糖凝胶上检测分析。
如图一所示图一:2超声破碎后,8,000g,30秒,4?C,离心。
将上清移入新的管子中。
开始准备进行染色质免疫共沉淀(IP)。
染色质免疫沉淀技术(ChIP)实验流程(转)

染⾊质免疫沉淀技术(ChIP)实验流程(转)⼀. 实验前准备:1. 实验设计与分组2. 实验试剂、耗材、仪器准备3. 试剂盒:Pierce™ Agarose chip Kit⼆. 实验开展:(以哺乳动物贴壁细胞为例)A. 交联与细胞裂解1. ⽤15cm培养⽫培养细胞,细胞量达80%-90%,细胞数量约为1x107 个,待⽤。
以下步骤基于1次ChIP试验2. 交联:向每个含有培养液的培养⽫中,加⼊16%的甲醛,使甲醛终浓度为1%. 轻轻晃动培养⽫, 使混匀, 室温孵育10min. (交联时间很重要,过长影响ChIP结果,过短交联不完全,产⽣假阳性)3. 终⽌交联:向上述培养⽫中,加⼊10X的⽢氨酸溶液使其终浓度为1X的。
混匀,室温孵育5min。
4. 吸出培养⽫中含有甲醛-⽢氨酸的混合培养基。
⽤1倍体积预冷的PBS清洗细胞两次。
5. 在1ml预冷的PBS加10ul的Halt Cocktail。
然后将此混合液加⼊清洗后细胞中,再⽤细胞刮搜集细胞,将细胞悬浮液⽤移液器转移到1.5m的微管离⼼管中。
6. 将搜集的细胞于3000g离⼼5min。
除去PBS,将细胞沉淀物保存在-80°,或者直接进⾏⼀下步骤:酶解附:蛋⽩量检测:WBB. 酶解断裂染⾊质1. 准备好上述交联好的细胞。
如果是冻存的,需在冰上解冻。
2.加100ul含蛋⽩酶抑制剂的Lysis Buffer 1⾄细胞沉淀物中吹打混匀,涡漩离⼼管15s,置于冰上孵育10min;9000g离⼼3min,弃除上清。
3. 加0.25ul的Micrococcal Nuclease (ChIP级) (10 U/µL),涡漩离⼼管,在37°⽔浴锅温浴15min,每5min 颠倒混匀;4. 加10µl的MNase stop 溶液终⽌反应,短暂涡漩混匀,冰上孵育5min。
5. 9000g离⼼5min,去上清,重新获得核酸复合物。
6. ⽤50µl的含(蛋⽩酶/磷酸蛋⽩酶)抑制剂的Lysis Buffer 2重悬核酸复合物,置于冰上15min,每5min涡旋15s。
染色质免疫共沉淀(ChIP)实验具体方法及步骤

染色质免疫共沉淀(ChIP)实验具体方法及步骤在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2x106个细胞。
这样每100 ul溶液含1x106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5x106个细胞。
本次细胞长得约为80%。
即为4x106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
将2管混在一起,共800 ul。
7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。
共14次。
二、除杂及抗体哺育(第一天)1. 超声破碎结束后,10 000 g 4℃离心10 min。
去除不溶物质。
2. 留取300ul做实验,其余保存于-80℃。
3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。
chip-seq过程

chip-seq过程Chip-seq(染色质免疫沉淀测序)是一种常用的基因组学技术,它可以用来研究蛋白质与DNA之间的相互作用。
本文将详细介绍chip-seq的过程及其应用。
一、引言Chip-seq是一种结合了染色质免疫沉淀(ChIP)和高通量测序(sequencing)的技术,用于研究特定蛋白质与DNA之间的相互作用。
通过该技术,我们可以确定蛋白质与DNA的结合位点,并进一步了解这些结合位点在基因调控中的作用。
二、实验步骤1. 交联:首先,将细胞或组织交联,使DNA与蛋白质相互交联形成复合物。
这一步骤可以使用甲醛等交联剂进行。
2. 染色质免疫沉淀:将交联后的细胞或组织进行裂解,使DNA与蛋白质分离。
然后,使用特异性抗体与目标蛋白质结合,形成抗原抗体复合物。
接着,使用磁珠或琼脂糖柱等材料,将抗原抗体复合物与其他非特异性结合的蛋白质和DNA分离。
3. 反交联:将抗原抗体复合物中的DNA与蛋白质进行反交联,使其分离。
这一步骤可以通过高温或酶切等方法进行。
4. DNA纯化:将反交联后的DNA进行纯化,去除杂质。
可以使用酚/氯仿等方法进行DNA的提取和纯化。
5. DNA测序:将纯化后的DNA进行高通量测序。
通过测序,可以得到大量的DNA片段序列。
6. 数据分析:对测序得到的数据进行分析,包括数据过滤、比对和富集分析等。
通过对数据的分析,可以确定蛋白质与DNA的结合位点,并推测这些结合位点在基因调控中的功能。
三、应用1. 确定转录因子结合位点:转录因子是调控基因表达的关键蛋白质,chip-seq可以用来确定转录因子与DNA的结合位点。
通过分析转录因子的结合位点,我们可以了解基因调控网络的组成和功能。
2. 研究组蛋白修饰:组蛋白修饰是一种重要的基因调控机制,chip-seq可以用来研究组蛋白修饰与DNA的相互作用。
通过分析组蛋白修饰的分布情况,我们可以了解基因的激活或抑制状态。
3. 鉴定染色体可及性:染色体的可及性是指染色体上的DNA片段是否容易被蛋白质结合。
免疫共沉淀实验流程--chip

染色体免疫共沉淀(Chip)实验报告步骤一:样品准备试剂和仪器:Biopulverizer(biospec)37% formaldehyde甘氨酸(Glycine)PBSprotease inhibitors步骤二:细胞交联1. 向客户提供的细胞沉淀中加入1ml 细胞培养基,混匀细胞后转移到15ml离心管中。
2. 向15ml离心管中加入270ul 37%甲醛溶液,使得甲醛的终浓度为1%,室温温育10min。
3. 向反应体系中各加入505ul 2.5M甘氨酸到终浓度为125mM,室温温育5min以终止交联反应。
4. 135x g,4°C离心10min,去上清,并用冰冷的10ml 1XPBS迅速漂洗两次。
5. 吸净PBS后,加入1ml PBS+protease inhibitors混合液,并转移到1.5ml离心管中。
800Xg,4°C离心5min,小心去掉上清。
步骤三:细胞裂解试剂:裂解缓冲液1: 50mM Hepes-KOH pH7.5; NaCl 140mM; EDTA 1mM; glycerol 10%;NP-40 0.5%;Tritonx -100 0.25%。
裂解缓冲液2: 10mM Tris-HCl pH8.0; NaCl 100mM; EDTA 1mM pH8.0; Na-Deoxycholate 0.1% Protease inhibitors。
步骤:1. 加入蛋白酶抑制剂(终浓度为1x) 到所有的裂解缓冲液中。
2. 用1ml的裂解缓冲液1重悬上述处理的样品,4°C旋转混合10min后,800g,4°C离心5min,弃上清。
3. 用300ul 裂解缓冲液2重悬样品,冰上放置30min。
步骤四:超声破碎DNA仪器:Bioruptor(Diagenode)步骤:(1)、将超声仪器Bioruptor 调到中档“Mid”(M)。
(2)、在超声池中注入一定量的冰水。
染色体免疫共沉淀(chip)步骤

染色体免疫共沉淀(chip)步骤
染色体免疫共沉淀(ChIP)是一种常用的实验技术,用于研究染色体上特定蛋白质与DNA的相互作用。
以下是染色体免疫共沉淀的基本步骤:
1. 交联:将细胞或组织与形成蛋白质-DNA复合物的交联剂(如甲醛)处理,使蛋白质与DNA之间形成致密的交联。
这一步骤有助于保持蛋白质与DNA的相互作用并固定其在细胞或组织中的位置。
2. 细胞破碎和核裂解:将交联后的细胞或组织进行破碎和核裂解,以释放细胞内的染色质。
这可以通过机械方法(如超声波处理)或化学方法(如利用细胞裂解缓冲液和蛋白酶进行破碎)完成。
3. 免疫共沉淀:在破碎的细胞或组织提取物中,加入特异性抗体,该抗体可以与目标蛋白质结合。
免疫抗体与目标蛋白质形成免疫复合物,并与形成蛋白质-DNA复合物的目标区结合。
4. 洗涤:通过一系列洗涤步骤,去除非特异性和非特定结合的蛋白质和核酸,以减少背景信号的干扰。
5. 解交联:通过加热或酶处理等方法,解除细胞或组织中的蛋白质-DNA交联,并将DNA释放出来。
6. DNA提取:通过加入DNA提取缓冲液和有机溶剂,从溶液中沉淀出DNA,并用适当的方法进行纯化和浓缩。
7. 分析:对提取的DNA进行进一步的分析,可使用PCR、测序等技术,以检测免疫共沉淀的蛋白质与目标DNA的相互作用。
这些步骤旨在允许研究人员从细胞或组织中获得特定蛋白质与DNA的结合信息,并进一步了解基因调控、表观遗传学等相关的生物学过程。
实际操作时,具体的步骤和条件可能会因实验目的和样本类型而有所不同。
因此,在进行染色体免疫共沉淀实验时,建议参考相关文献和实验室经验,以确保实验的准确性和
可重复性。
组织染色质免疫沉淀技术(chip)-步骤

Chip步骤组织裂解:1.新鲜组织。
切成1-3 mm3小块。
2.转移组织到50ML试管里。
加入10 ml of 1X PBS.3.加甲醛至终浓度为1%。
室温下转动15—20mins。
(10ul)4.加2.5 M Glycine至终浓度为0.125 M(终止交联)。
4°C下转动10mins。
(0.5ml)5.100 g, 4°C 离心样本5mins。
6.弃上清,取沉淀。
用45 ml 冰冻1X PBS和25 ml 冰冻1X PBS各洗一次。
离心弃上清。
7.再加入2 ml 冰冻1X PBS。
匀浆机裂解组织。
1000 rpm,4°C ,离心5 min。
弃上清。
8.细胞裂解液重悬细胞。
加入蛋白酶抑制剂PMSF (10 ul per ml), aprotinin (1 ul per ml) andleupeptin (1 ul per ml).冰上孵育10-15mins9.5,000 rpm ,4°C离心5分钟。
取沉淀10.细胞核裂解液重悬细胞加入(8)中的蛋白酶抑制剂。
冰上孵育10-20mins。
11.接下来就进去超声过程了。
(接下来第一天的5)第一天1.细胞中加入1%的甲醛,8ml的培养液加入216 ul的甲醛,37度十分钟。
2.配制含有蛋白酶抑制剂的PBS 20 ml和含有蛋白酶抑制剂的SDS溶液1ml3.将细胞拿出来,迅速的移除含甲醛的培养基,加入含蛋白酶抑制剂的PBS洗两遍。
胰酶消化20秒,加入含蛋白酶抑制剂的PBS 1ml。
用细胞刮刀把细胞刮下,收集到1.5ml的离心管里面。
4.4度2000rpm离心10min,弃上清液,加入200ul含蛋白酶抑制剂的SDS溶液。
吹打重悬细胞,冰上孵育10分钟。
5.超声切割DNA,总切割时间4min30sec,超声10sec,间隙10sec。
6.4度13000rpm离心10min,转移上清液到一个新的2ml的离心管,弃沉淀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色质免疫共沉淀(ChIP)实验具体方法及步骤在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2x106个细胞。
这样每100 ul溶液含1x106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5x106个细胞。
本次细胞长得约为80%。
即为4x106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
将2管混在一起,共800 ul。
7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。
共14次。
二、除杂及抗体哺育(第一天)1. 超声破碎结束后,10 000 g 4℃离心10 min。
去除不溶物质。
2. 留取300ul做实验,其余保存于-80℃。
3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。
4. 在100 ul的超声破碎产物中,加入900 ul ChIP DilutionBuffer和20 ul的50xPIC。
再各加入60 ul ProteinA Agarose/SalmonSpermDNA。
4℃颠转混匀1 h。
5. 1 h后,在4℃静置10 min沉淀,700 rpm离心1 min。
6. 取上清。
各留取20 ul做为input。
一管中加入1 ul抗体,另一管中则不加抗体。
4℃颠转过夜。
三、检验超声破碎的效果(第一天)1. 取100 ul超声破碎后产物,加入4 ul 5M NaCl,65℃处理2 h解交联。
2. 分出一半用酚/氯仿抽提。
电泳检测超声效果。
四、免疫复合物的沉淀及清洗(第二天)1. 孵育过夜后,每管中加入60 ul ProteinA Agarose/SalmonSperm DNA。
4℃颠转2 h。
2. 4℃静置10 min后,700 rpm离心1 min。
除去上清。
3. 依次用下列溶液清洗沉淀复合物。
清洗的步骤:加入溶液,在4℃颠转10 min,4℃静置10 min沉淀,700 rpm离心1 min,除去上清。
洗涤溶液:(1)low salt wash buffer-one wash(2)highsalt wash buffer-one wash(3)LiCl wash buffer-one wash(4)TE buffer-two wash4. 清洗完毕后,开始洗脱。
洗脱液的配方:100 ul 10%SDS,100 ul1M NaHCO3,800 ul ddH2O,共1 ml。
每管加入250 ul洗脱buffer,室温下颠转15 min,静置离心后,收集上清。
重复洗涤一次。
最终的洗脱液为每管500 ul。
5. 解交联:每管中加入20 ul 5M NaCl(NaCl终浓度为0.2 M)。
6. 混匀,65℃解交联过夜。
五、DNA样品的回收(第三天)1. 解交联结束后,每管加入1 ul RNaseA(MBI),37℃孵育1 h。
2. 每管加入10 ul 0.5 M EDTA,20 ul1M Tris.HCl(PH6.5),2 ul 10 mg/ml蛋白酶K。
45℃处理2 h。
3. DNA片段的回收----omega胶回收试剂盒。
最终的样品溶于100 ulO。
ddH2六、PCR分析(第三天)注意1. 注意抗体的性质。
抗体不同和抗原结合能力也不同,免染能结合未必能用在IP反应。
建议仔细检查抗体的说明书。
特别是多抗的特异性是问题。
2. 注意溶解抗原的缓冲液的性质。
多数的抗原是细胞构成的蛋白,特别是骨架蛋白,缓冲液必须要使其溶解。
为此,必须使用含有强界面活性剂的缓冲液,尽管它有可能影响一部分抗原抗体的结合。
另一面,如用弱界面活性剂溶解细胞,就不能充分溶解细胞蛋白。
即便溶解也产生与其它的蛋白结合的结果,抗原决定族被封闭,影响与抗体的结合,即使IP成功,也是很多蛋白与抗体共沉的悲惨结果。
3. 为防止蛋白的分解,修饰,溶解抗原的缓冲液必须加蛋白每抑制剂,低温下进行实验。
每次实验之前,首先考虑抗体/缓冲液的比例。
抗体过少就不能检出抗原,过多则就不能沉降在beads上,残存在上清。
缓冲剂太少则不能溶解抗原,过多则抗原被稀释。
一、染色质免疫共沉淀简介真核生物的基因组DNA以染色质的形式存在。
因此,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。
染色质免疫沉淀技术(chromatin immunoprecipitation assay, CHIP)是目前唯一研究体内DNA与蛋白质相互作用的方法。
它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
CHIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因表达调控中的作用。
由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。
二、ChIP的一般流程甲醛处理细胞---收集细胞,超声破碎---加入目的蛋白的抗体,与靶蛋白-DNA 复合物相互结合---加入ProteinA,结合抗体-靶蛋白-DNA复合物,并沉淀---对沉淀下来的复合物进行清洗,除去一些非特异性结合---洗脱,得到富集的靶蛋白-DNA复合物---解交联,纯化富集的DNA-片断---PCR分析。
三、PCR分析ChIP-chip技术对于大规模挖掘顺式调控信息成绩卓著,同时它可以用于胚胎干细胞和一些疾病如癌症、心血管疾病和中央神经紊乱的发生的机制。
研究人员还可以利用这项技术开发一些治疗方法。
目前ChIP-chip技术研究主要集中于两个领域:及转录因子的结合和条件特异性;组蛋白的修饰,组蛋白修饰蛋白和染色体重建。
ChIP-chip在描述转录结合因子动力学中的研究、染色体结构组分的分布、在组蛋白的修饰、组蛋白修饰蛋白和染色体重建中的应用也十分广泛。
ChIP-chip 技术的优点是,可以在体内进行反应;在给定的检验细胞环境的模式下得到DNA相互关系的简单影像;使用特异性修正抗体鉴定与包含有一个特异性后转录修正的蛋白质的相关位点;直接或者间接(通过蛋白质与蛋白质的相互作用)的鉴别基因组与蛋白质的相关位点。
缺点是:需要一个特异性蛋白质抗体,有时难于获得;为了获得高丰度的结合片段,必须实验演示胞内条件下靶标蛋白质的表达情况;调控蛋白质的基因的获取可能需要限制在组织来源中。
总之,ChIP-chip 技术的发展为析活细胞或组织中DNA与蛋白质的相互关系提供了一个极为有力的工具。
在未来的研究中,将对芯片的构建进行改进,提高其实用性。
使用易于获得抗体,增加这种方法的可用性。
在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。