积分上限的函数的性质及其应用(正文)

合集下载

积分上限函数的性质及其应用论文

积分上限函数的性质及其应用论文

湖北大学题目:积分上限函数的性质及其应用学院:数学与统计学院年级:研一专业方向:几何与方程作者姓名:陈勇学号:2014111104000639 出生年月:1990年05月性别男籍贯:湖南省汉寿县指导老师:陈立2015 年05月目录摘要 (II)Abstract (II)1引言 (1)2积分上限函数的性质 (1)2.1积分上限函数的初等性质 (1)2.2 积分上限函数的分析性质 (1)3积分上限函数的应用 (2)3.1利用积分上限函数证明积分等式与不等式 (2)3.2利用积分上限函数求幂级数的和函数 (2)3.3利用积分上限函数求解函数方程 (3)3.4利用积分上限函数确定全微分 (3)3.5利用积分上限函数求解导数 (3)3.6利用积分上限函数计算重积分 (4)3.7利用积分上限函数证明中值定理 (4)3.8利用积分上限函数求函数关系式 (5)3.9利用积分上限函数证明方程根的存在性 (5)4结束语 (5)致谢语 (5)参考文献 (6)积分上限函数的性质及其应用数学学院2014级2班陈勇摘要:积分上限函数是微积分学中一类具有特殊形式的函数,对于积分上限函数的初等性质及分析性质的研究,能够深入了解其特性,并广泛用于解决一些微积分问题.本文例举了积分上限函数的若干应用,对初学者具有指导意义.关键词:积分上限函数;初等性质;分析性质;应用The Nature and Its Application of Integral Ceiling Function Class2, 2014,College of Mathematics ChenYongAbstract: Integral ceiling function is a class of the special form of function in calculus. In this paper, the primary nature of the integral ceiling function was discussed in-depth understanding to solve some problems in calculus. In the paper, Which have Integral upper limit function a number of applications. A guide for beginners.Key word: integral ceiling function; primary nature; analysis nature; applications1引言积分上限函数是微积分学中一类具有特殊形式的函数,对积分上限函数的初等性质及分析性质进行研究,深入了解其特性,对于证明积分等式与不等式、求幂级数的和函数、求解函数方程、确定全微分等具有重要的作用. 因此全面的掌握积分上限函数的性质和恰当的运用显得尤为重要. 本文通过分析积分上限函数的性质, 得到几类典型的应用.2积分上限函数的性质2.1积分上限函数的初等性质定义1 如果函数)(x f 在],[b a 上可积,那么函数⎰=xadt t f x s )()((a ≤x ≤b )称为积分上限函数. 下面讨论与之有关的性质及其应用. (1) 单调性若)(x f 在],[b a 上可积, 且)(x f ≥0 ()(x f ≤0), 则积分上限函数⎰=xa dt t f x s )()(在],[b a 上单调递增(递减). (2) 奇偶性若)(x f 是连续函数且为奇函数,则积分上限函数⎰=xadt t f x s )()(是偶函数;若)(x f 连续函数且为偶函数,则积分上限函数⎰=xadt t f x s )()(奇函数.(3) 周期性若)(x f 是连续函数且周期为T , 则积分上限函数⎰=xadt t f x s )()(是周期函数, 或是一线性函数和一周期函数之和.(4) 有界性若)(x f 在],[b a 上可积,则积分上限函数⎰=xadt t f x s )()(在],[b a 上有界.2.2 积分上限函数的分析性质(1) 凹凸性若)(x f 在],[b a 上单调递增(递减), 则对∀),(b a c ∈, 积分上限函数⎰=xcdt t f x s )()(是凸函数(凹函数).(2) 连续性若)(x f 在],[b a 上可积, 则积分上限函数⎰=xadt t f x s )()(在],[b a 上连续(3) 可导性若)(x f 在],[b a 上连续, 则积分上限函数⎰=xadt t f x s )()(在],[b a 上可导, 并且()()()()xa d s x f t dt f x a xb dx'==≤≤⎰. (4) 可积性若函数()x f 在[]b a ,上连续,则函数()s x 在区间[]b a ,上可积.特别是,若函数()x f 连续,则有()()()⎰⎰⎰-=⎥⎦⎤⎢⎣⎡aa x dx x f x a dx dt t f 000.3积分上限函数的应用3.1利用积分上限函数证明积分等式与不等式例1 设()x f 和()x g 在[]b a ,上连续,证明:至少存在一点()b a ,∈ξ,使()()()()⎰⎰=ξξξξabdx x f g dx x g f .证明 令()()()⎰⎰=bxx adt t g dt t f x F .由于()x f ,()x g 在[]b a ,上连续,所以()x F 在[]b a ,上连续,在()b a ,内可导,且()()b F a F =,由罗尔定理,至少存在一点()b a ,∈ξ,使得()0F ξ'=,而()()()()()b xxaF x f x g t dt g x f t dt '=-⎰⎰,从而()()()()()0b aF f g t dt g f t dt ξξξξξ'=-=⎰⎰,即()()()()⎰⎰=ξξξξab dx x f g dx x g f .例2 若()x f 和()x g 在[]b a ,上连续,则()()()()⎰⎰≤⎪⎭⎫ ⎝⎛b a b a dx x g x f dx x g x f 222.证明 令()()()()()222⎪⎭⎫ ⎝⎛-⋅=⎰⎰⎰xa xa x adt t g t f dt t g dt t f x F ,则 ()()()()()()()()()22222x x xaaaF x f x g t dt g x f t dt f x g x f t g t dt '=++⎰⎰⎰()()()()()()()()[]⎰+⋅-=xadt x g t f t g t f x g x f t g x f 22222()()()()[]⎰≥-=xadt x g t f t g x f 02.所以()x F 在[]b a ,上单调增加,从而()()a F b F ≥.3.2利用积分上限函数求幂级数的和函数例3 求和函数1(1)nn n n x ∞=+∑.解 设),1,1(,)(11-∈=∑∞=+x nxx s n n 则12111()xn n n n s x dx nxxnx∞∞+-====∑∑⎰,设,)(111∑∞=-=n n nx x s 则 ,1)(11xxnx dx x s n n x-==∑⎰∞= 求导得,)1(1)(21x x s -=,)1()()(22102x x x s x dx x s x-==⎰再求导, 得.)1(2)(2x xx s -=3.3利用积分上限函数求解函数方程例4 设)(x f 在任意有限区间上可积且满足方程)()()(y f x f y x f +=+ (1) 试证:)(x f ax =,其中)1(f a =.证明 要证)(x f ax =,当0≠x 时即要证xx f )(=常数.或∀0,≠y x ,y y f x x f )()(=, 即x y f y x f )()(=在已知方程),()()(y f t f y t f +=+ 两边对t 取积分⎰⎰+=+xxx y f dt t f dt y t f 0,)()()(但⎰⎰⎰⎰++-==+xyx yyx ydt t f dt t f du u f dt y t f 00,)()()()(故⎰⎰⎰+--=yx yxdt t f dt t f dt t f y xf 0.)()()()(此式右端,y x ,以对称的形式出现.y x ,互换知x y f y x f )()(=, 从而)(x f ax =(当0≠x 时) (2) 在(1)中令1,0==y x ,得0)0(=f .可见(2)对于0=x 也成立.最后(2)中,令1=x ,可得)1(f a =.3.4利用积分上限函数确定全微分例5 验证)()(dy dx y x f +⋅+是全微分,其中)(u f 是连续函数. 证明 令()()⎰+=y x du u f y x F 0,,由于()u f 是连续函数,故()(),x F x y f x y '=+,()(),y F x y f x y '=+,且它们都是y x ,的连续函数,因此()()(),,x y dF x F x y dx F x y dy ''=+()()dy dx y x f +⋅+=. 即证()()dy dx y x f +⋅+是全微分.3.5利用积分上限函数求解导数例6 设)(x f 在0=x 的某个领域U 内连续,验证当U x ∈时,函数⎰---=x n dt t f t x n x 01)()()!1(1)(ϕ的各阶导数都有,且).()(x f x n =ϕ 证明 由于被积函数dt t f t x t x F n )()(),(1--=及偏导数),(t x F x '在U 上连续, 于是由定理可得 ⎰----='x n dt t f t x n n x 02)())(1()!1(1)(ϕ.)()()!2(1)()()!1(1021dt t f t x n x f x x n x n n ⎰----=--+.)()()!3(1)(03dt t f t x n x x n ⎰---=''ϕ 由此继续下去,求得k 阶导数为⎰-----=x k n k dt t f t x k n x 01)(.)()()!1(1)(ϕ 特别的当1-=n k 时有 ,)()(0)1(dt t f x xn ⎰=-ϕ于是).()()(x f x n =ϕ3.6利用积分上限函数计算重积分例7 设函数)(x f 在],[b a 连续,则.])([21)()(2dx x f dy y f x f dx ba b a bx ⎰⎰⎰=证明 dy y f x f dx b ab x)()(⎰⎰⎰⎰⎰⎰⎰==b ab axab xb xdt t f d dy y f dx dt t f x f ))(())((])()([))(())((]))()(([⎰⎰⎰⎰⎰==xab axab ax adt t f d dt t f dx dt t f x f.))((21])([2122dt t f x f b ab a x a ⎰⎰== 3.7利用积分上限函数证明中值定理例8 微分中值定理:若函数()x f 在闭区间[]b a ,连续,在开区间()b a ,内可导,则在开区间()b a ,内至少存在一点()b c a c <<,使()()()()a b c f a f b f -=-.证明 把c 换成t ,则()()()()a b t f a f b f -=-.即()()[]()()0=---a b t f a f b f , []b a x ,∈∀,将上式两边取积分()()[]()()0=---⎰xadt a b t f a f b f ,即()()[]()()()[]()0=-----a x a f x f a x a f b f .令()()()[]()()()[]()a x a f x f a x a f b f x F -----=,显然()()0==a F b F ,且()x F 在[]b a ,内连续,在()b a ,可导,由罗尔定理,则至少存在一点()b c a c <<,使()0=x F ,而()()()[]()()a b x f a f b f x F ---=,故()()()()a b c f a f b f -=- ()b c a <<.例9 积分中值定理:若函数()x f 在闭区间[]b a ,连续,则在[]b a ,内至少存在一点c ,使得()()()a b c f dt t f ba-=⎰.证明 设()()⎰=xadt t f x F ,由于()x f 在闭区间[]b a ,连续,则()x F 在[]b a ,上连续,由拉格朗日中值定理,则至少存在一点()b a c ,∈,使()()()()a b c f dt t f dt t f aab a-=-⎰⎰,即()()()a b c f dt t f ba-=⎰.3.8利用积分上限函数求函数关系式例10 已知函数)(x f 当10≤≤x 时为x 2, 当12x <≤时为x +2, 求积分上限函数⎰=xdt t f x 0)()(ϕ在]2,0[上的表达式.解 因为被积函数是分段函数, 所以通常计算定积分而确定)(x ϕ的表达式时也要分段考察.当10≤≤x 时,,2)()(2020x t tdt dt t f x xx x====⎰⎰ϕ 当12x <≤时,⎰⎰⎰+==11)()()()(xxdt t f dt t f dt t f x ϕ.23221)2(22101-+=++=⎰⎰x x dt t tdt x所以当10≤≤x 时为,)(2x x =ϕ 当12x <≤时为.232212-+x x3.9利用积分上限函数证明方程根的存在性例11设()x f 在[]b a ,上连续,且()x f >0, 又()()()⎰⎰+=xbx a dt t f dt t f x F 1.证明:()0=x F 在[]b a ,内有且仅有一个实根.证明 因为 ()()()()()211f x F x f x f x f x +'=+=, 而 ()()x f x f 212≥+,所以 ()20F x '≥≥.故()x F 在[]b a ,内单调增加,所以()0=x F 在[]b a ,内至多有一个实根.又 ()()⎰<=a b dt t f a F 01, ()()0>=⎰ba dt t fb F ,且()x F 在[]b a ,上连续,故根据的存在定理,在[]b a ,内()0=x F 至少有一个实根. 综上所述, ()0=x F 在[]b a ,内有一个且仅有一个实根.4.结束语综上所述,深刻理解积分上限函数的定义,准确掌握相关性质,是解决各种积分上限函数有关问题的关键,为解决实际问题提供了更多的方法,优化了解题途径,同时也存在着局限性,对适应范围存在着各种条件,这还有待于进一步研究.致谢语感谢陈立老师在论文过程中对我的悉心指导, 也感谢曾帮助我的同学们!参考文献[1]同济大学应用数学系.高等数学(第5 版)[M].北京:高等教育出版社,1999.[2] 高智民.原函数存在定理在不等式证明题中的应用[M].湖南师范大学学报,1997,16(2):14-15.[3]华东师大数学系.数学分析(第2 版)[M].北京:高等教育出版社,1999.[4]徐虎.积分上限函数的应用研究,内肛科技[M].中南大学学报,1997,17(2):15-16.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993 .[6]余家荣.复变函数[M].北京:高等教育出版社,1992.[7]高鸿.积分上限函数的主要性质及其应用[M].湖南商学院学报,2001,27(2):47-48.[8]常庚哲,史济怀.数学分析教程:下册[M].北京:高等教育出版社,2003.。

关于积分上限函数所确定的复合函数若干性质与应用的探讨

关于积分上限函数所确定的复合函数若干性质与应用的探讨

关于积分上限函数所确定的复合函数若干性
质与应用的探讨
1 积分上限函数
积分上限函数是用来计算某个函数在某个无穷小点处复合函数的
值的一种数学函数。

其特点在于它将函数进行分割,然后用积分算法
来估算函数值。

它可以帮助我们估算函数的参数,即使在功能的最后
一个点,也可以很好地估算函数的值。

2 性质
积分上限函数的性质是它是连续的函数,也就是说,除了分割函
数的位置以外,函数的值在点上是连续的。

此外,积分上限函数由正
上边界和负上边界组成,正上边界指的是在某个无穷小附近,函数值
下限范围内观测不到,而负上边界表示函数值在某个无穷小点处上限。

3 应用
积分上限函数可以结合曲线拟合方法应用于数据分析,可以有效
地拟合不同尺度的数据,包括时间序列、金融学、温度等。

此外,积
分上限函数还可用来解决拖拽延迟、负载平衡以及路由延迟等企业网
络应用中的问题。

另外,积分上限函数还可以应用于服务器调度、流
量分配等方面,可大大提高企业的网络性能和服务质量。

积分上限函数的性质及其应用

积分上限函数的性质及其应用

证明: 因为f x 在[, ] () a b 上可积,则f x 在[, 】 () 口 b 有 界。即 M > 0,使得 l x l ) ≤ ,有 f(
1 积 分上 限函数的性质
1 单 调 性 . 1
( =I (d 由 tt ) ) f
是周期 函数 ,或 是一线性 函数和一周期 函数之和 。
若f x 在【, ] () a b 上可积,且厂 ≥0( () ) () 厂 ≤0 ,则
积 分 上 限 函 数
证 : )f(t知 明 由(= f), t d
R ≠0,则 令
若f x 是连续函数且为奇函数,则积分上限函数 (、
( . ( t 【 t ) f) d
是偶函数:若f x 是连续函数且为偶函数,则积分上 (1
限 函 数 ,

() () = 一R

收稿 日期:2 0 。1 4 0 80 . 2 作 者简 介:王少英 ( 9 8 ) 17 。,女 ,河 北邯郸人,邯郸学院数学系助教 ,主要从事 高等数学教学研 究工作 。
(: f) ̄a6 f (t [ 】 ) t d ,
上 可 导 , 并 且
若 f x 在【, 】 () 口 b 上可积,则积分上限函数
(= f) f( t ) t 厂 ) 6 =  ̄, = ≤≤) d ,) ( 。
2 积分上 限函数 的应 用 2l 证 明积分等式 与不等式 ,
维普资讯
第3 0卷 第 5期
V 1 0Nos o. 3
唐 山 师 范 学 院 学 报
J un l l a g h nTa h r ol e o ra T n sa e c es l g o C e
2 0 年 9月 08

积分上限函数范文

积分上限函数范文

积分上限函数范文
一、积分上限函数的定义
f(x)=x,当x≤a
=a,当x>a
其中,a为上限值。

二、积分上限函数的性质
1.定义域和值域:
2.连续与间断性:
3.导数与不可导性:
对于积分上限函数,当x<a时,导数存在且恒为1;当x=a时,导数不存在,函数是不可导的。

4.极值与点的性质:
5.阶梯函数:
三、积分上限函数的应用
1.信用积分:
信用积分是一种用于评估个人信用状况的指标,通常在0到100之间取值。

信用积分可以用积分上限函数来表示,例如:
f(x)=x,当x≤100
=100,当x>100
2.课程学分:
在大学教育中,学生需要修满一定数量的学分才能毕业。

课程学分可以用积分上限函数来限制,例如:
f(x)=x,当x≤160
=160,当x>160
3.游戏积分:
在电子游戏中,玩家可以通过完成任务、击败敌人等方式获得游戏积分。

游戏积分可以用积分上限函数来表示,例如:
f(x)=x,当x≤1000
=1000,当x>1000
这些只是积分上限函数的一些常见应用,实际上,积分上限函数可以应用于各种需要限定取值范围的场景中。

总结:
积分上限函数是一种能够限制变量取值范围的数学函数。

它的性质包括定义域与值域、连续与间断性、导数与不可导性、极值与点的性质等。

积分上限函数在实际生活中有许多应用,例如信用积分、课程学分、游戏积分等。

通过了解积分上限函数的定义和性质,我们能够更好地理解和应用它们。

积分上限函数的性质及其应用论文

积分上限函数的性质及其应用论文

湖北大学题目:积分上限函数的性质及其应用学院:数学与统计学院年级:研一专业方向:几何与方程作者姓名:陈勇学号:2014111104000639 出生年月:1990年05月性别男籍贯:湖南省汉寿县指导老师:陈立2015 年05月目录摘要 (II)Abstract (II)1引言 (1)2积分上限函数的性质 (1)2.1积分上限函数的初等性质 (1)2.2 积分上限函数的分析性质 (1)3积分上限函数的应用 (2)3.1利用积分上限函数证明积分等式与不等式 (2)3.2利用积分上限函数求幂级数的和函数 (2)3.3利用积分上限函数求解函数方程 (3)3.4利用积分上限函数确定全微分 (3)3.5利用积分上限函数求解导数 (3)3.6利用积分上限函数计算重积分 (4)3.7利用积分上限函数证明中值定理 (4)3.8利用积分上限函数求函数关系式 (5)3.9利用积分上限函数证明方程根的存在性 (5)4结束语 (5)致谢语 (5)参考文献 (6)积分上限函数的性质及其应用数学学院2014级2班陈勇摘要:积分上限函数是微积分学中一类具有特殊形式的函数,对于积分上限函数的初等性质及分析性质的研究,能够深入了解其特性,并广泛用于解决一些微积分问题.本文例举了积分上限函数的若干应用,对初学者具有指导意义.关键词:积分上限函数;初等性质;分析性质;应用The Nature and Its Application of Integral Ceiling Function Class2, 2014,College of Mathematics ChenYongAbstract: Integral ceiling function is a class of the special form of function in calculus. In this paper, the primary nature of the integral ceiling function was discussed in-depth understanding to solve some problems in calculus. In the paper, Which have Integral upper limit function a number of applications. A guide for beginners.Key word: integral ceiling function; primary nature; analysis nature; applications1引言积分上限函数是微积分学中一类具有特殊形式的函数,对积分上限函数的初等性质及分析性质进行研究,深入了解其特性,对于证明积分等式与不等式、求幂级数的和函数、求解函数方程、确定全微分等具有重要的作用. 因此全面的掌握积分上限函数的性质和恰当的运用显得尤为重要. 本文通过分析积分上限函数的性质, 得到几类典型的应用.2积分上限函数的性质2.1积分上限函数的初等性质定义1 如果函数)(x f 在],[b a 上可积,那么函数⎰=xadt t f x s )()((a ≤x ≤b )称为积分上限函数. 下面讨论与之有关的性质及其应用. (1) 单调性若)(x f 在],[b a 上可积, 且)(x f ≥0 ()(x f ≤0), 则积分上限函数⎰=xa dt t f x s )()(在],[b a 上单调递增(递减). (2) 奇偶性若)(x f 是连续函数且为奇函数,则积分上限函数⎰=xadt t f x s )()(是偶函数;若)(x f 连续函数且为偶函数,则积分上限函数⎰=xadt t f x s )()(奇函数.(3) 周期性若)(x f 是连续函数且周期为T , 则积分上限函数⎰=xadt t f x s )()(是周期函数, 或是一线性函数和一周期函数之和.(4) 有界性若)(x f 在],[b a 上可积,则积分上限函数⎰=xadt t f x s )()(在],[b a 上有界.2.2 积分上限函数的分析性质(1) 凹凸性若)(x f 在],[b a 上单调递增(递减), 则对∀),(b a c ∈, 积分上限函数⎰=xcdt t f x s )()(是凸函数(凹函数).(2) 连续性若)(x f 在],[b a 上可积, 则积分上限函数⎰=xadt t f x s )()(在],[b a 上连续(3) 可导性若)(x f 在],[b a 上连续, 则积分上限函数⎰=xadt t f x s )()(在],[b a 上可导, 并且()()()()xa d s x f t dt f x a xb dx'==≤≤⎰. (4) 可积性若函数()x f 在[]b a ,上连续,则函数()s x 在区间[]b a ,上可积.特别是,若函数()x f 连续,则有()()()⎰⎰⎰-=⎥⎦⎤⎢⎣⎡aa x dx x f x a dx dt t f 000.3积分上限函数的应用3.1利用积分上限函数证明积分等式与不等式例1 设()x f 和()x g 在[]b a ,上连续,证明:至少存在一点()b a ,∈ξ,使()()()()⎰⎰=ξξξξabdx x f g dx x g f .证明 令()()()⎰⎰=bxx adt t g dt t f x F .由于()x f ,()x g 在[]b a ,上连续,所以()x F 在[]b a ,上连续,在()b a ,内可导,且()()b F a F =,由罗尔定理,至少存在一点()b a ,∈ξ,使得()0F ξ'=,而()()()()()b xxaF x f x g t dt g x f t dt '=-⎰⎰,从而()()()()()0b aF f g t dt g f t dt ξξξξξ'=-=⎰⎰,即()()()()⎰⎰=ξξξξab dx x f g dx x g f .例2 若()x f 和()x g 在[]b a ,上连续,则()()()()⎰⎰≤⎪⎭⎫ ⎝⎛b a b a dx x g x f dx x g x f 222.证明 令()()()()()222⎪⎭⎫ ⎝⎛-⋅=⎰⎰⎰xa xa x adt t g t f dt t g dt t f x F ,则 ()()()()()()()()()22222x x xaaaF x f x g t dt g x f t dt f x g x f t g t dt '=++⎰⎰⎰()()()()()()()()[]⎰+⋅-=xadt x g t f t g t f x g x f t g x f 22222()()()()[]⎰≥-=xadt x g t f t g x f 02.所以()x F 在[]b a ,上单调增加,从而()()a F b F ≥.3.2利用积分上限函数求幂级数的和函数例3 求和函数1(1)nn n n x ∞=+∑.解 设),1,1(,)(11-∈=∑∞=+x nxx s n n 则12111()xn n n n s x dx nxxnx∞∞+-====∑∑⎰,设,)(111∑∞=-=n n nx x s 则 ,1)(11xxnx dx x s n n x-==∑⎰∞= 求导得,)1(1)(21x x s -=,)1()()(22102x x x s x dx x s x-==⎰再求导, 得.)1(2)(2x xx s -=3.3利用积分上限函数求解函数方程例4 设)(x f 在任意有限区间上可积且满足方程)()()(y f x f y x f +=+ (1) 试证:)(x f ax =,其中)1(f a =.证明 要证)(x f ax =,当0≠x 时即要证xx f )(=常数.或∀0,≠y x ,y y f x x f )()(=, 即x y f y x f )()(=在已知方程),()()(y f t f y t f +=+ 两边对t 取积分⎰⎰+=+xxx y f dt t f dt y t f 0,)()()(但⎰⎰⎰⎰++-==+xyx yyx ydt t f dt t f du u f dt y t f 00,)()()()(故⎰⎰⎰+--=yx yxdt t f dt t f dt t f y xf 0.)()()()(此式右端,y x ,以对称的形式出现.y x ,互换知x y f y x f )()(=, 从而)(x f ax =(当0≠x 时) (2) 在(1)中令1,0==y x ,得0)0(=f .可见(2)对于0=x 也成立.最后(2)中,令1=x ,可得)1(f a =.3.4利用积分上限函数确定全微分例5 验证)()(dy dx y x f +⋅+是全微分,其中)(u f 是连续函数. 证明 令()()⎰+=y x du u f y x F 0,,由于()u f 是连续函数,故()(),x F x y f x y '=+,()(),y F x y f x y '=+,且它们都是y x ,的连续函数,因此()()(),,x y dF x F x y dx F x y dy ''=+()()dy dx y x f +⋅+=. 即证()()dy dx y x f +⋅+是全微分.3.5利用积分上限函数求解导数例6 设)(x f 在0=x 的某个领域U 内连续,验证当U x ∈时,函数⎰---=x n dt t f t x n x 01)()()!1(1)(ϕ的各阶导数都有,且).()(x f x n =ϕ 证明 由于被积函数dt t f t x t x F n )()(),(1--=及偏导数),(t x F x '在U 上连续, 于是由定理可得 ⎰----='x n dt t f t x n n x 02)())(1()!1(1)(ϕ.)()()!2(1)()()!1(1021dt t f t x n x f x x n x n n ⎰----=--+.)()()!3(1)(03dt t f t x n x x n ⎰---=''ϕ 由此继续下去,求得k 阶导数为⎰-----=x k n k dt t f t x k n x 01)(.)()()!1(1)(ϕ 特别的当1-=n k 时有 ,)()(0)1(dt t f x xn ⎰=-ϕ于是).()()(x f x n =ϕ3.6利用积分上限函数计算重积分例7 设函数)(x f 在],[b a 连续,则.])([21)()(2dx x f dy y f x f dx ba b a bx ⎰⎰⎰=证明 dy y f x f dx b ab x)()(⎰⎰⎰⎰⎰⎰⎰==b ab axab xb xdt t f d dy y f dx dt t f x f ))(())((])()([))(())((]))()(([⎰⎰⎰⎰⎰==xab axab ax adt t f d dt t f dx dt t f x f.))((21])([2122dt t f x f b ab a x a ⎰⎰== 3.7利用积分上限函数证明中值定理例8 微分中值定理:若函数()x f 在闭区间[]b a ,连续,在开区间()b a ,内可导,则在开区间()b a ,内至少存在一点()b c a c <<,使()()()()a b c f a f b f -=-.证明 把c 换成t ,则()()()()a b t f a f b f -=-.即()()[]()()0=---a b t f a f b f , []b a x ,∈∀,将上式两边取积分()()[]()()0=---⎰xadt a b t f a f b f ,即()()[]()()()[]()0=-----a x a f x f a x a f b f .令()()()[]()()()[]()a x a f x f a x a f b f x F -----=,显然()()0==a F b F ,且()x F 在[]b a ,内连续,在()b a ,可导,由罗尔定理,则至少存在一点()b c a c <<,使()0=x F ,而()()()[]()()a b x f a f b f x F ---=,故()()()()a b c f a f b f -=- ()b c a <<.例9 积分中值定理:若函数()x f 在闭区间[]b a ,连续,则在[]b a ,内至少存在一点c ,使得()()()a b c f dt t f ba-=⎰.证明 设()()⎰=xadt t f x F ,由于()x f 在闭区间[]b a ,连续,则()x F 在[]b a ,上连续,由拉格朗日中值定理,则至少存在一点()b a c ,∈,使()()()()a b c f dt t f dt t f aab a-=-⎰⎰,即()()()a b c f dt t f ba-=⎰.3.8利用积分上限函数求函数关系式例10 已知函数)(x f 当10≤≤x 时为x 2, 当12x <≤时为x +2, 求积分上限函数⎰=xdt t f x 0)()(ϕ在]2,0[上的表达式.解 因为被积函数是分段函数, 所以通常计算定积分而确定)(x ϕ的表达式时也要分段考察.当10≤≤x 时,,2)()(2020x t tdt dt t f x xx x====⎰⎰ϕ 当12x <≤时,⎰⎰⎰+==11)()()()(xxdt t f dt t f dt t f x ϕ.23221)2(22101-+=++=⎰⎰x x dt t tdt x所以当10≤≤x 时为,)(2x x =ϕ 当12x <≤时为.232212-+x x3.9利用积分上限函数证明方程根的存在性例11设()x f 在[]b a ,上连续,且()x f >0, 又()()()⎰⎰+=xbx a dt t f dt t f x F 1.证明:()0=x F 在[]b a ,内有且仅有一个实根.证明 因为 ()()()()()211f x F x f x f x f x +'=+=, 而 ()()x f x f 212≥+,所以 ()20F x '≥≥.故()x F 在[]b a ,内单调增加,所以()0=x F 在[]b a ,内至多有一个实根.又 ()()⎰<=a b dt t f a F 01, ()()0>=⎰ba dt t fb F ,且()x F 在[]b a ,上连续,故根据的存在定理,在[]b a ,内()0=x F 至少有一个实根. 综上所述, ()0=x F 在[]b a ,内有一个且仅有一个实根.4.结束语综上所述,深刻理解积分上限函数的定义,准确掌握相关性质,是解决各种积分上限函数有关问题的关键,为解决实际问题提供了更多的方法,优化了解题途径,同时也存在着局限性,对适应范围存在着各种条件,这还有待于进一步研究.致谢语感谢陈立老师在论文过程中对我的悉心指导, 也感谢曾帮助我的同学们!参考文献[1]同济大学应用数学系.高等数学(第5 版)[M].北京:高等教育出版社,1999.[2] 高智民.原函数存在定理在不等式证明题中的应用[M].湖南师范大学学报,1997,16(2):14-15.[3]华东师大数学系.数学分析(第2 版)[M].北京:高等教育出版社,1999.[4]徐虎.积分上限函数的应用研究,内肛科技[M].中南大学学报,1997,17(2):15-16.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993 .[6]余家荣.复变函数[M].北京:高等教育出版社,1992.[7]高鸿.积分上限函数的主要性质及其应用[M].湖南商学院学报,2001,27(2):47-48.[8]常庚哲,史济怀.数学分析教程:下册[M].北京:高等教育出版社,2003.。

浅谈积分上限函数的性质及应用

浅谈积分上限函数的性质及应用

证明: 设 ) :I t ) d t , 则F ( ) 在V a , b ] 上连续, 在
( 口 , b ) 内可导 , ( ) ) > 0 , 即F ( ) 为单调 增 函数 。设
f c 0 s c ) = c 0 s 一 s i n x 一 1 ,
= a o + a l+… + 0

J f ( t ) d t 在 a , b ] 上单调递减。
②奇偶 性 : 设 ) 为连续 函数 , 若 ) 为奇 函数 , 则
由罗 尔 定 理 知 ,存 在 ∈∈
( 0 , 1 ) , 使 ( ∈ ) = 0 , 而 ( 毛 ) = n o + o + …+ , 故方程 a o +
b ) 为积分上 限函数 。
( 二) 性 质
例1 . 设c t o , …, %为满足 + + …+
十 l
= 0的 实
常数 , 证 明方程 a s + a l x + …
根。
= 0在 ( 0 , 1 ) 内至 少有 一个
①单调性 : 设 ) 在[ a , b ] 上可积 , 若I 厂 ( ) > 10 , 则
F ( ) =J t ) d t 在a , b ] 上单调递增; 若 ) ≤ 0 , 则F ( x )

证明: 设F ( ) = J 。 ( a o + a l x + … + ) d t , 则F ( ) 在
[ 0 , 1 ] 上连续 , 在( 0 , 1 ) 内可 导 , 且F ( 0 ) : O , 1 )
期 函数之和 。
≤ 。 , 故 ) 一 F ( - x ) = J £ ) 一0 f ( t ) d t , 在 第 二 项中 令

(完整word版)积分上限函数小结

(完整word版)积分上限函数小结

小结积分上限函数(或变上限定积分)()()xa F x f t dt =⎰的自变量是上限变量x ,在求导时,是关于x 求导,但在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。

弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。

1.关于积分上限函数的理论定理1 如果)(x f 在],[b a 上可积,则⎰=xa dt t f x F )()(在],[b a 上连续.定理 2 如果)(x f 在],[b a 上连续,则⎰=xadt t f x F )()(在],[b a 上可导,且).(])([)(x f dt t f dx d x F xa=='⎰ 注:(Ⅰ)从以上两个定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。

这是积分上限函数的良好性质。

而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。

(Ⅱ)定理(2)也称为原函数存在定理。

它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。

我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。

定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

推论1 )(])([x f dt t f dx d bx -=⎰推论2 )()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰推论3 )()]([)()]([])([)()(x x f x x f dt t f dx d x x ϕϕψψψϕ'-'=⎰2.积分限函数的几种变式(1) 比如 ⎰-=xdt t f t x x F 0)()()((被积函数中含x , 但x 可提到积分号外面来.)在求)(x F '时,先将右端化为⎰⎰⎰⎰-=-xxxxdt t tf dt t f x dt t tf dt t xf 0)()()()(的形式,再对x 求导。

积分上限函数的性质及应用

积分上限函数的性质及应用

f当 = 时, I ot=m c  ̄ 1 3 0 l ) i m s ti s , c  ̄ l ox= d
一 0。 Ju 叶 0— 1
,‰
) ) =f
22积分上 限函数 的可微性 . 定理 3 设函数_ ) b l 厂 在[,] 连续, 函数 中 ) a 6内可导, ( - 则 在 ,关键词 】 ; ; 连续 可微 不等式
1积分上限函数的定义 .
对 于区间 ,] 的可积 函数 , )设 为 a6上 的任 意一点 , 6 上 ( , , ] 变
故知此时 中 ∽在[,】 n6 上严格单 调。
3积分上 限函数性质的应用 .
3 讨论函数 的极限与连续性 . 1
◇高 教论述◇
科技 一向导
21 年 3 期 01 第 2
积分上限函数的性质及应用
吴红春 ( 内蒙古集宁师范学院数 学系 内蒙古
乌兰察布
02 0 ) 1 0 0
【 要】 摘 本文讨论 了积分上限函数的有界性 , 连续性, 可积性, 可微性 , 单调性 等一些基本性质, 并且运 用这些基本性质对与积分上限 函数相 关的某些函数 的微 分、 积分等作 了浅显 的讨论 , 以及在证明积分等 式( 不等式) 与一些中值 问 等方面也作 了一 些探 讨, 究了积分上 限函数 题 并探
上限的 积分 J( t t 显然存在, 在[6 f) d 当 n】 ,上任意变动时, 对于每 一个
取定的 值, f) 就有一个对应的值, I( t t d 这样就在【 h o i . -个 , ̄定YT 新函 =f tt 数中 ) ) , Ad ( ,) 6 称为积分上限函 ] 数。
)2]o -()
因此 ) x 0 在 = 处不连续, 但它是右连续 的。 3 积分上限函数周期性的应用 . 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分上限的函数的性质及其应用数学教育专业学生:祝胜前指导教师:张云摘要:变限积分函数分为变上限和变下限积分函数两种,变下限积分函数可以转化为变上限积分函数。

积分上限函数加强了微分和积分之间的联系,是定积分基本公式的理论基础。

变限积分函数的性质主要由被积分函数的性质、积分上(下)限的结构来决定。

我们对它进行初等性质及分析性质的研究,可深入了解其特性,并广泛用于解决一些微积分的问题。

关键词:积分上限函数,变限积分函数,导数,单调性,奇偶性Abstract: The variation range integral function divides into changes the upper limit and changes the lower integral function two kinds, changes the lower integral function to be possible to transform for changes the upper integral function. The integral upper limit function strengthened between the differential and the integral relation, is the definite integral fundamental formula rationale.The variation range integral function nature mainly by the structure which by in the integral function nature, the integral (next) is limited decided. We carry on the primary nature and the Analysis nature archery target research to it, but thoroughly understood its characteristic, and widely uses in solving some fluxionary calculus problems.Keyword: Integral upper limit function, variation range integral function, derivative, monotony, odevity0 问题的提出变速直线运动中位置函数与速度函数的联系:设某物体作直线运动,已知速度()v v t 是时间间隔12[,]T T 上t 的一个连续函数,且()0v t ≥,求物体在这段时间内所经过的路程.变速直线运动中路程为21()T T v t dt ⎰。

另一方面这段路程可表示为 21()()s T s T -。

2121()()()T Tv t dt s T s T ∴=-⎰,()()s t v t '=其中。

对于积分上限函数我们有:设函数()f x 在区间[,]a b 上连续,并且设x 为[,]a b 上的一点,考察定积分()xaf x dx ⎰。

(1)由于()f x 在[,]a b 上连续,则()f x 在部分区间[,]a x 上仍连续,所以 ()xaf x dx ⎰存在。

(2)定积分与积分变量的符号无关,所以上积分可写为()xaf t dt ⎰。

(3)如果上限x 在区间[,]a b 上任意变动,则对于每一个取定的x 值,定积分有一个对应值,所以它在[,]a b 上定义了一个函数,记作()x Φ。

()x Φ=()xaf t dt ⎰(a x b ≤≤),称为积分上限函数。

1 变限积分函数的概念与基本性质定义1 设()f x 在[,]a b 上连续,x 为[,]a b 上任一点,则称积函数()f x 的积分上限函数定义为()x Φ=()xaf t dt ⎰,(a x b ≤≤),其中t 为积分变量。

从几何上看,这个积分上限函数()x Φ表示区间[,]a x 上曲边梯形的面积(()0f x ≥当时)。

由积分上限函数定义可知上限函数()x Φ有以下初等性质:性质1.1 若函数()f x 在[,]a b 上连续,则当()0f x ≥(或()0f x ≤)时,积分上限函数()x Φ在区间[,]a b 上是单调增加(或单调减少)的函数。

证:'()x Φ= (())'xa f t dt ⎰=()f x ,于是知若在[,]ab 上()0f x >,则'()0x Φ>。

从而()x Φ在[,]a b 上严格单调递增;若在[,]a b 上()0f x <,则'()0x Φ<。

即()x Φ在[,]a b 上严格单调递减。

故知此时()x Φ在[,]a b 上严格单调。

(注:由()f x 在[,]a b 上单调,不能推得()x Φ在[,]a b 上单调。

如()cos f x x = 在[0,]π上单调递减,但0()cos sin xx tdt x Φ==⎰在[0,]π上却不具有单调性。

性质1.2 若函数()f x 在[,]a b 上连续,则积分上限函数()x Φ在区间[,]a b 上是有界函数。

证:因为()f x 在[,]a b 上有界,于是知存在0M >,使得|()|f x M ≤,因此[,]x a b ∀∈,有|()||()|||()xxaax f t dt M dt M b a Φ=≤<-⎰⎰这表明()x Φ在[,]a b 上有界。

性质1.3 若函数()f x 在[,]a b 上连续,则积分上限函数()x Φ在区间[,]a b 上可导、连续且可积。

可导性:如果()f x 在区间[,]a b 上连续,则积分上限函数()x Φ=()xaf t dt ⎰在[,]a b 上具有导数,并且它的导数是'()()()xa d x f t dt f x dxΦ==⎰(a x b ≤≤)。

证:若(,)x a b ∈,当上限x 获得增量x ∆([,])x x a b +∆∈时,则()x Φ(如图所示0x ∆>)在x x +∆处的函数值为: ()()x xa x x f t dt +∆Φ+∆=⎰由此得函数的增量:()()()()()()()x Xxa ax Xax xaxxx x x f t dt f t dtf t dt f t dt f t dt+∆+∆+∆∆Φ=∆Φ+∆-Φ=-=+=⎰⎰⎰⎰⎰应用积分中值定理,即有等式()x Φ=()f x ξ∆(ξ在x 与x x +∆之间),上式两端各除以x ∆,有()f xξ∆Φ=∆。

因为()f x 在[,]a b 上连续,而0x ∆→时,必有x ξ→,所以 0lim ()()x f f x ξ∆→=,从而有 00lim lim ()()x x f f x x ξ∆→∆→∆Φ==∆。

即()x Φ在点x 处可导,且 '()()x f x Φ=。

若x 取 a 或 b,则以上 0x ∆→分别改为 0x ∆→+与 0x ∆→-,就得'()()a f a +Φ=与 '()()b f b -Φ=,证毕。

连续性:设函数()f x 在[,]a b 上可积,则()x Φ在[,]a b 上连续。

证:因为()f x 在[,]a b 上可积,所以()f x 在[,]a b 上有界,故存在常数0M > 使得|()|f x M ≤,于是知x ∀∈[,]a b ,有:|()||()()||()|||x xxx x x x f t dt M x +∆Φ=Φ+∆-Φ=≤∆⎰。

从而当0x ∆→时,必有()0x ∆Φ→,这表明()x Φ在点x 处连续。

据x 的任意性便知()x Φ为[,]a b 上的连续函数。

可积性:设()f x 在[,]a b 上可积,则()x Φ也在[,]a b 上可积。

证:因为()f x 在[,]a b 上可积,所以又连续性知()x Φ必在[,]a b 上连续,从而()x Φ在[,]a b 上必可积。

性质1.4 若函数()f x 是以T 为周期的连续函数,则积分上限函数()x Φ可以表示为周期是T 的周期函数与线性函数之和。

周期性:设()f x 为(,)-∞+∞上的以T 为周期的连续函数,且0()0Tf x dx =⎰,则()x Φ仍为以T 为周期的周期函数。

证: 先证明若()f x 为(,)-∞+∞上的以T 为周期的连续函数,则对仍何实数a ,有()()a TTaf x dx f x dx +=⎰⎰。

事实上,0()()()()a T T a TaaaT f x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰,对最后一个积分。

若令x t T =+,则有0()()()()a T aaTaf x dx f t T dt f t dt f x dx +=+==-⎰⎰⎰⎰。

代入上式得:()()a TTaf x dx f x dx -=⎰⎰。

现在0()()()()()()()x T xx TTaaxx T f t dt f t dt f t dt x f x dx x ++Φ+==+=Φ+=Φ⎰⎰⎰⎰。

于是知()x Φ仍为以T 为周期的周期函数。

(注意:由()f x 为周期函数,不能推得()x Φ仍为周期函数。

如2()cos f x x =是以π为周期的周期函数,而2001cos 211()cos sin 224xxt x t dt x x +Φ===+⎰⎰就不是周期函数。

性质1.5 若函数()f x 在[,]a a -上连续,则积分上限函数()()x ax f t dt -Φ=⎰。

(i )当()f x 为奇函数时,()x Φ为偶函数;(ii )当()f x 为偶函数时,()x Φ不一定为奇函数 ,()x Φ为奇函数的充要条件是()0a Φ=。

证:(i )若()f x 为奇函数,则()0x xf t dt -=⎰。

所以()()xax f t dt --Φ-==⎰()()()()xx xaxaf t dt f t dt f t dt x ----+==Φ⎰⎰⎰故知()x Φ为偶函数。

(ii ) 若()f x 为偶函数,则()()f x f x -=。

而()()aaxxf t dt f u du --=--=⎰⎰()()()x xaaf u du f t dt x ----==Φ-⎰⎰,所以()()()()()()a xa aaxa f t dt f t dt f t dt x x --Φ==+=Φ+Φ-⎰⎰⎰。

于是()x Φ为奇函数的充要条件是()0a Φ=。

相关文档
最新文档