凸函数的性质及其应用
凸函数上凸下凸凹函数

凸函数上凸下凸凹函数凸函数、上凸函数、下凸函数和凹函数是数学中常见的函数类型,它们在经济学、物理学、计算机科学等领域中都有广泛的应用。
本文将详细介绍这些函数类型的定义、性质和应用。
一、凸函数的定义和性质凸函数是定义在实数区间上的一类函数,它具有很好的几何性质。
具体来说,如果函数f在定义域上的一些区间上满足以下条件,那么它就是凸函数:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≤tf(a)+(1-t)f(b)。
这个条件称为凸函数的Jensen不等式。
从几何上来看,Jensen不等式意味着函数图像上任意两点之间的连线位于函数图像的下方。
这个性质被称为凸函数的上凸性。
凸函数的性质包括以下几个方面:1.凸函数的上凸性。
对于凸函数f,任意两点a和b以及他们之间的连线位于函数图像的下方。
2.凸函数的上确界性质。
如果函数f在一些区间上凸且上有界,那么在该区间上必存在一个唯一的点c,使得f(x)≤f(c),对于任意的x∈区间。
3.凸函数的导数性质。
凸函数的导函数是非递减的。
也就是说,如果函数f在一些区间上凸,那么它的导函数f'(x)在该区间上非负。
凸函数有许多应用,特别是在经济学和运筹学中。
经济学家和决策者常常使用凸函数来描述效用函数、成本函数、收益函数等。
在运筹学中,凸函数被广泛应用于线性规划、非线性规划和凸优化等问题的建模和求解。
二、上凸函数和下凸函数的定义和性质上凸函数和下凸函数是凸函数的两个特殊情况。
上凸函数是指函数f在定义域上的一些区间上满足以下条件:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≥tf(a)+(1-t)f(b)。
上凸函数的性质包括:1.上凸函数是凸函数的一种特殊情况。
也就是说,任何一个上凸函数都是凸函数。
2.上凸函数的导数是非递增的。
也就是说,如果函数f在一些区间上上凸,那么它的导函数f'(x)在该区间上非正。
凸函数的性质与应用

凸函数的性质与应用凸函数是一种特殊的函数,它的图像在任何一点处都是凸的,也就是说,它的图像在任何一点处都是向上凸的。
凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。
首先,凸函数的性质可以用来求解最优化问题。
最优化问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值。
凸函数的性质可以用来求解最优化问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最优化问题。
其次,凸函数的性质可以用来求解线性规划问题。
线性规划问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值,而且变量值必须满足一组线性约束条件。
凸函数的性质可以用来求解线性规划问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解线性规划问题。
此外,凸函数的性质还可以用来求解最小二乘问题。
最小二乘问题是指在给定条件下,求解使目标函数取得最小值的变量值,而且变量值必须满足一组线性约束条件。
凸函数的性质可以用来求解最小二乘问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最小二乘问题。
最后,凸函数的性质还可以用来求解机器学习问题。
机器学习是一种人工智能技术,它可以自动从数据中学习规律,并做出预测。
凸函数的性质可以用来求解机器学习问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解机器学习问题。
总之,凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。
凸函数的性质可以用来求解最优化问题、线性规划问题、最小二乘问题和机器学习问题,从而为科学研究和实际应用提供了重要的理论支持。
例谈凸函数的性质及应用

例谈凸函数的性质及应用江苏省盐都县龙冈中学吕成荣(224011)随着新高考模式的确定,高考命题将更加依据课程标准而又不拘泥于课程标准,在知识边缘处命题将会不断出现,在今年高考北京卷(第12题)中就涉及到凸函数理论,现行教材中没有阐明凸函数理论,本文通过具体的例子进行简要的论述。
一、凸函数的定义1、设f(x)是定义在区间D上的函数,若对于任何x1、x2∈D 和实数λ∈(0,1),有f[λx1+(1-λ)x2]≥λf(x1)+(1-λ)f(x2),则称f(x)是D上的凸函数。
(如图1)2、若-f(x)是区间D上的凸函数,则称f(x)是D上的凹函数(如图2)。
3、线性函数既是凸函数,也是凹函数。
图1 凸函数图2 凹函数h1=f[λx1+(1-λ)x2],h2=λf(x1)+(1-λ)f(x2)现行教材中所涉及的一次函数、二次函数、指数、对数函数、三角函数等都存在凸函数,掌握凸函数理论解题有时很容易,反之茫然。
例1:(2002高考北京卷)如图所示,f i (x )(i=1, 2, 3, 4)是定义在[0,1]上的四个函数,其中满足性质:“[0,1]中任意的x 1和x 2,任意λ∈[0,1],f[λx 1+(1-λ)x 2]≤λf(x 1)+(1-λ)f(x 2)恒成立”的只有( )A f 1(x), f 3(x )B f 2(x)C f 2(x),f 3(x)D f 4(x)分析:由于x 1∈[0,1],x 2∈[0,1],λ∈[0,1],设x 1=x 2 = 21, λ=21,代入题目所给的不等式,则f[21x 1+21x 2] ≤21f(x 1)+ 21f(x 2) ,即 f(221x x ) ≤ 21[f(x 1) + f(x 2)],当且仅当x 1 = x 2时等号成立。
上式与凸函数的定义②、③相同,即凹的,而y = ax+b (a ≠0) ,也可看成凸函数或凹函数,故选(A )。
例2:(94全国文)已知函数f(x) = log a x (a > 0且 a ≠1 ,x ∈R +),若x 1, x 2∈R +,判断21[f(x 1) + f(x 2)]与f(221x x +)的大小,并加以证明。
凸函数的性质与应用

凸函数的性质与应用数学与统计学院、数学与应用数学、0701班,湖北,黄石,4350021.引言凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.关于凸函数,虽然很多书籍都做了相应的介绍,但多是从不同的角度出发来进行不同的定义和应用.在高等数学中,利用导数讨论函数的性态时,经常遇到一类特殊函数—凸函数,由于凸函数具有一些特殊性质,利用这些性质可非常简单地证明一些初等不等式、函数不等式和积分不等式. 凸函数是一类重要的函数,在不等式的研究中尤为重要.本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想. 函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.2. 凸函数的有关概念2.1凸函数的定义、定理及其几何意义定义 若函数()f x 对于区间(),a b 内的任意12,x x 以及()0,1,λ∈恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间的割线总在曲线之上.定理1 若函数()f x 在区间(),a b 内连续,对于区间(),a b 内的任意12,x x 恒有12121[][()()]22x x f f x f x +≤+, 则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间割线的中点总在曲线上.定理2 若函数()f x 在区间(),a b 内可微,且对于区间(),a b 内的任意x 及0x ,恒有00()()()f x f x f x x '≥+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下. 注 若将定义1,2,3中的≤“”改为<“”则称()f x 为(),a b 上的严格凸函数. 2.2 凸函数定义与定理之间的等价性条件2.2.1 定义1与定理1的等价性证 定义1⇒定理1:显然,只要取12λ=即可由定义1推得定理1.定理1⇒定义1:我们首先推证()f x 对于任意的12,x x (),a b ∈及有理数()0,1λ∈,不等式1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,成立.事实上,对于此有理数λ,总可表示为有穷二进位小数,即121121122220.2n n n nn na a a a a a a ---++= , 其中0,1(1,2,,1);1i n a i n a ==-= 或由于1λ-也是有理数,故也可以表示为有穷的二进位小数,即1λ-=121121122220.2n n n nn nb b b b b b b ---++= , 其中()1,1,2,,1;i i b a i n =-=- 1,n b =这是因为()11λλ+-=的缘故, 因此111212[]()()i i f a x b x a f x b f x +≤+(1,2,,1)i n =- ,所以12[(1)]f x x λλ+-12112112112112222222[]22n n n n n n n nn na a a ab b b b f x x ------++++=+ 21212121111212112222()(22[]2n n n n n nn n a a a b b b a x b x x x f ------+++++= 2121212111121211222211[()]()2222n n n nn n n n a a a b b b f a x b x f x x ------++≤+++ 2121212111121211222211[()()]()2222n n n n n n n n a a a b b b a f x b f x f x x ------++≤+++ 121112212221111[()()][()()]()2222n n n a x b x a f x b f x a f x b f x f -+≤++++ 11122122122111[()()][()()][()()]222n n n a f x b f x a f x b f x a f x b f x ≤+++++12112112112112222222()()22n n n n n n n n n na a a ab b b b f x f x ------++++=+ 12()(1)().f x f x λλ=+-下面再推证()f x 对λ为无理数时定义1也成立.事实上,对任意无里数()0,1,λ∈{}(0,1),n λ⊂存在有理数列12(),(1)n n n n x x λλλλ→→∞+-→所以,12(1)()x x n λλ+-→∞,由于()f x 在(),a b 内连续,所以1212121212[(1)][lim (1)]lim [(1)]lim[()(1)()]()(1)()n n x n n n n x x f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-=+-=+-≤+-=+-综上即知,定义1与定理1等价.2.2.2 定义1与定理2的等价条件证 定义1⇒定理2:对(),a b 内任意的0x 及x ,若0,x x <则取0h >,使00,x x h x <+<由推论1得0000()()()()].f x h f x f x f x h x x +-+≤-上式中令0,h →由于()f x 可微,所以有0()f x '00()(),f x f x x x +≤-即00()()()f x f x f x x '≥+-.若0,x x <则取0h >,使00,,x x x x h x <<+<同理可证.2.2.3 定理2与定义1的等价条件对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1,λ∈令()121x x x λλ=+-,则12,x x x << ()()1121,x x x x λ-=-- 2x x -= ()()211,x x λ--由泰勒(Taylor)公式,我们有111222()()()()()()()()f x f x f x x f x f x f x x θθ''=+-=+-及其中1122x x x θθ<<<<,于是12()(1)()f x f x λλ+-12[(1)]f x x λλ=+-+2121(1)()[()()]x x f f λλθθ''---.再由单调性知21()()f f θθ''≥,所以12()(1)()f x f x λλ+-≥ 12[(1)]f x x λλ+-,即12[(1)]f x x λλ+-≤12()(1)()f x f x λλ+-.所以在一定条件下,定义1与定理3等价.3. 凸函数的有关结论 3.1 凸函数的运算性质性质1 若()f x 为区间I 上的凸函数, k 为非负实数,则()kf x 也为区间I 上的凸函数.性质2 若()(),f x g x 均为区间I 上的凸函数,则()f x + ()g x 也为区间I 上的凸函数.推论 若()(),f x g x 均为区间I 上的凸函数,12,k k 为非负实数,则()()12f x k g x +k 也为区间I 上的凸函数.性质3 若()f x 为区间I 上的凸函数,()g x 为J 上的凸增函数,且()f I J ⊂,则g f ⋅为区间I 上的凸函数.性质4 若()(),f x g x 均为区间I 上的凸函数,则()F x =()(){}max ,f x g x 也是区间I 上的凸函数.上述性质很容易证明,故在此省略.3.2 凸函数的其他性质引理 f 为I 上的凸函数的充要条件是:对于I 上的任意三点12x x x <<,总有32212132()()()()f x f x f x f x x x x x +-≤--. ()1证 [必要性]记3231,x x x x λ-=-则213(1).x x x λλ=+- 由f 的凸性知道()21313[(1)]()(1)()f x f x x f x f x λλλλ=+-≤+-=3221133131()()x x x xf x f x x x x x --+--.从而有()()312321213()()()()x x f x x x f x x x f x -≤-+-,即()()()322212321213()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.整理后即得()1式.[充分性]在I 上任取两点1313,,(),x x x x <在[13,x x ]上任取一点213(1)x x x λλ=+- ()0,1,λ∈即3231.x x x x λ-=-由必要性的推导逆过程,即可证明 1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.故f 为I 上的凸函数.同理可证,f 为I 上的凸函数的充要条件是:对于I 上的任意三点12,x x x <<总有313221213132()()()()()()]]f x f x f x f x f x f x x x x x x x -+-≤≤---.性质1 设f 为区间I 上的严格凸函数,若有0x 是()f x 的极小值点,则0x 是()f x 在I 上唯一的极小值点.证明 若()f x 有异于0x 的另一极小值点1x I ∈ ,不妨设()()10f x f x ≤ 由于()f x 是在I 上的严格凸函数, 故对于任意的()0,1λ∈,都有()01010[(1)]()(1)()f x x f x f x f x λλλλ+-<+-≤.于是,任意的0δ>,1,只要充分接近时总有()0010(1),x x x U x λλδ=+-∈.但是,()0()f x f x ≤,这与1x 是()f x 的极小值点的条件矛盾,从而0x 是()f x 在I 上唯一的极小值点.性质2 设()f x 为(),a b 内的凸函数,有()f x 在I 的任一内闭区间()(),,a b αβ<上满足Lipschitz 条件.证明 要证明()f x 在(),αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得()12,,x x αβ∀∈有1212()()f x f x L x x -≤-. ()2()()()(),,,,,,a b h h a b αβαβ⊂-+⊂因为,故可取充分小使得因此,()12,,x x αβ∀∈,12,x x <32x x h =+取,根据定义有32212132()()()()f x f x f x f x M mx x x x h+--≤≤--,(其中,M m 分别表示()f x 在(),h h αβ-+的上、下界)从而2121()()M mf x f x x x h--≤-, ()3 若1232,,x x x x h >=-可取由定义有32211223()()()()f x f x f x f x x x x x --≤--,从而32211223()()()()f x f x f x f x M m x x x x h---≤≤--.由此也可推出()3式.若12x x =,则()2显然成立.这就证明了()3式显然对于一切()12,,x x αβ∈都成立,因此()3式当12,x x 互换位置也应成立,故有2121()()M mf x f x x x h--≤-. 令M mL h-=,则原命题成立.性质3 设()f x 是(),a b 上的凸函数,则()f x 在(),a b 上处处存在左、右导数,且左导数小于、等于右导数.证明 ()()()00,,,x a b U x a b δ∀∈∃⊂.记()()00()(),,f x f x F x x a b x x +=∈-,()121200,x x x x x x δ<∈-任意且,,,有引理得()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.()F x 在()00x x δ-,上单调递增;再在0x 右方任取一定点()00,x x λλδ∈+,,由引理得: ()()()12F F F x x λ≤≤所以()F x 在()00x x δ-,上单调递增且有上界, 故由单调有界原理: 极限()0lim x x F x -→存在,即0()f x +'存在; 任意102x x x <<由定义3有()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.令1020,x x x x -+→→,则()f x 在0x 的左导数小于等于()f x 在0x 的右导数.性质4 设()f x 为(),a b 内可导凸函数,证明()0,x a b ∈ 为()f x 的极小值的充要条件是0()0f x '=.证明 [必要性]已知函数()f x 在0x 可导,且取得极小值,则0()0f x '=(极值的必要条件).[充分性] (),x a b ∀∈,0,x x ≠有00()()().f x f x x x ≥+-因为0()0f x '=,故(),,x a b ∀∈都有0()(),f x f x ≥所以0x 为()f x 的极小值点.定理1 设f 为区间I 上的可导函数,则下列论断互相等价;1) f 为I 上的凸函数, 2) f '为I 上的增函数, 3) 对I 上的任意两点12,,x x 有()21121()()()f x f x f x x x '≥+-. ()*证明 1)2)→ 任取I 上的两点1212,x x x x <()及充分小的正数,h 由于1122,x h x x x h -<<<+根据的凸性及引理有11212212()()()()()()f x f x h f x f x f x h f x h x x h---+-≤≤-.有f 是可导函数,令0h +→时可得211212()()()()f x f x f x f x x x -''≤≤-.所以f '为I 上的递增函数.2)3)→ 在以1212,()x x x x <为端点的区间上,应用拉格朗日中值定理和f '递增条件,有()()2121121()()()()f x f x f x x f x x x ξ''-=-≥-,移项后即得()*式成立,且当12x x >仍可得到相同结论3)1)→ 设以12,x x 为I 上的任意两点,312(1)x x x λλ=+-,由3)并利用131223211)()x x x x x x x x λλ-=---=-与(),()()133133312()()()()(1)()f x f x f x x x f x f x x x λ''≥+-=+--,()233233321()()()()()f x f x f x x x f x f x x x λ''≥+-=+-(),分别用λ和1λ-乘上列两式并相加,便得()()12312(1)()()(1)f x f x f x f x x λλλλ+-≥=+-,从而为I 上的凸函数.推论1 设()f x 为区间I 上的二阶可导函数,则()f x 为凸函数.()0,f x x I ''⇔≥∈.推论2 设()f x 为区间I 上的可微凸函数,则有0x I ∈是()f x 的极小值点.()00.f x ''⇔=定理2 设()f x 在(),a b 上连续,则()f x 是(),a b 上的凸函数的充要条件是:对任意含于(),a b 的闭区间[],,x h x h -+都有1()()2hhf x f x t dt h -≤+⎰. 证明 必要性:()()()()1,2t h f x f x t f x t ∀≤≤-++,故 ()()()()12[]2hhhhhf x f x t f x t f x t dt --≤-++≤+⎰⎰.充分性:假定存在12,x x <使()()1212122x x f f x f x +⎛⎫>+⎡⎤ ⎪⎣⎦⎝⎭ 作辅助函数()()()()11,x f x k x x f x ϕ=---其中2121()()f x f x k x x +=-则120,2x x ϕ+⎛⎫> ⎪⎝⎭因此[]()()[][]12012,max 0,0,,,,x x x x h x h x h x x ϕϕ=>=-+⊂取()()000t h x x t ϕϕ≤-+≥当时,且不恒为0,因此()()002hhh x xt dt ϕϕ->+⎰.再由()x ϕ的定义推出: ()002()hhf x t hf x dt -+>⎰这与条件矛盾, 故定理2得证.定理3 若()f x 为(),a b 内的凸函数,(),,i x a b ∈ 1,2,,,i n = 则()111.ni ni i i x f f x n n ==⎛⎫⎪ ⎪≤ ⎪ ⎪⎝⎭∑∑ 证明 对12,2n x ==不等式是显然的,设对1n -不等式成立. 因为1212111,1n n n x x x x x x n x n n n n-++++++-=⋅+-这里()()1211,,,,,1n n x x x n a b x a b n n λ-+++-=∈∈- 由题得()()111111.1nn i i n i i n i i x x n f f f x f x n n n nn ===⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪≤+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 4.凸函数的一些应用4.1应用凸函数性质证明不等式在初等数学及数学分析的课程中,对于不等式的证明是一个重要内容.有时利用凸 函数的理论,证明一些不等式,将会更加简单.下面用例题加以说明.例1 求证:对任意实数,,a b 有()21.2a ba bee e +≤+ 证明 设()()(),0,,x f x e f x x ''=≥∈-∞+∞则故()xf x e =(),-∞+∞为上的凸函数.从而对121,,2x a x b λ===有定义 12121[][()()]22x x f f x f x +≤+. 即得()212a ba bee e +≤+. 注:该题构造函数,运用凸函数的定义很容易就导出.例2 设01,01,x a <<<<则有()()1111.aax x x -+-<-证明 设()()()()11101aaf x x x x -=+-<<.那么()()()()()()111111,aaaa f x a x x x ax ---'=-+-++-()()()()()()1111111aaa a f x a a x x a a x x ----''=--+---+()()()()1121111aaa a a a x x a a x x ------+--+()()()()()()12112111111aa a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1212111111.a a aa a a x x a a x x ------=--+-=-+-于是 ,当01,01x a <<<<时,()0,f x ''>由严格凸函数的定义,其中12,1,0,x x x λ===得()()()()()110110,f x f x x x f x f =⋅+-⋅<⋅+-⋅⎡⎤⎣⎦即()()1111.aax x x -+-<-注:该题运用了定理1及推论1的结论.例3 在ABC 中,证明sin sin sin 2A B C ++()()()()sin ,0,,sin 0,0,f x x x f x x x ππ''=-∈=>∈证明 令由应用2得()()()33f A f B f C A B C F ++++⎛⎫≥ ⎪⎝⎭,即sin sin sin sin3A B CA B C ++++≤s i n ,3π≤=所以sinA+sinB+sinC 2注:该题运用了定理3的结论.例4设12n a a a 、、均为正数,且121n a a a +++= .求证: ()2222212121111.n n n a a a a a a n +⎛⎫⎛⎫⎛⎫++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证 因为()2,f x x =()()()22,20,f x x f x f x x ''==>=由于得是凸函数,有凸函数的性质,有22212122121221211111111111.n n n n n a a a a a a a a a a a a n n n a a a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++++ ⎪⎪≥⎪ ⎪⎝⎭⎛⎫=++++ ⎪⎝⎭()4由柯西不等式:222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑得1212111111()1n n a a a a a a ⎛⎫+++=+++⋅ ⎪⎝⎭()12122111(),n n a a a a a a n =++++++≥212111()nn a a a ∴+++≥ ,由()4即得 ()2222212121111n n n a a a a a a n+⎛⎫⎛⎫⎛⎫+++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .4.2关于凸函数的某些猜想猜想1 三次函数不是(),-∞+∞上的凸函数. 证 设()3232103,0.x x a x a x a a f a +++≠= 显然,()f x 在(),-∞+∞上可导,且()232123x x a x a f a ++'=,因为30,a ≠故()f x '在(),-∞+∞上不单调,所以不是凸函数.猜想2 试给出四次的函数在定义域上是凸函数的一个充分条件. 设()432432104,0,x x x a x a x a a f a a ++++≠=因为四次的在定义域上二次同样可导,且()324321432x x x a x a f a a +++'=, ()24321262x x x a f a a ++''=.根据3..1的推论1可知,下式()423420.64120a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 则该四次函数在(),-∞+∞是凸函数. 化简得① 423420.380a a a a >⎧⎨-⋅≤⎩ ② 423420.380a a a a <⎧⎨-⋅≤⎩ 则该四次函数在(),-∞+∞不是凸函数.③ 423420.380a a a a >⎧⎨-⋅>⎩设()24321262x x x a f a a ++''=与x 轴的两交点分别是()1212,,x x x x <则()x f 在()()12,,,x x -∞+∞内分别为凸函数,在()12,x x 内不是凸函数.④ 423420.380a a a a <⎧⎨-⋅>⎩ 同理设()x f ''与x 轴的两交点分别是()1212,,x x x x <则()x f 在()12,x x 内为凸函数,其他区间不是凸函数.猜想3 5次函数在实数范围内是否有为凸函数的?设5次函数的表达式为()54325432105,0,x x x x a x a x a a f a a a +++++≠= 显然该是在实数范围内二次可导.()432543215432,x x x x a x a f a a a ++++'= ()325432201262.x x x x a f a a a +++''=现在需要找出二次导数在实数范围内是否恒大于等于0. 我们设()()325432201262,x f x x x x a g a a a ''=+++=()2154360246.x x x g a a a =++'下面分情况讨论:()524530,2446060a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 即()0x g ≥'在R 上恒成立.则()x g 在R 上单调递增,此时5a 为某一定值,但是总,x R ∃∈使得()0,x g <即x R ∃∈使()0f x ''<成立.同四次的理一样,其他3种情况更不可能为凸函数. 所以五次函数在R 上不是凸函数.以此类推,高次函数()11100,,n n n n n f x a x a x a x a a --=+++≠5n 时,该函数在实数范围内不是凸函数.5.小结本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想.函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,在这里首先要感谢我的指导老师柴国庆教授.柴老师平日里工作繁多,但在我做毕业论文的每个阶段,从初次选题到查阅资料,论文初稿的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导,还不惜把自己的研究成果让我参考、借鉴,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩柴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,然后还要感谢大学四年来所有的老师,为我们打下坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!参考文献[1]数学分析上第三版.华东师范大学数学系编.北京.高等教育出版社,2001,148-154.[2]李惜雯.数学分析例题解析及难点注释(上册).西安.西安交通大学出版社,2004.1,265-269.[3]林源渠方企勤.数学分析解题指南.北京.北京大学大学出版社,2003.11.84-87.[4]大学数学名师导学丛书.北京.中国水利水电出版社,2004208-212..[5]花树忠.邯郸市职工大学基础教学部.邯郸,056001.[6]李世杰.衢州市教育局.浙江.衢州,324002.[7]宋小军.西华师范大学数学与信息学院.四川文理学院学报.2010年5期.[8]陈迪红.长沙铁道学院学报.第12卷.第3期.1994年9月.[9]曹良干.阜阳师范学院学报.总22期.[10]陈太道.琼州大学.数学系.临沂师范学院学报第24卷,第3期.[11]李宗铎.湖南教育学院学报长沙大学.第18卷第2期.。
凸函数与地理学应用

凸函数与地理学应用凸函数是高等数学中一个重要的概念,它在地理学中也有着广泛的应用。
本文将介绍凸函数的基本概念及特征,并探讨其在地理学中的应用。
一、凸函数的基本概念及特征1.1 凸函数的定义在一条实数直线上定义函数f(x),若对于任意的x1、x2,以及0≤t≤1,都有:f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2)则称f(x)为该实数直线上的凸函数。
简而言之,凸函数具有以下的性质:- 函数值随着自变量的变化而逐渐上升;- 对于同一自变量区间的任意两个点,连接它们的线段上的函数值不会高于线段两端点的函数值之和。
1.2 凸函数的特征凸函数具有以下的特征:- 凸函数从一侧的导数递增,从另一侧的导数递减;- 凸函数的二阶导数非负;- 凸函数与切线上的线性函数的相对位置关系有着一定的限制。
二、凸函数在地理学中的应用凸函数具有一定的地理学上的应用,本节将从以下方面进行论述:2.1 地形分析地形分析是以地形为基础的地理学研究分支,而其中的高程数据处理就需要凸函数的知识。
在地形分析中,凸函数常用于拟合海拔高度数据,以便计算地区的平均高度、高度变化率和等高线斜率等信息。
2.2 自然资源管理在自然资源管理方面,凸函数也有着广泛的应用。
例如,地下水资源的可持续利用需要对水位变化的速率进行分析。
这个速率可以用凸函数拟合地下水位随时间的变化来计算。
2.3 地图绘制凸函数也可以应用于地图绘制。
以等高线为例,凸函数可以用于拟合等高线,从而形成较平滑的地形地图。
同时,在地图上使用凸函数来绘制地形等高线,可以避免在山坡太过陡峭时出现过多的等高线,从而更好地显示地形形态。
2.4 城市设计在城市设计方面,建筑师们使用凸函数来确定建筑物的形状、位置和高度。
这些参数需要在符合城市规划的情况下保证最佳的日照、采光和通风等条件。
2.5 生态环境研究凸函数还可以用于生态环境研究。
例如,可以使用凸函数拟合树木的生长曲线,从而确定植被的最大生产力和长期栖息地的数量。
凸函数的性质及其应用

即 证f在 (上x)≥式α中(分x-别x2)令+f(xx=2) x 1 , x = (∨x3得x∈ [ a , b ] ) f ( x x 33) -- xf (2 x 2 ) ≥ α ≥ f ( xx 2 2) -- fx (1 x 1) ,
3 、应用举例:
例 1:用凸函数方法证明 younger 不等式:x a y a ≤α x+ β y(x,
由于f 2( x )+f 2( y )≥2f( x )f( y ) ,故(D)式成立,结论得证。 另:设 f ( x )=e-2x>0 为 R 上的凸函数,但 f( 1x ) =e-2x 仍为凸函数 定理 6:若 f ( x )为区间 I 上的凸函数,对∨ x ∈ I,且 x 为 I 的 内点,则单侧导数f ( '-x ),f +'( x ) 皆存在,且 f '-( x )≤ f '+( x ) (∨x ∈I) 推论:若f (x)为区间 I 上的凸函数,则f( x )在区间 I的内点连续.
仅当对∨ x1,x2,…,xn ∈ I ,有 n f ( ∑ i= 1 n x i )≤n 1 ∑ i= n1 f (x1) 推论 1:若 f (x )在区间 I 上为凸函数,则对 I 上∨ x1<x2<x3,有
f (xx2)2--fx (1 x 1) ≤ f (xx3)3--fx (1 x 1) ≤ f (xx3)3--xf (2 x 2) 注:若 f (x )在 I 上连续,则上述定义 1,2,3 等价
的凸函数,反之不真。
证明:要证 f( 1 x ) 为I上的凸函数,即证∨x1,x2∈R,λ∈
(0,1 )有
1 f (λx1+(1-λ)x2)
≤ f ( λx 1) +
1-λ f (x2)
………
凸函数的判定与应用

凸函数的判定与应用凸函数是数学中一种常见的函数类型。
它在优化问题、经济学、工程和自然科学等领域中得到广泛应用。
本文将介绍凸函数的判定准则,以及凸函数在各个领域中的应用。
一、凸函数的定义与性质在数学中,凸函数可以通过其定义和性质来进行判定。
定义:设函数f在区间[a, b]上连续,在(a, b)内可导。
如果对于任意x1、x2∈[a, b],以及任意0≤t≤1,都满足f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f为[a, b]上的凸函数。
性质:凸函数具有以下性质:1. 对于凸函数f(x),若f''(x)存在且恒大于等于0,则f(x)是凸函数。
2. 若函数f(x)在[a,b]上是凸函数且在(a,b)内可导,则在(a,b)内f'(x)是递增函数。
二、凸函数与判定方法凸函数的判定方法包括一阶导数、二阶导数和Jensen不等式等。
1. 一阶导数判定法若函数f(x)在区间[a,b]上可导,且对于任意x1、x2∈(a,b),有f'(x)在[a,b]上单调递增,则f(x)是在[a,b]上的凸函数。
2. 二阶导数判定法若函数f(x)在区间[a,b]上两次可导,且对于任意x∈(a,b),有f''(x)≥0,则f(x)是在[a,b]上的凸函数。
3. Jensen不等式对于凸函数f(x),若λ1、λ2、...、λn为非负实数,且满足λ1+λ2+...+λn=1,以及x1、x2、...、xn为任意n个区间[a,b]上的数,则有以下不等式成立:f(λ1x1+λ2x2+...+λnxn)≤λ1f(x1)+λ2f(x2)+...+λnf(xn)三、凸函数的应用领域凸函数广泛应用于各个领域,包括优化问题、经济学、工程和自然科学。
1. 优化问题在优化问题中,凸函数常被用来描述目标函数或约束条件。
由于凸函数具有良好的性质,如弱凹性和全局极小值,因此可以通过凸优化算法来求解各种优化问题。
凸函数的性质及应用(0907142王波波).docx

目录1引言 (2)2凸函数的定义及性质 (2)2.1凸函数的几种不同定义及其关联 (2)2.2凸函数的判定定理及证明 (4)2.3凸函数的性质 (5)3凸函数的应用 (6)3.1詹森不等式及应用 (6)3.2凸函数在微分学的应用 (8)3.3凸函数在积分学的应用 (9)结论 (11)参考文献 (11)凸函数的性质及应用王波波,数学计算机科学学院扌商要:凸函数是高等数学中的一个基本内容,它在证明比较复杂的不等式方面有着重要的作用•在本文中,我们分析总结了凸函数的性质及相关定理•最后用凸函数方法和詹森不等式推证几种重要的不等式,并对某些结论作一些讨论. 关键i司:凸函数;方法;不等式;推论Properties of Convex Function and Its ApplicationWangbobo , College of Mathematic and Computer Science Abstract:Convex function is a basic content of higher maths.lt plays an important role in proving more complex inequality. In this paper,we summarized some properties and theorem of convex function . And finally we proved some important inequality using the method of Convex function and Jensen inequality of convex function and discussed some conclusion.Key words:Convex function; Method; Inequality; Inference1引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、黎曼集合、最优化理论等当中•常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文题目:凸函数的性质及其应用英文题目:The Property and Applications of ConvexFunctions完成人:指导教师:系(院)别:数学与信息科技学院专业、班级:数学与应用数学0602班完成时间:二〇一〇年六月河北科技师范学院数信学院制目录中文摘要 (1)1 引言 (1)2 预备知识 (1)2.1 凸函数的定义 (2)2.2凸函数的运算性质 (2)2.3 Jesen不等式 (2)3 本文的主要结果 (3)3.1 凸函数的连续性 (3)3.2 凸函数的微分性质 (3)3.3 凸函数的积分性质 (6)3.4 Jesen不等式及凸函数性质的应用 (7)结束语 (12)参考文献 (12)英文摘要 (13)致谢 (13)凸函数的性质及其应用(河北科技师范学院数学与信息科技学院 数学与应用数学专业0602班)指导教师:摘 要: 凸函数是一类重要的函数,它在数学理论研究中涉及了许多数学命题的讨论证明和应用。
本文将散见于多种文献中的材料加以汇总并系统化,从凸函数的定义出发,讨论了定义在某区间上的凸函数经四则运算生成新的函数的凸性以及连续凸函数的一些性质,对凸函数的连续性、可微性、可积性等分析性质加以系统论述。
并且讨论了凸函数Jesen 不等式和凸函数性质在不等式证明中的应用。
关键词: 凸函数;不等式;证明1 引言凸分析是近年来凹凸函数发展起来的一门应用十分广泛的数学分支, 它在数学规划、控制论、多元统计等领域都有广泛的应用,尤其是在最优化理论方面的应用更为突出【3】。
对函数凹凸性的研究,在数学分析的多个分支都有用处,特别是在函数图形的描绘和不等式的推导方面,凸函数有着十分重要的作用【4】。
人们对凸分析的自身理论发展也进行了广泛深入的研究,凸函数的性质也有所发展。
函数的凸性是函数在区间上变化的整体性态,把握区间上的整体性态,不仅可以更加科学、准确的描绘函数的图象,而且有助于对函数的定性分析。
对函数凹凸性的研究,在数学分析的多个分支都有用处。
在凸规划理论、尤其是非线性最优化中,函数的凸性分析是最基本的,又是最重要的【7】。
凸函数的定义,最早是由Jenser 给出。
本世纪初建立了凸函数理论以来, 凸函数这一重要概念已在许多数学分支中得到了广泛应用【8】。
凸函数涉及了许多数学命题的讨论证明和应用,例如在数学分析、函数论、泛函分析、最优化理论等当中。
应用研究方面,凸函数作为一类特殊函数在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用【10】。
由于凸函数具有较好的几何和代数性质, 在数学规划中有着广泛的应用背景, 一些常见的不等式都可以从函数的凸性中导出。
数理经济学中, 对风险厌恶的度量, 也可以表现为对效用函数凸性的选择,所以研究凸函数的性质就显得十分必要了【11】。
另外, 由于凸函数理论的广泛性, 因此对其理论的研究成果还有待进一步的深入和推广。
2 预备知识2.1 凸函数的定义定义1【10】设()f x 在区间I 内有定义,如果对任意的1x , 2x ∈I , (1x ≠2x ) ,总有1212[(1)](1)()()f x x f x f x λλλλ-+<-+ , 则称函数()f x 是区间I 内的凸函数,并称()f x 在I 内的图形是向下凸的;如果对任意的1212,()x x I x x ∈≠,对(0,1)λ∀∈,总有1212[(1)](1)()()f x x f x f x λλλλ-+>-+, 则称函数()f x 是区间I 内的凹函数,并称()f x 在I 内的图形是向上凸的。
若式子中的不等式改为严格不等式, 则相应的函数称为严格凸(凹)函数。
定义2【10】设()f x 在区间I 上连续,如果对I 上任意两点1212,()x x x x ≠ ,恒有1212()()()22x x f x f x f ++<,那么称()f x 是区间I 上的凸函数,并称()f x 在I 内的图形是向下凸的; 如果恒有1212()()()22x x f x f x f ++<,则称函数()f x 是区间I 内的凹函数,并称()f x 在I 内的图形是向上的。
定义3【10】设函数()f x 在I 内可导,对任意0x I ∈,如果过点))(,(0x f x M 的切线位于)(x f y = 的下方,即))(()()(000x x x f x f x f -'+>,I x ∈0则称函数)(x f 为I 内的凸函数;如果有过点))(,(0x f x M 的切线位于)(x f y =的上方, 即))(()()(000x x x f x f x f -'+<, 则称函数)(x f 为I 内的凹函数。
定义4【10】设函数)(x f 在I 内可导,如果)(x f '在I 内是递增的,则称函数)(x f y '=为I 内的凸函数;如果)(x f '在I 内是递减的,则称函数)(x f y '=为I 内的凹函数。
2.2凸函数的运算性质定理2.2.1【7】若(),()f x g x 均为[,]a b 上的凸函数,则()()f x g x +也是[,]a b 上的凸函数。
定理2.2.2【7】设1()f x 为[,]a b 上的凸函数,λ为正常则()f x λ也为[,]a b 上的凸函数。
定理2.2.3【7】若()u ϕ是单调递增的凸函数,()u f x =也是凸函数,则复合函数[()]f x ϕ也是凸函数。
定理 2.2.4【7】设)(x f 与)(x g 都是],[b a 上的非单调递增的凸函数,则)()()(x g x f x h =也是其上的凸函数。
2.3 Jesen 不等式定理2.3.1【9】Jesen 不等式:若f 为[,]a b 上的凸函数,则对任意],[b a x i ∈,0>i λ,n i ,,2,1 =, 11ni i λ==∑ ,有()11n ni i i i i i f x f x λλ==⎛⎫≤ ⎪⎝⎭∑∑该不等式称为Jensen 不等式,该性质是凸函数的一个重要性质,也是定义的一般情况. 可以说,凸函数在不等式证明中的应用很大程度上是由Jensen 不等式来体现的,因为每个凸函数都有一个Jensen 不等式,因而它在一些不等式证明中有着广泛的应用. 利用它我们可以推出常用的一些重要公式,为我们证明不等式开辟了一条新路。
推论1:设()f x 在(),a b 为凸函数,(),i x a b ∈,1,2,,i n =,则()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭, 当且仅当12n x x x ===时等号成立。
3 本文的主要结果下面我们探讨凸函数的分析性质:3.1凸函数的连续性定理3.1.1若()f x 在区间I 为凸函数,则()f x 在区间I 的任意一点x 连续。
证明:因x 为内点,故∃12,x x I ∈,使12x x x <<,因此1212()()()()f x f x f x f x x x x x--≤--,且当1x 严格增加时,11()()f x f x x x --严格增加,由单调有界性定理知1'11()()()lim x x f x f x f x x x --→-=-存在,即()f x 在内点x 左可导,同理可证()f x 在内点x 右可导,从而()f x 在内点x 连续,因此()f x 在区间I 的任意一点x 连续。
3.2凸函数的微分性质定义 1 设f 为[],a b 上的凸函数,(),x a b ∈若常数p 满足:()()()[],,f y f x p y x y a b ≥+-∀∈则称常数p 为f 在x 的一个次梯度;f 在x 的所有次梯度构成一个集合, 称为f 在x 的次微 分 ,记为()f x ∂,即()()()()[]{},,f x p R f y f x p y x y a b ∂=∈≥+-∀∈因为()f x ∂是一个非空闭凸集,且当f 在x 可 微时有()(){}'f x f x ∂=。
引理 1 设f 为[],a b 上的连续凸函数,(),x a b ∈,则x 为f 在[],a b 上的极小值 点当且仅当()0f x ∈∂。
证明 因为f 在[],a b 上连续,所以f 在[],a b 上有界。
设若()p f x ∈∂。
则有()()[],,f y f x y a b ≥∀∈即()()[],,f y f x y a b ≥∀∈,所以x 为f 在[],a b 上的极小值点。
反之,如果x 为f 在[],a b 上的极小值点,则必有()()[],,f y f x y a b ≥∀∈所以由定义1 知()p f x ∈∂。
定理3.2.1 设f 为[],a b 上的连续凸函数,则对于任意的()0,x a b ∈及任意的()0p f x ∈∂,总存在两个异于0x 的点1x ,2x [],a b ∈, 使得()()2121f x f x p x x -=-证明 我们分两种情况来证明结论: 1) 0p = 的情形。
此时,据引理1 可知()0f x 为f 在[],a b 上的极小值 ( i) 如果()()f a f b =,可取1x a =,2x b =,使得:()()21210f x f x p x x -==-( ii) 如果()()f a f b ≠。
不失一般性 ,可设()()f a f b <。
当()()0f a f x = 时 ,由()0f x 为f 在[],a b 上的极小值及f 的凸性可知()()()()()()()000011a f x f x f a f x f x λλλλ≤+-≤+-=,[]0,1λ∀∈这表明f 在[]0,a x 上取常值, 此时令0123a x x +=,0223a x x +=就有()()21210f x f x p x x -==-当()()0f a f x >时 ,注意到()()()0f x f a f b <<且f 在[]0,x b 上连续, 由连续函数 的介值性定理可知 ,存在()20,x x b ∈ ,使得()()2f x f a =。
此时取1x a =便有()()21210f x f x p x x -==-2) 0p ≠的情形。
构造函数[]:,F a b R →, 这里()()()()F x f x f a p x a =---。
则F 满足: ( i) F 为[],a b 上的连续凸函数; ( ii) ()0p F x ∈∂。
第一点很容易验证. 以下来说明第二点.事实上, 由于()0p F x ∈∂,据次梯度的定义可知()()()00f x f x p x x ≥+-,[],x a b ∀∈于是有()()()()()()()[]000,,f x f a p x a f x f a p x a p x x x a b ---≥---+-∀∈这表明()0p F x ∈∂。