心理学基本概念系列文库:氨基酸类神经递质
神经递质名词解释

神经递质名词解释神经递质是一种特殊的分子,它们可以在神经系统中的不同区域之间建立联系,起到信息传递的作用。
它们是神经系统h活动的基本结构和功能单元,可以跨越神经元之间的距离,实现记忆、控制行为、感知感官信息、识别环境信息以及其他一系列功能。
神经递质主要包括氨基酸类、肽类和其他有机化合物。
其中氨基酸类神经递质包括乙酰胆碱(Ach)、谷氨酸(Glu)、火腿氨酸(Asp)、γ-氨基丁酸(GABA)等;肽类神经递质包括催乳激素(OT)、促肾上腺皮质激素(CRH)、突触促肾上腺皮质激素(CPP)、β-多巴胺(DA)、5-羟色胺(5-HT)等;其他有机化合物主要包括胆碱胆硷(CA)和爱普斯汀(EP)。
乙酰胆碱(Ach)是一种常见的氨基酸类神经递质,它可以促进肌肉的收缩和抑制,参与记忆机制、感官信息的传递和识别环境信息。
它是体内最活跃的神经递质之一,可以刺激神经元的持续发放,并且可以调节神经元的活动强度和发放速率。
谷氨酸(Glu)也是一种常见的氨基酸类神经递质,主要调节记忆、感知信息和行为控制。
它不仅可以激活神经元,还可以抑制神经元的发放,从而调节信息传递的强度和速度。
肽类神经递质具有多种功能,其中催乳激素(OT)是最重要的一种,它可以调节情绪、睡眠和性欲,还可以参与生理功能的恢复和维护。
促肾上腺皮质激素(CRH)能够促进肾上腺皮质的分泌,可以调节机体压力水平,对改善情绪、控制焦虑症有一定的作用。
突触促肾上腺皮质激素(CPP)和β-多巴胺(DA)是两种重要的肽类神经递质,它们都可以调节记忆、行为控制和情绪等。
5-羟色胺(5-HT)是一种抑制神经系统功能的神经递质,可以调节心理情绪,对调节情绪和心里健康有一定的作用。
胆碱胆硷(CA)是一种少见的有机化合物,它可以促进肌肉的收缩,促进神经元的发放,可以参与记忆、感官信息传递和行为控制等。
爱普斯汀(EP)是另一种有机化合物,它可以调节机体压力水平,还可以调节生物钟,维持身体的生理活动周期。
神经递质知识点归纳

神经递质知识点归纳第三章体内的信息交流:突触突触是著名生理学家谢灵顿于1897年首次提出的。
1906年,他在《神经系统的整合作用》一书中再次提出:“鉴于神经元与神经元之间的连接形式在生理学上可能有的重要性,有必要给它一个专门术语,这就是突触。
”由于科学技术水平的限制,谢灵顿没有突触形态结构的直接证据。
突触形态学直接证据的获得是与20世纪初发展起来的生物组织标本固定染色技术分不开的。
另外,还与光学显微镜油镜镜头的使用有关。
突触结构的确立是在20世纪50年代。
一、突触的概念经典的概念:某神经元的轴突末梢与其它神经元的胞体或突起发生功能性接触所形成的特殊结构。
广义的概念:指两个神经元之间或神经元与效应细胞之间功能上密切联系、结构上又特殊分化的区域。
如神经-肌肉接头、神经-腺细胞接头等。
二、突触的分类按接触部位的不同,可将突触分为轴突—树突型、轴突—胞体型、轴突—轴突型、胞体—胞体型、树突—树突型等。
按结构和机制的不同,可将突触分为化学突触和电突触。
按传递性质的不同,可将突触分为兴奋性突触和抑制性突触。
(一)电突触突触间隙为2nm,腔肠动物神经网的突触主要是电突触。
蚯蚓、虾等无脊椎动物也主要是电突触。
特点:突触前后两膜很接近,神经冲动可直接通过,速度快,传导没有方向之分,任何一个发生冲动,即可以传导给另一个。
(二)化学突触突触间隙约20~50nm,由突触前成分(突触前膨大和突触前膜,内含突触小泡)、突触间隙和突触后成分(含神经递质的受体)组成。
只有在神经递质与突触后膜上的受体结合后,突触后神经元才能去极化而发生兴奋。
三、突触的传递过程:分三个环节突触前神经元兴奋使突触前膜去极化,引起突触前膜上Ca2+通道开放,Ca2+内流;突触前膜内C a2+浓度增高,引起突触小泡向前膜移动、和前膜融合,释放神经递质;神经递质经突触间隙扩散到突触后膜并作用于后膜上的特异性受体,引起离子通道的开放(或关闭),导致突触后膜产生一定程度的去极化或超极化,即突触后电位。
神经递质名词解释

神经递质名词解释神经递质是指一类化学物质,它们在神经元之间传递信号并调节神经系统的功能。
神经递质在神经元的突触间隙释放,并与接受器结合,从而传递信号。
下面是一些常见的神经递质及其功能的解释。
1. 乙酰胆碱:乙酰胆碱是一种主要的神经递质,它在中枢神经系统中发挥重要作用。
乙酰胆碱参与了大脑的学习、记忆和认知功能。
2. 多巴胺:多巴胺是一种与情绪、奖励和动机有关的神经递质。
它参与了运动控制、情感调节和上瘾行为等功能。
多巴胺不平衡与帕金森病和精神疾病等疾病相关。
3. 谷氨酸:谷氨酸是一种兴奋性神经递质,在大脑中起到兴奋性传递信号的作用。
它与学习、记忆和神经元的发育和存活等功能有关。
4. γ-氨基丁酸:γ-氨基丁酸(GABA)是一种主要的抑制性神经递质,它通过抑制神经元的兴奋性来平衡大脑的兴奋性和抑制性。
GABA参与了焦虑、睡眠和情绪等功能调节。
5. 色胺类神经递质:色胺类神经递质包括血清素和去甲肾上腺素,它们在情绪调节、睡眠、认知和注意力等方面起到重要作用。
不平衡的色胺类神经递质与抑郁症和焦虑症等心理疾病有关。
6. 肽类神经递质:肽类神经递质包括内啡肽、脑啡肽和神经肽Y等,它们参与了许多生理和行为过程,如疼痛传导、食欲和受奖赏行为。
7. 脑钠素:脑钠素是一种神经递质和神经调节物质,它对血管收缩和血压调节起重要作用。
这些神经递质在神经系统中相互配合,协调和调节各种生理和行为功能。
当神经递质的平衡受到破坏,神经系统可能出现功能异常,导致神经性疾病的出现。
因此,研究神经递质的功能和调控机制对于理解神经系统的工作原理以及开发相关药物治疗具有重要意义。
氨基酸类神经递质

神经 系统
8.70
2.23
2.27
肝脏 4.48 0.87 0.10
甘氨酸 7.03
谷氨酸是不是神经递质?
实验
谷氨酸存在 于突触末梢
Glutamate
突触体
NADP+ NADPH
谷氨酸以依赖 钙的方式释放
钙螯合剂
TTX
N型钙通 道阻断剂
主动转运
养兵千日,用兵一时
H-ATP 酶
100mM
1μM
1.1mM
➢谷氨酸的摄取
谷氨酸转运体
谷氨酰胺循环
80% KOH
生电
高亲和力和低亲和力谷氨酸转运体比较
1100倍
10倍
精确控制
突触前 突触后
谷氨酸受体
NMDA受体
药 理
AMPA受体
学 KA受体
特 L-AP4受体
性 代谢性受体
NMDA受体
特性1
➢NMDA受体偶联 的离子通道被镁 以电压依赖性的 方式阻断
与谷氨酸亲和力 最高,最为重要
的受体之一
NMDA受体的特性
特性2
➢NMDA受体呈镞 状开放,时程 达70-90ms
介导的突触反 应十分缓慢
学习和记忆
故天将降大任于是人也
NMDA受体的功能 -受体效应
NMDA受体的结构
170KD
NR1亚基
结构 功能
➢NMDA受体呈镞 状开放,时程 达70-90ms
Ca2+
Ca2+
Ca2+
慢
其它谷氨酸受体及其相互关系
比较法
其它谷氨酸受体的作用
药理学分型 NMDA受体 AMPA受体 KA受体 mGluR L-AP4受体
神经递质合成和释放的分子机制

神经递质合成和释放的分子机制神经递质是神经系统中传递信息的一种化学物质。
神经递质的合成和释放是神经机制的核心,它是神经系统正常运转的关键。
在神经递质合成和释放的分子机制中,有许多蛋白质、酶和分子信使参与,这些信使通过化学反应与神经元之间进行交流,使神经元得以传递信息并控制各种生理反应。
1.神经递质神经递质是神经元细胞膜表面和突触前膜中释放的化学物质,可以影响神经元之间的传递和效应。
神经递质主要有五种类别:氨基酸类、儿茶酚胺类、乙酰胆碱类、肽类和神经调节物质类。
2.神经递质的合成和释放神经递质的合成和释放是多个酶、信使和蛋白质的协同作用。
神经递质通过膜蛋白进行合成和释放,如:谷氨酸和谷氨酸酯酶通过谷氨酸转氨酶的催化合成。
神经元负责将神经递质从突触前膜中释放出来,以此控制神经系统的反应。
当神经元受到兴奋时,突触前膜内的钙离子会进入细胞,这将使神经元激活。
神经元负责从细胞内的小囊泡中释放神经递质,在此过程中,钙离子与小囊泡内的分子相关蛋白结合,从而使神经递质向外释放。
3.合成和释放的关键分子机制神经递质的合成和释放涉及到许多关键分子机制,包括:酶素的合成、转运蛋白的功能、质子数的运动和固定分子的作用等。
这些分子机制在神经递质的合成和释放过程中起到重要的作用,使神经递质可以被准确的合成和释放。
酶素合成:神经递质的合成需要许多不同类型的酶,如维生素B6(这是谷氨酸酸脱羧酶的辅酶)和同义胺酸酯酶(这是使肽序列的语法能够转换的酶)等。
这些酶合作确保神经递质的正确合成。
转运蛋白功能:神经元需要将神经递质从突触前膜中释放出来,而这需要一系列的转运蛋白来完成。
其中一种转运蛋白是负责将钙离子输送到突触前膜中的电压依赖性钙通道。
其他转运蛋白则是负责向小囊泡中输送神经递质。
质子数的运动:神经递质的释放会产生一些特殊的环境,包括高钾离子浓度和低pH值。
这些环境会导致神经递质从小囊泡中流出,形成一个释放孔。
释放孔的形成需要质子数的变动,这可以通过膜上的H+-ATPase启动。
生理心理学第一章C

胆碱能神经元的纤维投射
胆碱能局部回路,胞体位于纹状体、伏隔 核、嗅结节和海马等。
脊髓躯体运动和一般内脏运动径路:由脊 髓前角发出的运动神经纤维和由脊髓侧角 发出的交感和副交感的节前纤维都是胆碱 能的。
2.胆碱能脑干网状结构上行激活系统。 在脑干网状结构上行激活系统内有许多胆 碱能神经元,但是也有非胆碱能神经元。 胆碱能网状结构上行激活系统的神经解剖 通路中又可分背、腹两束。
应器之间的突触传递也以Ach作为神经递质。
乙酰胆碱的功能
作为神经传导的化学递质。 局部激素的作用。 某些细菌、霉菌或植物的代谢产物之一。 毒物作用:如黄蜂刺及刺草中均含有大量乙酰胆
碱。
中枢神经乙酰胆碱能的作用
感觉。感觉特异投射系统有三级神经元。 其中,第二、第三级很可能是乙酰胆碱能 神经元,它参与多种感觉的传入。还参与
2. 单胺类神经递质, 含量比第一类低1000 倍,每g中含有毫微摩尔(nmol) 。经典的神 经递质属于第二类,他们的作用:其促进代 谢作用,作用开始较缓慢,一般通过第二信 使系统引起复杂的生理生化变化。
根据含量的不同分为3类
3. 多肽类比第二类还低1000倍,每g中含 有微微摩尔(ppmol)。可能起一种特殊的 促代谢作用。并对单胺类和氨基酸类递质 的作用进行调制。
4. 多肽类: 有内源性阿片样肽、P物质、脑 利钠多肽、胆囊收缩素等。
5. 其他类:有NO、前列腺素、组氨、嘌呤 核苷酸等。
典型的神经递质:1,2,3类。经典神经递 质:1,2类
神经中的多肽类物质,功能复杂,统称为 神经肽(neuropiptide) 。
根据含量的不同分为3类
1. 氨基酸类神经递质,含量高,每g中含有 微摩尔。特点是:促离子效应,促进突触后 膜离子通道开放,导致电导的大幅度改变, 引起快速的抑制或兴奋效应。
最新心理咨询师《生理心理学》讲义分子神经生物学的基本概念

心理咨询师《生理心理学》讲义分子神经生物学的基本概念分子神经生物学是近20-30年迅速发展起来的研究领域。
神经递质:凡是神经细胞间神经信息传递所中介的化学物质,神经递质大都是分子量较小的简单分子,包括胆碱类、单胺类、氨基酸类和多肽类等30多种物质。
根据功能可分为兴奋性和抑制性神经递质。
(名词解释)神经调质并不直接传递神经信息,而是调节神经信息传递过程的效率和速率,其发生作用的距离比神经递质大,但其化学组成和结构可能与同类神经递质相同,也可能与神经递质完全不同。
(名词解释)逆信使:神经信息在细胞间传递过程中,除了这类参与从突触前膜向突触后膜传递信息的递质与受体结外,由突触后释放一种更小的分子,迅速逆向扩散到突触前膜,调节化学传递的过程,将这类小分子物质称为逆信使。
已知的逆信使有腺苷和一氧化氮。
(名词解释)受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性受体结合反应,产生相应的生物效应。
能与受体蛋白结合的物质,如神经递质、调质、激素和药物等,统称为受体的配基或配体。
1987年以来,逐渐将受体按其发生的生物效应机制和作用加以分类,如G-蛋白依存性受体家族、电压门控受体和自感受体等。
(选择)神经细胞间信息传递的化学机制并非总是如此复杂,当那些电压门控受体与神经递质结合时,就会直接导致突触后膜的去极
化,产生突触后电位。
脑重量约占全身体重的2%,但其耗氧量与耗能量却占全身的20%,而且99%利用葡萄糖为能源代谢底物,又不像肝脏、肌肉等其他组织那样,本身不具糖元贮备,主要靠血液供应葡萄糖。
运动、氨基酸类神经递质与运动性中枢疲劳

145当代体育运动、氨基酸类神经递质与运动性中枢疲劳董冉冉该文简要介绍氨基酸类神经递质的概念及其主要功能,综述不同运动负荷对脑内氨基酸类神经递质水平的影响作用。
认为长时间运动后脑内氨基酸类神经递质的变化可能是导致运动性疲劳的重要原因,并就脑内氨基酸的变化与运动性疲劳产生的内在机制试作探讨。
1 氨基酸类神经递质的功能研究表明,不同运动负荷后中枢神经系统氨基酸类神经递质含量发生变化,影响中枢神经系统的兴奋与抑制过程,导致运动性疲劳。
本文拟就氨基酸递质功能、运动中的变化引起运动性疲劳的可能性机制等问题试作综述。
2 运动对氨基酸类神经递质的影响尤春英进行的动物实验证实长时间的运动导致中枢神经系统疲劳时,脑组织内r-氨基丁酸含量升高。
徐传香通过用高效液相色谱法(HPLC)检测脊髓内单胺类和氨基酸类神经递质含量变化的实验表明:大鼠脊髓内氨基酸类神经递质,在训练后即刻出现了增高,其中谷氨酸、氨基丁酸明显增高。
亦有研究认为,长时间运动或训练可使脑内氨基丁酸含量增加。
李人等人的研究表明,安静状态下经过训练和没经过训练的大鼠脑中谷氨酸与氨基丁酸的比值无明显差别,经过1、2、5h 游泳后部分脑区氨基丁酸低于安静时,而谷氨酸高于安静值且有显著性的增加,而经过9h 长时间的运动后,脑中谷氨酸和氨基丁酸都有显著性的增加,但谷氨酸与氨基丁酸的比值明显下降,这意味着脑中氨基丁酸含量升高的幅度大于谷氨酸升高的幅度。
结果表明运动训练对氨基丁酸的影响表现出时间相关性。
张东明等用微透析技术研究发现急性力竭运动后大鼠下丘脑区谷氨酸、氨基丁酸、甘氨酸增加,其中谷氨酸和氨基丁酸的增加对于甘氨酸的增加,表明在运动性中枢疲劳时,以抑制效应占优势。
钟兴明的急性力竭游泳运动表明,大鼠急性力竭游泳后,下丘脑区抑制性氨基酸神经递质的增加高于兴奋性氨基酸神经递质的增加,这意味下丘脑中氨基酸抑制性占优势。
以上研究表明,长时间急性的运动可导致兴奋性氨基酸及抑制性氨基酸的释放发生变化,抑制性氨基酸的增加高于兴奋性氨基酸的增加,出现抑制性占优势过程,神经系统的兴奋性降低,这是导致运动性中枢疲劳的原因之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心理学基本概念系列——
氨基酸类神经递质
形而上是人类区别于动物的重要文明之一,
情志,即现在所说的心理学,
在人类医学有重要地位。
本文提供对心理学基本概念
“氨基酸类神经递质”
的解读,以供大家了解。
氨基酸类神经递质
有神经递质功能的氨基酸。
现已知多种。
如,谷氨酸与天冬氨酸是兴奋性神经递质;γ氨基丁酸和甘氨酸是抑制性神经递质。
前者是脑内浓度最高的氨基酸,虽可从血液中吸收,但脑组织仍可在神经元线粒体内,在糖代谢的三羧酸循环中,以草酰乙酸或α-酮戍二酸为原料,由转氨酶催化而自行合成。
贮存在轴突末梢。
当神经冲动传至末梢时,被突触前膜释放并迅速扩散到突触后,与那里的受体结合,促使钠离子和钾离子通道门开放,从而产生兴奋效应;少部分为突触前膜和胶质细胞重新摄取。
谷氨酸和天冬氨酸能神经通路主要分布在皮层、海马、小脑颗粒细胞、嗅皮层、视皮层与外侧膝状体等处。
γ氨基丁酸和甘氨酸是脑内主要的抑制性神经递质。
γ-氨基丁酸在神经末梢由谷氨酸脱羧酶催化而生成。
从突触前膜释放后,大部分扩散到突触后,引起突触后膜超级的抑制效应;少部分为突触前与胶质细胞重新摄取,在线粒体内被转化成琥珀半醛,进而变为琥珀酸,参与三羧酸循环,并为胶质细胞与神经末梢提供少部分能量。
γ-氨基丁酸主要分布在小脑、海马、纹状体、脊髓以及皮层的中间神经元中。
甘氨酸的抑制效应在大脑中较低,主要在延脑以下的脑结构中发挥作用。
甘氨酸神经通路有舌咽神经向舌下神经核的纤维联系及延脑网状脊髓通路。
中枢神经系统内甘氨酸的来源与代谢过程至今不十分清楚,除从血液中吸收外,尚可以丝氨酸、α-酮戍二酸为原料,自行合成。