地基岩体稳定性分析

合集下载

第8章 岩体地基工程地质问题

第8章 岩体地基工程地质问题

比较上述两式可以看出,当其他条件 相同时,沿倾向上游滑动面滑动的抗 滑稳定性系数显著大于沿倾向下游滑 动面的抗滑稳定性系数。
图8-7单斜滑动面倾向 下游的稳定性计算
(3)双斜滑动面的稳定性计算
如图8-8所示,在这种双斜滑动面形式下,计算抗滑稳定时将双斜滑 移面所构成的楔体△ABC划分为二个楔体,即△ABD及△BCD。这 时,△ABD是属于单斜滑动面倾向下游的模型;而△BCD在其自重 作用下,显然有沿CB面下滑的趋势,这必然对ABD块体产生阻滑作 用,故把ABD块体称为滑移体,BCD块体称为抗力体。

(2)室内单轴抗压强度确定岩石地基承载力



①试料可用钻孔的岩心或坑、槽探中采取的岩块。 ②岩石试样尺寸一般为φ50mm×100mm,数量不应少于 六个,进行饱和处理。 ③在压力机上以每秒500~800kPa的加载速度加载,直到 试样破坏为止,记下最大加载,做好试验前后的试样描 述。 ④根据参加统计的一组试样的实验值计算其平均值、标 准差、变异系数,取岩石饱和单轴抗压强度的标准值为:
图8-8双斜滑动面的稳定性计算


①非等Ks法
该方法以滑移体ABD或抗力体BCD处于极限平衡状态为依 据(即抗滑稳定性系数为1),由此计算出抗力P,然后再 根据抗力P计算出抗滑稳定性系数。
f1
K ABD
V
1
cos
1
H sin U c l V sin H cos
岩石单轴抗压强度试验机

根据经验确定岩体地基承载力
表8-1 岩体地基容许承载力数值表
岩体类型 节理不发育(间 距>1.0m) 容许承载力(MPa) 节理较发育 (间距1.0~ 0.3m) (1/7~1/10) Rw (1/5~1/7)Rw 节理发育(间距 0.3~0.1m) (1/10~1/16) Rw (1/7~1/10)Rw 节理极发育 (间距<0.1m) (1/16~1/20) Rw (1/10~1/15) Rw

岩溶地基加固的原理及方法分析

岩溶地基加固的原理及方法分析

岩溶地基加固的原理及方法分析发表时间:2016-07-27T13:54:16.550Z 来源:《基层建设》2016年10期作者:罗鑫[导读] 本文针对岩溶发育的特点及岩溶地基稳定性影响因素,对岩溶地基加固的原理及方法进行分析。

中铁四院集团南宁勘察设计院有限公司摘要:我国西南地区广泛分布碳酸盐岩地层,溶洞、岩溶裂隙带及土洞等隐蔽型岩溶现象较发育,是引发地面塌陷的主要因素之一,直接影响铁路路基的设计、施工及运营安全。

为有效解决岩溶地区地基的稳定性,需要采取科学、合理的加固措施。

本文针对岩溶发育的特点及岩溶地基稳定性影响因素,对岩溶地基加固的原理及方法进行分析。

关键词:岩溶地基;加固;原理;方法在铁路建设蓬勃发展的今天,铁路设计的安全性尤为显得重要,尤其在岩溶发育地区,如何合理地选择铁路地基加固处理方法往往是铁路设计的重难点。

笔者认为在充分利用地质勘察成果的基础上,了解岩溶发育特点及机理,才能正确预测其发展趋势,以此确定地层的稳定条件,从而针对性地采取地基加固方法,增强岩溶地基的稳定性。

1、岩溶发育特点(1)形成条件各种岩溶形态发育的先决条件是具备可溶性的石灰岩、白云岩等碳酸盐岩地层,其次是具备频繁活动的地下水,再者是地层中具备原生解理裂隙、断层裂隙或风化节理裂隙。

岩溶发育机理为:在地质条件长期演变的过程中,裂隙发育的可溶岩地层在地下水频繁活动的过程中,裂隙附近地层中的可溶性物质碳酸钙不断被溶于水中并随地下水沿原裂隙带离,裂隙逐渐被扩大,形成溶隙、溶腔等小型岩溶形态,在此过程中,裂隙亦在不断向周边发展,逐渐在局部形成溶蚀裂隙带,岩石被溶蚀裂隙切割成数个小岩块,最终形成溶洞、溶槽、溶厅等大型岩溶形态。

同时,在岩石与上覆土层的接触面,由于地下水的频繁升降活动,在接触面形成真空吸蚀环境,土层中的细颗粒逐渐被地下水经土体裂隙带离至岩石中的溶隙、溶洞、溶槽等岩溶通道中,土层中裂隙逐步扩大,最终失稳坍塌形成土洞,并随着时间的推移,土洞不断扩大,最终顶板土层失去支撑,坍塌后引发地面塌陷。

建筑地基的稳定性分析和评价学习

建筑地基的稳定性分析和评价学习

《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。

一、地基稳定性地基稳定性,一说是地基在外部荷载(包括基础重量在内的建筑物所有的荷载)作用下抵抗剪切破坏的稳定安全程度;二说是各类工程在施工和使用过程中,地基承受荷载的稳定程度;还有表达为与地基岩土体在承受建筑荷载条件下的沉降变形、深层滑动等对工程建设安全稳定的影响程度。

因此,地基稳定性是一个很模糊的概念,其分析和评价可以包含在场地稳定性分析和评价和地基分析和评价之中。

总之,稳定性评价的目的是为了避免由于建(构)筑物的兴建可能引起地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。

按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的稳定应在定性分析的基础上进行定量分析。

评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。

二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。

一般情况下,需要对如下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。

通常涉及到岩土工程方面主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。

特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。

如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。

按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,根据济南地区这一问题,通常需要分析评价的内容总结如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。

地基稳定性分析

地基稳定性分析

地基稳定性分析建筑地基的稳定性分析和评价《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。

一、地基稳定性地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。

按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。

评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。

二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。

一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。

通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。

特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。

如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。

按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。

第10章 坝基岩体稳定分析140414

第10章 坝基岩体稳定分析140414

美国加州 Monticello Dam
坝肩岩 体滑移 条件
VA
O
H
3N
1
4 E2
·分力方向以外的结构面成为其横向切割面
·在分力夹角范围内的侧向滑动面 软弱夹层
·岩体下部近水平或较平缓结构面 层面
·河谷边坡构成天然的临空面
断层裂隙面
构成 底滑面
各种地形地质条件对拱坝坝肩岩体稳定的影响
重庆云阳盖下坝水电工程 双曲拱坝右坝肩岩体
节理
滑动面
低于坝基底面与基岩接触面的抗剪强度 其抗剪强度
低于岩体中其它界面或部位的抗剪强度
可单一 其出现形式 可由两组或多组结构面组成
峨眉山龙门洞地质实习点,何鹏摄于2001年11月
⑵ 滑移破坏形式
坝基岩性软弱 岩层 产生滑动的原因 软弱夹层埋藏浅 产状 平缓 现象:在水平推力作用下,下游岩层容易向上弯曲形成浅层
1. 坝基岩体滑动破坏类型 类 型 产生部位 产 生 原 因
τ计算指标 c、φ值
① 基岩太完整坚
表层滑动
沿坝底与基
硬,其强度远超过 混凝土坝体强度
岩的接触面 ② 基岩面处理不当
或混凝土浇筑质量
不好
① 基岩体软弱
浅层滑动
浅层岩体内 ② 基岩体表部风化 的剪切破坏 破碎层没有挖除干

取自混 凝土与 基岩的 接触面
分布 情况
·横切面上起到滑移的推动作用 作用 ·滑动面上起到抵消正应力从而降低抗滑力的作用
② 潜蚀(管涌)
⑵ 坝下游河床冲刷问题 ·为滑动造成陡立临空面
冲刷的后果 ·或造成岸坡的不稳定
安全 ·对于陡倾岩层:L/d>2.5 规定 ·对于缓倾岩层:L/d>5.0

岩溶区地基岩体溶洞顶板稳定性评价

岩溶区地基岩体溶洞顶板稳定性评价
迹 象 。根 据 区 域 资 料 和本 次 钻 探 揭 露 , 区石 灰 岩 地 层 产 状 与 周 场
此 类顶板坍塌对 桥 梁 基础 的 安 全可 构 成严 重危 害, 而其 发
生的时间和空间很难预 测 。因此如 何评 价顶 板稳定 性 问题 是工 程建设 中急待解决 的问题 。若干年来 , 我们 国家在处理 基岩洞穴 的实践 中 , 顶板的安全厚 度 的评价 方面 曾作 过 一些探索 , 1 在 如I ] 戎都理 工学院的博 士生 导师黄润 秋 教授 曾对重 庆市 浅埋 地下 洞 室的安全顶板厚度 作过 研 究 , 出 了一 个能 综合 考 虑 各影 响 因 得 素的安 全顶板厚度的预测 模型 , 但主要的岩 性是砂岩 。我们 现在 研究 的是在 岩溶强 烈发 育 的灰 岩层 , 者的 地质 条 件 又有 很大 二
评 价 , 于 基 岩 洞 穴 则 不适 合 。 用 根 据 我 国 在 岩 溶 地 区工 程 建 设 中 处 理 基 岩 洞 穴 顶 板 的 实 践
边基本吻 合 , 走 向 NNE, 向 S 倾 角 1。 2 。西部 略 大 ) 为 倾 E, 2~ O( 。 此外 , 个桥址 区均有 构造裂隙发 育 , 中, 整 其 裂隙按倾 角划分有三 类: 其一 是陡倾裂隙 , 倾角多≥ 7 。此组发 育程度较 高 , 个场 地 O, 整
( )对 于石 头较多的地层 , 2 采用 两次 法 , 一次 不用桩 尖 , 第 直
接将 空管沉入底部 , 目的是将桩 位 的障碍 物挤 出, 二次直 接套 第
t桩 尖 沉 入 到 设 计 标 高 , 种 方 法 效 果 明 显有 效 。 这
( )对 于淤泥层 , 3 在拔 管 过 程中 必须控 制 拔管 速 度 , 速度 必

建筑地基的稳定性分析和评价

建筑地基的稳定性分析和评价

建筑地基的稳定性分析和评价一、地基稳定性地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。

按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。

评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。

二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。

一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。

通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。

特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。

如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。

按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。

应严格按照《建筑地基基础设计规范》(GB 50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。

2、变形验算建筑物的地基变形计算值,不应大于建筑物地基允许变形值。

在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-2011) 5.3、(JGJ 72-2004) 8.2.9~12和《建筑地基处理技术规范》(JGJ 79-2002)有关条款计算。

水利水电工程地质5坝基岩体稳定性的工程地质分析PPT课件

水利水电工程地质5坝基岩体稳定性的工程地质分析PPT课件

第一节 概述 各种坝失事百分率统计
第二节 各种坝型对工程地质的要求
混凝土重力坝
混凝土坝示意图 (a)实体重力坝;(b)空腹重力坝⑴及宽缝重力坝⑵
坝体通常承受库水的静水推力(P)、地下水扬压力(U)、 风浪压力(PL)、泥砂压力(Pt)等,而前两者是主要的。
坝体受力示意图
要求:坝基岩体有足够的强 度和一定的刚度,且最好与 坝体刚度相近,否则易在坝 锺处产生过大拉应力或坝趾 处产生过大压应力。岩体完 整性好,透水性弱;坝址处 不宜存在缓倾角软弱结构面, 否则可能导致坝体沿结构面 滑移破坏以及产生渗漏并引
转至15
坝基滑移体形状示意图
⒈楔形体 ⒉锥形体 ⒊棱柱体 ⒋板状体
返回19
二、坝基岩体滑动的边界条件分析 切割面:将岩体切割开来,构成不连续块体的结构面,
一般由陡倾角的结构面组成。
纵向切割面:走向与河流流向平行,与坝轴线垂直; 横向切割面:走向平行于坝轴线,与河流流向垂直。
临空面:滑移体与变形空间相临的面。 水平临空面:多为坝后河床地面。 陡立临空面:坝后的深潭、深槽、溶洞、冲刷坑等。 滑动岩体下方有可压缩的大破碎带、节理密集带、软弱岩 层,亦可起到临空面的作用。
电站概况:坝高68米,坝基地层为下泥盆统石英砾岩、中泥盆 统石英砂岩夹板岩和砂岩与板岩互层。岩层倾向上游偏右岸, 倾角25度~30度。板岩已泥化,厚5~15cm,在丙坝块坝踵处埋 深7~13m,在坝址附近出露于河床,f=0.24~0.30,c=0~30KPa, 未风化的板岩与板岩的f值为0.5,经计算不能满足要求。
⒈坝基岩性软硬不一,变形模 量相差悬殊。
⒉坝基或两岸岩体中有:大断 层破碎带、裂隙密集带、卸荷 裂隙带。当张裂隙发育且利息 面垂直压应力时最不利。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微风化 ≥4000 1500~2000
岩石容许承载力值(kPa)
硬质岩(σc> 30MPa)
软质岩(σc=5 ~30MPa) 极软岩(σc< 5MPa)
2~20
碎石状 1500~2000
节理间距(cm) 20~40
破碎程度 碎块状 2000~3000
>40
大块状 >4000
800~1200
1000~1500
第十章 地基岩体稳定性分析
§10.1 地基岩体中的应力分布特征 §10.2 地基岩体的承载力 §10.3 坝基岩体抗滑稳定性分析 §10.4 坝肩岩体抗滑稳定性分析
一、各向同性、均质、弹性地基岩体中的附加应力 • 1.垂直荷载情况
r
2 p cos r
0
r 0
• 2.水平荷载情况
r
2Q sin r
端面的阻力可以忽略 ③q1作用面上不存在剪力 ④对于每个破坏楔体可以
采用平均的体积力
• 将岩基分为楔体x和y
• x楔体:y楔体作用于x楔 体 的 水 平 正 应 力 σh 为 最大主应力;岩体的自 重应力σv为最小主应力。
• y楔体:σh 为最小主应 力;自重应力σv加q1为 最小主应力。
x楔体: h
• 承载力的取值为两种情况:对于微风化和强风化岩体, 承载力取极限荷载除以安全系数(安全系数一般取 3.0);对于中等风化岩体,需要根据岩体裂隙发育情 况确定,并与比例极限荷载比较,取二者中的小值。
6、嵌岩桩的承载力
(1)采用静荷载试验确定嵌岩桩极限承载力 • 嵌岩桩静荷载试验的试桩数不得少于3根,当
• 地基承载力分为极限承载力和容许承载力两种, 前者是指地基不致丧失稳定时的最大承载能力, 后者是指地基有足够的安全度,其变形量亦控制 在容许范围内时的承载力。
1、由极限平衡理论确定承载力
• 设在半无限体上作用着宽度为b的条形均布荷载q1
假设: ①破坏面由两个互相直交
的平面组成 ②q1的作用范围很长,两
1、浅基础的沉降 • 当半无限体表面上作用有一垂直集中力p时
p(1 2 )
Rk为嵌岩桩单桩竖向极限承载力标准值; Rsk为桩侧土总摩阻力标准值; Rrk为总嵌固力标准值; Rpk为总端阻力标准值。
二、地基岩体基础沉降的确定
• 地基岩体的基础沉降主要是由于岩体在上部荷 载作用下变形而引起的。对于一般的中小型工 程来说,由于荷载相对较小所引起的沉降量也 较小。但对于重型和巨型建筑物来说,则可能 产生较大的变形,尤其是当地基较软弱或破碎 时,产生的变形量会更大,沉降量也会较大。 另外,现在越来越多的高层建筑和重型建筑多 采用桩基等深基础,把上部荷载传递到下伏基 岩上由岩体来承担。在这类深基础设计时,需 要考虑由于岩体变形而引起的桩基等的沉陷量。
cos2
0
r 0
第十章 地基岩体稳定性分析
§10.1 地基岩体中的应力分布特征 §10.2 地基岩体的承载力 §10.3 坝基岩体抗滑稳定性分析 §10.4 坝肩岩体抗滑稳定性分析
一、地基岩体承载力的确定
• 地基承受荷载的能力称为地基承载力。地基岩体 的承载力就是指作为地基的岩体受荷后不会因产 生破坏而丧失稳定,其变形量亦不会超过容许值 时的承载能力。
试桩的极限荷载实测值的极差不超过平均值的 30%时,可取其平均值作为单桩极限承载力标 准值,建筑物为一级建筑物,或为柱下单桩基 础,且试桩数为3根时,应取最小值为单桩极 限承载力,当极差超过平均值的30%时,应查 明误差过大的原因,并应增加试桩数量。
(2)理论计算确定嵌岩桩极限承载力
Rk Rsk Rrk Rpk
mc 1 N
3、根据岩块抗压强度确定地基承载力
对于微风化或中分化的岩体,可根据岩块饱和单轴 抗压强度确定其承载力,经验公式如下:
fk cw r p
4、根据规范确定地基岩体承Leabharlann 力岩石承载力标准值(kPa)
硬质岩石 软质岩石
强风化 500~1000 200~500
中等风化 1500~2500 700~1200
2、由岩体强度确定极限承载力
• 荷载作用下岩体压碎并向两侧膨胀而诱发裂隙, 因此,可分为压碎区A和原岩区B,A区受到B区的 约束力ph的作用。
• 均匀、各向同性不连续岩体的极限承载力约等 于岩体的三轴抗压强度
qf
3tg
2
45o
m
2
2Cm
tg 45o
m
2
mc
1
tg
2
45o
m
2
1500~3000
400~800
600~1000
800~1200( 1000)
5、采用岩体现场载荷试验确定承载力
• 对于浅基础,岩体现场载荷试验多采用直径为30cm的 圆形刚性承压板,当岩体埋深较大时,可采用钢筋混 凝土桩,但桩周需采取措施以消除桩身与土之间的摩 擦力。在试验过程中,荷载分级施加,同时量测沉降 量s,荷载应增加到不少于设计要求的2倍。根据由试 验结果绘制的荷载与沉降关系曲线(p-s)确定比例极 限和极限荷载。p-s曲线上起始直线的终点对应的荷载 为比例极限,符合终止加荷条件的前一级荷载为极限 荷载。
0
r 0
• 3.倾斜荷载情况
r
2R cos r
0
r 0
二、层状地基岩体中的附加应力
• 由于层状岩 体为非均质、 各向异性介 质,因此外 荷所引起的 附加应力等 值线不再为 圆形,而是 各种不规则 形状
倾斜层状岩体上作用有倾斜荷载R的附加应力
r
h r
(cos2
X cos Ymsin m sin 2 ) h2 sin 2
vtg
2
45o
m
2
2Cm
tg 45o
m
2
y楔体:q1
V
htg
2
45o
m
2
2Cm
tg 45o
m
2
• q1=岩基的极限承载力qf
q gb tg 5 45o m
1
2
2
2Cm
tg
45o
m
2
1
tg
2 45o
m
2
如果x楔体表面作用有q, 基岩极限承载力qf
q f
gb
2
tg 5 45o
m
2
2Cm
tg 45o
m
2
1
tg
2 45o
m
2
qtg
4 45o
m
2
0.5gbN p Cm Nc qNq
• 承载力系数
N p tg 5 45o m 2
Nc 2tg 45o m 2 1 tg 2 45o m 2
Nq tg 4 45o m 2
相关文档
最新文档