32?土壤水分遥感监测方法进展邓辉,周清波(中国农科院资源区划所,北京A...BA)摘要该文全面地回顾了目前国内外遥感监测土壤水分的方法和研究进展,比较和评价了热惯量法、微波法、热红外法、距平植被指数法、植被缺水指数法、植被供水指数法等方法的优缺点和应用范围,并对土壤水分遥感监测方法" />

土壤水分遥感监测方法进展

土壤水分遥感监测方法进展
土壤水分遥感监测方法进展

第!"卷,

第#期中国农业资源与区划$%&’!",(%’#,))*+,*-!..*年.+月/%0123&%4567238917:0&;013&<=>%01:=>32?<=97%23&@&322729/02=,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!..*?技术方法?

土壤水分遥感监测方法进展

邓辉,周清波

(中国农科院资源区划所,北京A ...B A

)摘要该文全面地回顾了目前国内外遥感监测土壤水分的方法和研究进展,比较和评价了热惯量法、微

波法、热红外法、距平植被指数法、植被缺水指数法、植被供水指数法等方法的优缺点和应用范围,并对

土壤水分遥感监测方法的发展趋势进行了分析和展望。关键词旱情监测土壤水分热惯量法微波法植被缺水指数方法回顾收稿日期:!..#,.#,#.邓辉为硕士生周清波为研究员

一、引言

干旱(农业干旱)是指:作物生长过程中因供水不足,阻碍作物的正常生长而发生的水量供应不平衡现象,即农田土壤含水量降低到影响农作物的正常生长发育。干旱是我国农业的一大威胁,在各种自然灾

害中造成的损失列为首位。据统计,我国农业自然灾害的近+.C 是干旱造成的,每年有近"D .万6E

!耕地受旱减产,占播种面积的"’B +C ,按减产#.C !".C 的轻灾计算,每年直接经济损失达*亿!D 亿元。探讨一套客观、动态、实时的土壤水分监测方法,对于各级政府和领导及时了解旱情程度和分布,采取有效的防、抗措施,科学的指导农业生产,具有重要意义。

传统的旱情监测方法,主要是根据有限的旱情测量站点测定土壤水分含量来监测土壤水分。经典的土壤水分测量方法主要有称重法、中子水分探测法、快速烘干法、电阻法、F G <法(时域反射)等,因采样速度慢而且花费大量人力物力,范围有限。传统方法难以满足实时、大范围监测的需要。随着遥感技术的迅速发展,多时相、多光谱、高光谱遥感数据反映了大面积的地表信息,这些信息从定位、定量方面反映了土壤水分状况。

二、监测土壤水分的方法和进展

(一)热惯量法

水分有较大的热容量和热传导率使较湿的土壤具有较大的热惯量,而这一热惯量可由光学遥感监测地表温度的变化得到。热惯量法也是国内研究较多的一种方法。

国外:H 3;>%2等人[A ,!](A -D A ,A -D *)最早应用了热模型;A -D B 年热容量制图卫星(I 5JJ )发射

成功,随后具有较高分辨率的F K

法的研究。@17:=(A -D D ,A -B !,A -B "

)[#]通过系统的研究,阐述了热惯量的遥感成像原理,提出了表观热惯量的概念,从而使采用卫星提供的可见光———近红外反射率和热红外辐射温度差计算热惯量并估算出土

壤水分成为可能。N 29&32?[*]等人(A --.,A --!)提出了辐射亮度热惯量(<3?7%O 179

6;2=>>F 6=1E 3&K 2=1;7,3,即

。国内:张向前等人(A -B *)利用航空摄影数据第一次制作了国内热惯量图。隋洪智等(A --.

)等通过简化能量平衡方程,直接使用卫星资料推算出一个表观热惯量(8F K

),并以此量和土壤水分建立关系式来监测旱情;肖乾广等(A --*

)["]从土壤热性质出发,在求解热传导方程的基础上,引入“遥感土壤水分最大信息层”的概念,并以此理论建立多时相的综合土壤湿度统计模型;余涛[+]等通过改进求解土壤表

层热惯量的方法,考虑了地表显热和潜热项,在试验的基础上确定一些模型参数,从而实现了利用

(L 88/8$I <<图像定量计算热惯量@值进而反演土壤表层水分含量分布的目的;李杏朝(A --+

)[D ],陈

怀亮(!""#),在利用表观热惯量模型时,在$%&支持下,对不同类型的地理样本或者土壤质地进行分析,

消除土壤质地的影响,提高监测的精度。张可慧等(’((’)[)]构造不同深度和*+,,/,-.//的不同模型

(回归和幂指数模型)。张仁华

["]在热惯量模式的改进方面提出了一个现实的排除显热的、潜热输送干扰的热惯量模型。喻光明在阐述了渍害遥感识别的原理基础上,分析了渍害土壤的热惯量变化规律,建立渍害遥感模型,并进行了应用性试验。

热惯量模型原理:土壤热惯量是土壤的一种热特性,它是引起土壤表层温度变化的内在因素之一,和土壤含水量密切相关,同时又影响着土壤温度日较差。热惯量法主要适用于裸露的土壤或作物生长前期。热惯量可以表示为:

01!"

!#式中:0为热惯量(234’54!64!

’),!为热导率(234!64!54!),"为土壤密度(7

8349),#为比热(2784!54!)

。在实际应用中,常用表观热惯量,:%热惯量代替热惯量0

:,:%1(!4,)/$:$:1:3;<4:3=>

式中::3;<,:3=>

分别是一天最高、最低温度;,为全波段反照率。有了表观热惯量,:%后,常用线性经验公式计算土壤水分?,即

?1;",:%@A

当然也可采用幂函数、指数函数等非线性经验公式。

(二)微波遥感法

人们发现土壤的介电特性明显地依赖于土壤的水分变化,水的介电常数大约为)(

,而干土仅为9。微波遥感监测土壤水分是目前研究最多的监测土壤水分方法。微波遥感具有全天时、全天候、多极化和对植被及土壤有一定的穿透能力等特点。微波遥感监测干旱主要有被动微波法和主动微波法两种。

!B 被动微波遥感土壤湿度。’(世纪#(年代初,*,&,在亚历山大农田进行航空微波辐射飞行试验,并同步观测了(%!C D 3的土壤水分。&D E >3F 88

G 等对试验数据进行了分析,发现亮温:A 与土壤水分(重量百分比)具有较好的线性关系。+’*G =H H 建立了标准化:A 与体积百分比土壤水分之间的线性关系。

&D E 3F 88G 引入田间持水力I J (K =G H L D ;M ;D =N O

),作为土壤湿度的一个指示因子,建立亮温与I J 之间的线性关系。基于辐射传输方程的理论算法也得到发展和应用。*P

Q 7F 等基于辐射传输方程,建立了:A 于土壤水分等参数的非线性方程。理论算法将成为今后微波遥感土壤水分算法发展的主流。J E Q F L E F R O 等、

?;>8

、+S G 研究了地表粗糙度对土壤水分监测的影响。植被对土壤水分反演的影响也是不可忽视的因素,很多算法在植被密集是无法使用。?;>8、:G >8等、I

G H L G 研究了植被对土壤水分监测的影响。随着被动微波遥感土壤水分算法的进一步成熟,利用被动微波遥感对较大尺度的土壤水分进行制图的研究和试验也已经开展。5Q =7G 提出了一个基于:/TT /:T %微波数据的较实用的表层土壤水分指数。

’B 主动微波遥感监测土壤水分。大多数研究是依据统计的方法,通过试验数据的相关分析建立土壤湿度与后向散射系数之间的经验函数,而以线性关系应用最普遍。主要研究雷达参数(频率、极化方式、入射角等)与土壤表面粗糙度和土壤纹理结构的关系。因此,从雷达数据获取土壤水分信息的一个最大问

题是将土壤含水量的影响因子和其它的影响区分开来。U H ;A O 等[!(]、V

G R N F W W =等、?G =3;>>等研究了线性关系的土壤水分和雷达参数的关系。X Q A 6Q >等认为干的或饱和的土壤,不适用线性关系,而是非线性的

关系。粗糙度对微波遥感土壤水分的影响,主动微波大于被动微波。&;>Q 等[!!]、/;Q 等考虑了粗糙度的

影响进行了研究。

随着一系列携带主动微波传感器的卫星(Y /&系列、/;L ;R 6;N 、,X Y +&、:/TT 等)的发射升空,以及美国奋进号航天飞机的多次飞行试验获得大量的雷达图像及数据的应用,主动微波遥感土壤水分的研究将受到更广泛的重视。国内李杏朝(!""Z )[!’]于!""[年根据微波后向散射系数法,用\波段散射计测量土壤后向散射系数,

与同步获得的\波段、..极化的机载&,/图像一起,利用了一次用微波遥感监测土壤水分的试验,监#[第9期邓辉等:土壤水分遥感监测方法进展

测的相对误差仅为!"#。田国良等(!$$%)利用!$&’年!!月!%日在河南封丘取得的(波段机载合成孔径雷达()))图像进行麦田土壤水分监测,分成&个不同水分等级。

(三)热红外法

白天下垫面温度的空间分布能间接的放映土壤水分的分布,即下垫面温度高的,土壤含水量少;下垫

面温度低的,土壤含水量相对高。热红外法即是利用下垫面温度间接反演土壤水分。李杏朝(!$$*

)利用+,)--.波段的资料,采用密度分割法、日夜温差法等进行了旱情监测。罗秀陵等(!$$*)应用+,)--.波段亮温资料,结合地面气象、灾情等实时资料对四川省大面积旱情进行了监测。

(四)距平植被指数法

该法是从植被的角度考虑。由于植被生长状况主要和水分相关(当光照、温度条件变化不大时),水分供应量成为作物生长的关键因素,水分充足供应,植被生长良好,反之植被生长受到影响。此方法是通过多年遥感资料,计算出常年旬平均植被指数,然后由当年植被指数与常年平均值比较,一次判断当年作物生长状况,进而对作物受旱程度作出判断。

距平植被指数+/01,2定义为:

+/01,23/01,24/01,2

/01,235+((0

1,/(6))/01,2为同旬各年的归一化植被指数的平均值;6代表天数:01,2(6

)是第6天的植被指数值;/01,2为当年该旬的植被指数,也是!7天内最大的01,2值。

范天锡认为该方法需要建立比较好的能代表正常年景的植被指数集,但卫星资料的存档不够长,还有资料定标问题,要取得正常年景数据集不易。

(五)植被供水指数法

植被供水指数定义为:

,8923/:/01,2

其中:/:为植被的冠层温度,01,2为归一化植被指数。,892的物理意义为:当植被供水正常时,卫星遥感的植被指数在一定的生长期内保持在一定的范围,如果遇到干旱,作物供水不足,一方面作物的生长受到影响,卫星遥感的植被指数降低,另一方面作物冠层温度升高。当作物受旱时,为减少水分损失,叶面气孔会部分关闭,导致叶面温度的增高。同时作物生长也受到干旱的影响,导致叶面积指数减少。可以用,892来衡量。植被供水指数法仅适用于植被覆盖度高的地区。

刘丽等(!$$&,!$$$)[!.]利用+,)--资料建立植被供水植被法(,892

)监测贵州省干旱模型,确定了,892遥感图像上干旱指标和干旱面积,并与地面干旱指数确定的旱情作了比较,建立植被供水指数与地面干旱指数之间的回归方程。

(六)作物缺水指数法(;<=>?

@6@<:6

!"#$3![!I %&(%’&I %())]4%!/"I !(!I %&)(%’&I %())

%!3![!I %&*

/(%’&I %())]式中:!为干湿球常数(J @=;4!),<@G 为修正空气动力学阻力(:K 4!),

作物冠层阻力(:K 4!),"为饱和水汽压与温度关系的斜率,

为潜在蒸散时的冠层阻力(:K 4!)。田国良等(!$$")在河南省通过计算;982,并利用;982与各气象站%#%7G K 土壤水分的关系进行土壤水分分布估算。李韵珠等(!$$%)根据邯郸地区大范围观测资料,对小麦的作物干旱指数(;892)与土壤水分的关系进行了研究,并分析了;892的影响因素和在旱情监测中的实用性。申广荣等(!$$&)基于N 28技术,用遥感图像、图形、数据为一体的;982模型监测黄淮海平原旱情。在有植被覆盖的条件下,作物缺水指数法精度要高于热惯量法,但其计算复杂,一些要素依赖地面气象台站,实时性不能保证。

&.中国农业资源与区划"77.年

三、总结

遥感监测土壤水分各种方法适用范围不同:热惯量法适合监测裸地或植被生长早期;植被供水指数法适合植被覆盖度比较高的时段;微波遥感适用范围比较广,精度较高,且可以全天候使用,这是遥感监测土壤水分最有希望的方法,但其成本很高,目前尚未进入实用阶段。植被缺水指数法计算复杂,且需要地面气象台站提供参数,实时性不能保证;距平植被法需要多年累积数据集。

土壤水分遥感监测所采用的微波波段已基本确定,利用这些波段合成的各种效果较好的土壤水分遥感监测指数,为进一步提高土壤水分监测精度提高了可能性。微波遥感具有全天候、高精度等特点,是未来的土壤水分遥感监测发展方向。

土壤水分遥感监测在生产实际上的应用越来越受到重视。和其它灾害监测一样,由试验研究向实用化、产业化迈进。

土壤水分监测作为世界性的难题之一,除了理论上的一些局限外,在方法和应用上也存在一些有待深

入的地方,还有一些用单一遥感方法难以解决的问题。随着研究的不断深入,特别是“!"

”集成技术的发展,土壤水分遥感监测会达到实用要求。

参考文献

#$%&’()*,+(,-)./,0112-345$6788329%’2()(1’:-;<%3<(4-32)=2)’:-=-(3(=292)’-;8;-’%’2()(1>+2<%=

-&6+-<(’-&-)&?)@2;(),#A B #,!C $%&’()*,D (:)E765:-;<%32)-;’2%<%882)=1(;<&%’-332’-&42&9;2<2)%’2()(1=-(3(=

29F )2’&2)0<%)6G +-&H -(3"F @;,#A B I ,C (C )!D ;29-G /65:-;<%32)-;’2%<%882)=:%)-,@2-,(1’:--%;’:6G 6H -(8:J

&6+-&6,#A B B I 76$6?)3%)46G 6K 6H %3%)’(,29L %)4"9:;-’’-;65:-;%42(M ;2=

:’)-&&’:-;<%32)-;’2%<-%&F ;-(1&(23<(2&’F ;-6>???5;%)&6H -(&92+-<(’-"-)&2)=

,#A A C ,N (36!O 6P (#Q 肖乾广,陈维英,盛永伟等6用气象卫星监测土壤水分的试验研究6应用气象学报,#A A I ,Q (!

)R 余涛,田国良6热惯量法在监测土壤表层水分变化中的研究6遥感学报,#A A B ,(#

)B 李杏朝6利用遥感资料进行旱情监测的研究6卫星应用,#A A R ,I (I

)S 张可慧,刘芳圆,刘剑峰等6河北土壤水分遥感监测研究6地理学与国土研究,C O O C ,#S (!

)A 张仁华6土壤含水量的热惯量模型及其应用6科学通报,#A A #,!R (#C ):A C I !A C B

#O T 3%M J K5,

7&3%<7,U (M &()V/6?11-9’(1@-=-’%’2()9(@-;()’:-;%4%;&-)&2’2@2’J ’(&(23<(2&’F ;-6>???5;%)&H -(&92+-<(’-"-)&2)=6#A S C ,H ?W C O (I

)##"%)(??,V (;%)V",E F -’-7+,-’%36/W %)4

;29F 3’F ;%3%;-%&6+-<(’-"-)&2)=(

1?)@2;(),#A A S ,,R I #C 李杏朝6

微波遥感监测土壤水分的研究初探6遥感技术与应用,#A A Q ,!S (I ):#!S #!李纪人6旱情遥感监测方法及其进展6水文,C O O #,(I ):#Q !#B

#I 刘丽,

周颖,杨凤,宋国强6用遥感植被指数监测贵州干旱6贵州气象,#A A S ,C C (R )!"#$%&’%#(()*%#+&!#(#*()*’+#!"&,-&%

+&*)!&%)*’(&).+&)(!/%#

,012"34,56738412

97(>)&’2’F ’-(17=;29F 3’F ;-+-&(F ;9-&%)4+-=2()%3D 3%))2)=,/77",X -2Y 2)=#

O O O S #):9;<=>?<5:2&8%8-;(@-;%33;-@2-,&’:-;-<(’-&-)&2)=<-’:(41(;<()2’(;2)=&(23<(2&’F ;-%88

32-4M (’:%M ;(%4%)4%’:(<-%)42’&;-&-%;9:8;(=;-&&%’8;-&-)’;9(<8%;-&%)4@%3F -&’:-<-;2’&,&:(;’W 9(<2)=&%)4%883J 2)=

&9(8-(1<-%&F ;2)=<

-’:(4(1’:-;<%32)-;’2%,<29;(W,%@-<-’:(4,:-%’2)1;%;-4<-’:(4,%)(<%3J @-=-’%’2()2)4-Z<-’:(4,,%’-;&:(;’%=-(1@-=-’%’2()2)4-Z<-’:(4,13((4@-=-’%’2()2)4-Z<-’:(4,-’96%)4%)%3J

L -&%)41(;-9%&’’:-4-@-3(8<-)’’-)4-)9J (1;-<(’-&-)&2)=<()2’(;2)=<

-’:(41(;&(23<(2&’F ;-9()’-)’6@0A

B 7=

C ;4;(F =:’<()2’(;2)=;&(23<(2&’F ;-9()’-)’;’:-;<%32)-;’2%<-%&F ;2)=<-’:(4;<29;(W,%@-<-’:(4;,%’-;&:(;’%=-(1@-=-’%’2()2)4-Z<-’:(4;<-’:(4;-@2-,A

I 第!期邓辉等:土壤水分遥感监测方法进展

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤侵蚀评价遥感研究进展

收稿日期:2008-12-30;修订日期: 2009-04-12基金项目:中国科学院知识创新工程重大项目 (KZCX1-YW-08-03)和水利部,官厅密云水库上游水土保持遥感监测二期工程(HW-STB2004-03)资助 作者简介:张喜旺(1979),男,河南辉县人,博士生,主要从事遥感与地理信息系统在水土保持方面的应用研究。E-mail:zxiwang@https://www.360docs.net/doc/2717789582.html, * 通讯作者: E-mail:wubf@https://www.360docs.net/doc/2717789582.html, 土壤侵蚀评价遥感研究进展 张喜旺,周月敏,李晓松,袁超,闫娜娜,吴炳方* (中国科学院遥感应用研究所,北京100101) 摘要:土壤侵蚀是世界范围内最重要的土地退化问题,对全世界范围内的农作物产量,土壤结构和水质产生负面影响,因此,对侵蚀进行适当评估,了解其空间分布以及侵蚀程度,对政策的制定、治理措施的实施都具有非常重要的指导作用。以遥感在土壤侵蚀中的应用为主线,介绍国内外多种土壤侵蚀评价方法,包括定性的判断和定量的计算。认为虽然遥感因其具有大面积重复观测能力,已经渗透到各种研究方法中,但无论是定性的方法还是定量的方法,遥感往往仅作为数据进行输入,而遥感的潜力并没有得到充分的发挥,遥感多源多时相的能力并没有得到充分的应用。目的是使今后的研究更加重视遥感的空间分析和动态监测能力,以及多源多时相的特性,使遥感真正在方法论上发挥其在土壤侵蚀监测中的重要作用。 关键词:土壤侵蚀;遥感;DEM ;GIS 中图分类号:TP 79:S157 文献标识码:A 文章编号:0564-3945(2010)04-1010-08 Vol.41,No.4Aug.,2010 土壤通报 Chinese Journal of Soil Science 第41卷第4期2010年8月土壤侵蚀是发生在特定时空条件下的土体迁移过程,受到多种自然要素和人类活动的综合影响。水 蚀是世界范围内最重要的土地退化问题,已经成为全球性的公害,通过减少表土层的有机质和养分含量而降低土壤生产力[1],它通过对农作物产量、土壤结构以及水质[2,3]剧烈地影响着环境,并产生大量的经济损失,直接影响着人们的生活,通过沉积作用淤积江河、湖泊,损害基础设施,威胁人类安全。此外,侵蚀导致土壤以CO 2,CH 4的形式向大气中散射有机碳,从而影响全球变暖[4]。而全球变暖又反过来增强土壤侵蚀率[5]。因此,对侵蚀进行适当评估,了解其空间分布以及侵蚀程度,对政策的制定、治理措施的实施都具有非常重要的指导作用。自从研究土壤侵蚀一个多世纪以来[6],国内外学者进行了大量的研究,提出了各种各样不同的侵蚀评价方法,包括定性的判断[7,8]以及定量的计算[9,10]。区域尺度的土壤侵蚀评价主要的困难在于数据的可获得性以及数据的质量[11]。遥感具有规则重复观测能力,可以提供了大区域的同质数据[12,13],是进行环境和灾害动态监测的先进有效的技术手段,可以深刻地了解地表的特征及其变化。而侵蚀退化标志如地表裸露程度、地形地貌、植被覆盖度和土地利用方式的改变等是能够被遥感技术所记录和获取的,因此自20世纪70年代以来,遥感技术就被应用于土壤侵蚀调查。许多研究已经全面或部分地利用卫星遥感数据以许多不同的方式进行侵蚀评估,为方法的完善提供支 持,如光学影像对侵蚀特征[14]、植被[15]的研究,SAR 对地形[16]、 地表粗糙度[17]以及光学影像与SAR 结合对耕作方式的探测[18]等。而传统的土壤侵蚀遥感研究中主要是为了探测侵蚀特征和获取模型输入数据,遥感多源多时相的能力并没有得到发挥,空间分析和动态监测的能力并没有得到很好的应用。本文的目的是对土壤侵蚀评价中遥感的应用方法进行综述,并展望遥感在土壤侵蚀评价中发展趋势。 1 定性方法 1.1 目视判读 目视判读法(目视解译)主要是通过对遥感影像的判读,对一些主要的侵蚀控制因素进行目视解译后,根据经验对其进行综合,进而在叠加的遥感图像上直 接勾绘图斑(侵蚀范围), 标识图斑相对应的属性(侵蚀等级和类型)来实现的。目视解译是土壤侵蚀调查中基 于专家的方法中最典型的应用。这一方法利用对区域情况了解和对水土流失规律有深刻认识的专家,使用遥感影像资料,结合其它专题信息,对区域土壤侵蚀状况进行判定或判别,从而制作相应的土壤侵蚀类型图或强度等级图,其实质是对计算机储存的遥感信息和人所掌握的关于土壤侵蚀的其它知识、经验,通过人脑和电脑的结合进行推理、判断的过程[19]。我国水土保持部门于1985年使用该方法,采用M SS 影像在全国范围内进行第一次土壤侵蚀遥感调

土壤容重、孔隙度、含水率等测定方法

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=) ()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3) R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤湿度的测定方法

土壤湿度的测定方法 国内外有很多土壤水分测定方法。具体方法列举如下:称重法,时域反射法(TDR),石膏法,红外遥感法,频域反射法/频域法(FDR/FD法),滴定法,电容法,电阻法,微波法,中子法, Karl Fischer法,γ射线法和核磁共振法等。 ①烘干法 烘干法是测定土壤水分最普遍的方法,也是标准方法。具体为:从野外获取一定量的土壤,然后放到105℃的烘箱中,等待烘干。其中烘干的标准为前后两次称重恒定不变。烘干后失去的水分即为土壤的水分含量。计算公式为土壤含水量=W/M*100%,M为烘干前的土壤重量,W为土壤水分的重量,即M与烘干后土壤重量M’的差值。称重法缺点是费时费力(需8小时以上),还需要干燥箱及电源,不适合野外作业。如果采用酒精燃烧法,由于需要翻炒多次,极为不便,不适合用于细粒土壤和含有有机物的土壤,且容易掉落土粒或燃烧不均匀而带来较大误差,而且需要取土测量,对土壤有破坏性。 ②TDR(Time Domain Reflectometry)法 TDR法是上世纪80年代发展起来的一种土壤水分测定方法,中文为时域反射仪。这种方法在国外应用相当普遍,国内才刚开始引进,当各部门都相当重视。TDR是一个类似于雷达系统的系统,有较强的独立性,其结果与土壤类型、密度、温度基本无关。而且还有很重要的一点就是,TDR能在结冰下测定土壤水分,这是其他

方法无法比拟的。另外,TDR能同时监测土壤水盐含量,且前后两次测量的结果几乎没有差别。这种测定方法的精确度可见一斑。 ③欧速土壤水分传感器直接测量法 因为TDR法设备昂贵,我公司开始用比TDR更为简单的方法来测量土壤的介电常数,而且测量时间更短,在经过特定的土壤校准之后,测量精度高,而且探头的形状不受限制,可以多深度同时测量,数据采集实现较容易。

土壤侵蚀监测新方法的新技术

土壤侵蚀监测新方法的新技术 (一)中国土壤状况 土壤是地球的皮肤, 在自然力和人类活动的作用下土壤或其他地面组成物质被剥蚀、分离、搬运、沉积, 形成土壤侵蚀。土壤侵蚀不仅造成诸如土壤养分流失、土地退化等原生问题, 还带来诸如洪水泛滥、河道淤积、水体面源污染等次生环境问题, 是当今世界普遍关注的环境问题。中国是土壤侵蚀最为严重的国家之一,全国的土壤侵蚀面积高达492万km2,占国土面积的51.2%.在漫长的时间里,由于遭到人类不当经济活动的干扰破坏,致使土壤侵蚀加剧.随着人口增长、资源缺乏、能源危机、粮食不足等问题的出现,人们为了满足人类社会发展之需,对土地资源的破坏越来越严重,破坏了生态环境的平衡,制约着经济的快速发展和社会的安定团结,土壤侵蚀问题显得更为严峻. (二)土壤监测的意义 土壤侵蚀监测对土壤侵蚀发生、发展、危害及水土流失防治效益进行调查、观测和分析, 为认识水土流失现状、研究土壤侵蚀规律、制订水土流失防治规划、设计水土保持措施、评价水土保持效益和行政监督执法提供指导。 (三)土壤监测的方法及特点 自开始土壤侵蚀研究以来, 土壤侵蚀监测技术不断发展。1882 年德国土壤学家建立了微型径流观测小区, 开拓了土壤侵蚀定量监测的历史。径流观测小区的出现和迅速发展, 积累了大量的观测数据, 为土壤侵蚀预报模型的提出奠定了基础。常规土壤侵蚀监测方法主要包括调查法、径流小区法、侵蚀针法、水文法、模型估算法和遥感解译法等。常规方法野外工作量大、效率低、周期长, 不能适应现代土壤侵蚀监测高时效性、自动化、系统化的发展趋势。随着现代认识和技术水平的发展, 土壤侵蚀监测技术出现多学科的交叉结合, 监测精度也由定性到半定量、定量和精确定量的提升。先进的多元数据遥感监测、航拍技术、多孔径雷达技术、光电探测技术等开始融入土壤侵蚀监测领域。这里主要介绍现代地形测量、核素示踪、沉积泥沙反演和现代原位监测等现代土壤侵蚀监测方法

实验一:土壤水分测定

《节水灌溉试验技术》实验报告 课程名称:《节水灌溉试验技术》 实验名称:土壤水分测定方法实验类型: 学生姓名:专业:年级: 同组学生姓名: 指导教师: 实验地点:农业水土工程实验室实验日期:年月日 一实验目的和要求 目的: (1)了解土壤水分含水量的一般测量方法及田间持水量的两种测量方法。 (2)重点了解现代土壤水分测定仪器的应用,包括中子仪、TDR土壤水分测定仪、TRIME-IPH土壤水分测定仪、DIVINER2000土壤水分测定仪、张力计土壤水势测定仪。要求:对部分重点仪器进行操作使用 二、仪器的名称及主要规格 1、土钻、电子天平(1/100)、烘箱、铝盒、环刀等 2、中子仪CS830 南京产 3、TDR土壤水分测定仪美国 4、TRIME-TPH土壤水分测定仪德国产 5、张力计WM-1型 6、DIVINER2000土壤水分测定仪英国产 三、实验步骤 1、介绍测量土壤水分的一般方法和现代土壤含水率测定仪器 2、张力计(WM-1)测定土壤水势步骤 (1)安装 1)张力计探头的埋没方式:直插式、斜插式和暗埋式 2)安装张力计探头时,先在孔中注入泥浆、以保证陶土头与周围土体之间的紧密接触。 3)各连接处要保证接牢,以防漏气。 4)采用暗埋式时,调试完了之后要填土,填土要仔细,切勿将连接处拉断。 (2)调试测量 1)往水银槽内注入水银,约占水银槽容积的2/3,并调节观测板水平。 2)无水气制作:将当地的水煮沸约3分钟之后注入容器中(如医用盐水瓶)加盖密封 3)注水除气处理:注水除气是张力计调试的关键。负压计在使用前腰检查,连通管各部分应密封良好,充满无气水后管中气泡应排出干净。 (3)注意:张力计的缺点是测定范围较窄(0-0.8bar) 3、TDR法测量土壤含水量的步骤 (1)原理:TDR是根据探测器发出的电磁波在土壤中传播的速度依赖于土壤的介质特性和土壤含水量而设定的。它通过测定电磁脉冲的传播速度,求出介电常数Ka,再根据内部Ka与体积含水率?v之间的标定曲线求出体积含水率?v。 (2)仪器组成 主机:电源、电磁波发生器、内存板、显示器和操作控制板等组成。此外读数LCD显示(256×128),可灵活调整参数,自带RS232口和多工口。

实验三 土壤水分含量的测定

实验三 土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分的测定 有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据; 二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重,可作为各项 分析结果的计算基础。 本实验要求掌握烘干法和酒精燃烧法测定土壤水分的原理和方法, 能较准确地测定 出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无 水酒精、滴管、玻棒等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测 土壤水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需 要时较长。酒精燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理 在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤 有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量 之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取有盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天 平上称重(W1),并注意标好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或 称样皿中)进行称重(W2) (3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称 重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至 恒重(W3)。 3. 结果计算 以烘干土为基数计算土壤水分的百分含量(W%) 土壤水分含量= (W2- W3)/W3*100% 水分系数(x)=烘干土重/风干土重

土壤水分遥感监测方法进展

第!"卷, 第#期中国农业资源与区划$%&’!",(%’#,))*+,*-!..*年.+月/%0123&%4567238917:0&;013&<=>%01:=>32?<=97%23&@&322729/02=,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!..*?技术方法? 土壤水分遥感监测方法进展 邓辉,周清波 (中国农科院资源区划所,北京A ...B A )摘要该文全面地回顾了目前国内外遥感监测土壤水分的方法和研究进展,比较和评价了热惯量法、微 波法、热红外法、距平植被指数法、植被缺水指数法、植被供水指数法等方法的优缺点和应用范围,并对 土壤水分遥感监测方法的发展趋势进行了分析和展望。关键词旱情监测土壤水分热惯量法微波法植被缺水指数方法回顾收稿日期:!..#,.#,#.邓辉为硕士生周清波为研究员 一、引言 干旱(农业干旱)是指:作物生长过程中因供水不足,阻碍作物的正常生长而发生的水量供应不平衡现象,即农田土壤含水量降低到影响农作物的正常生长发育。干旱是我国农业的一大威胁,在各种自然灾 害中造成的损失列为首位。据统计,我国农业自然灾害的近+.C 是干旱造成的,每年有近"D .万6E !耕地受旱减产,占播种面积的"’B +C ,按减产#.C !".C 的轻灾计算,每年直接经济损失达*亿!D 亿元。探讨一套客观、动态、实时的土壤水分监测方法,对于各级政府和领导及时了解旱情程度和分布,采取有效的防、抗措施,科学的指导农业生产,具有重要意义。 传统的旱情监测方法,主要是根据有限的旱情测量站点测定土壤水分含量来监测土壤水分。经典的土壤水分测量方法主要有称重法、中子水分探测法、快速烘干法、电阻法、F G <法(时域反射)等,因采样速度慢而且花费大量人力物力,范围有限。传统方法难以满足实时、大范围监测的需要。随着遥感技术的迅速发展,多时相、多光谱、高光谱遥感数据反映了大面积的地表信息,这些信息从定位、定量方面反映了土壤水分状况。 二、监测土壤水分的方法和进展 (一)热惯量法 水分有较大的热容量和热传导率使较湿的土壤具有较大的热惯量,而这一热惯量可由光学遥感监测地表温度的变化得到。热惯量法也是国内研究较多的一种方法。 国外:H 3;>%2等人[A ,!](A -D A ,A -D *)最早应用了热模型;A -D B 年热容量制图卫星(I 5JJ )发射 成功,随后具有较高分辨率的F K >F 6=1E 3&K 2=1;7,3,即

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤侵蚀

名词解释 1土壤侵蚀:土壤或其他地面组成物质在水力、风力、冻融、重力等外营力作用下,被破坏、剥蚀、搬运和沉积的过程。 2水土流失:在水力、重力、风力等外营力作用下,水土资源和土地生产力的破坏和损失,包括土地表层侵蚀和水土损失,亦称水土损失。 3水土保持:防治水土流失,保护、改良与合理利用水土资源,维护和提高土地生产力,以利于充分发挥水土资源的生态效益、经济效益和社会效益,建立良好生态环境的事业。 4搬运作用:是指地表和近地表的岩屑和溶解质等风化物被外营力搬往他处的过程,是自然界塑造地球表面的重要作用之一。 5剥蚀作用:各种外营力作用(包括风化、流水、冰川、风、波浪等)对地表进行破坏,并把破坏后的物质搬离原地,这一过程或作用称为剥蚀作用。 6土壤侵蚀程度:是指任何一种土壤侵蚀形式在特定外营力种类作用和一定环境条件影响下,自其发生开始,截止到目前为止的发展状况。 7土壤侵蚀强度:所指的是某种土壤侵蚀形式在特定外营力种类作用和其所处环境条件不变的情况下,该种土壤侵蚀形式发生可能性的大小。 8容许土壤流失量:是指小于或等于成土速度的年土壤流失量。 9泥石流:实际上是水体和土体及土体中部分空气(极少量,可忽略不计)相互充分作用后,在沟谷内或坡地上沿坡面(含自然坡面和压力坡)运动的流体。 10混合侵蚀:指在水流冲击力和重力共同作用下形成的一种特殊侵蚀类型。 11沙尘暴:是指强风把地面大量沙尘物质吹起并卷入空中,使空气特别混浊,水平能见度小于一千米的严重风沙天气现象。 12水力侵蚀:是在降水、地表径流、地下径流的作用下,土壤、土体或其它地面组成物质被破坏、剥蚀、搬运和沉积的全部过程。它是土壤侵蚀的重要类型。

测量土壤含水量的方法汇总

测量土壤含水量的方法有哪些 土壤水分是指由地面向下至地下水面(浅水面)以上的土壤层中的水分,它能够供给 作物生产,是农业生产的必要条件,也是土壤肥力的重要组成部分。在农业生产种植中,对土壤水分进行有效的监测,有利于及时了解土壤的肥力状况,为合理施肥、科 学灌溉、加强土壤环境管理起到重要作用。 目前,用于监测土壤含水量的方法很多种,但归纳起来主要有以下几大类: (1)烘干法:又称重量测定法,即取土样放入烘箱,烘干至恒重。此时土壤水分中自由态水以蒸汽形式全部散失掉,再称重量从而获得土壤水分含量。烘干法还有红外法、酒精燃烧法和烤炉法等一些快速测定法。 (2)中子仪法:将中子源埋入待测土壤中,中子源不断发射快中子,快中子进入土壤介质与各种原子离子相碰撞,快中子损失能量,从而使其慢化。当快中子与氢原子碰 撞时,损失能量最大,更易于慢化,土壤中水分含量越高,氢原子就越多,从而慢中

子云密度就越大。中子仪测定水分就是通过测定慢中子云的密度与水分子间的函数关系来确定土壤中的水分含量。 (3)γ射线法:与中子仪类似,γ射线透射法利用放射源137Cs放射出γ线,用探头接收γ射线透过土体后的能量,与土壤水分含量换算得到。 (4)土壤水分传感器法:目前采用的传感器多种多样,有陶瓷水分传感器,电解质水分传感器、高分子传感器、压阻水分传感器、光敏水分传感器、微波法水分传感器、电容式水分传感器等等。 (5)时域反射法:即TDR(Time Domain Reflectometry)法,它是依据电磁波在土壤介质中传播时,其传导常数如速度的衰减取决于土壤的性质,特别是取决于土壤中含水量和电导率。 (6)频域反射法:即FDR(Frequency Domain Reflectometry)法,该系统是通过测量电解质常量的变化量测量土壤的水分体积含量,这些变化转变为与土壤湿度成比例的毫伏信号。

土壤水分的遥感监测

土壤水分的遥感监测 摘要:针对日益严重的全球干旱问题,本文从水分监测领域出发进行研究。从国内外各种研究方法的比较及传统方法和遥感监测方法的比较中突出遥感监测的优越性。从遥感监测的各种方法分述,对比出气各自适用的范围和优缺点。联系实际和GIS技术的发展,提出该技术的进步空间。 一、研究土壤水分监测的意义 近百年来全球变化最突出的特征就是气候的显著变暖,这种气候变化会使有些地区极端天气与气候事件如干旱、洪涝、沙尘暴等的频率与强度加强增加。中国气候变暖最明显的地区在西北、华北和东北地区,特别是西北变暖的强度高于全国平均值,使得夏季干旱化和暖冬比较突出。新世纪以来尤为明显:2000年多省干旱面积大,达4054万公顷,受灾面积6.09亿亩,成灾面积4.02亿亩。建国以来可能是最为严重的干旱。 2003年江南和华南、西南部分地区江南和华南、西南部分地区发生严重伏秋连旱,其中湖南、江西、浙江、福建、广东等省部分地区发生了伏秋冬连旱,旱情严重。 2004年我国南方遭受53年来罕见干旱,造成经济损失40多亿元,720多万人出现了饮水困难。 2005年华南南部、云南严重秋冬春连旱,云南发生近50年来少见严重初春旱。 2006年重庆旱灾达百年一遇,全市伏旱日数普遍在53天以上,12区县超过58天。直接经济损失71.55亿元,农作物受旱面积1979.34万亩,815万人饮水困难。 2007年全国22个省全国耕地受旱面积2.24亿亩,897万人、752万头牲畜发生临时性饮水困难。中央财政先后下达特大抗旱补助费2.23亿元。 2008年云南连续近三个月干旱,云南省农作物受灾面积现达1500多万亩。仅昆明山区就有近1.9万公顷农作物受旱,13多万人饮水困难。 2009年华北、黄淮等15个省市连续3个多月,华北、黄淮、西北、江淮等

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

基于遥感数据的流域土壤侵蚀强度快速估测方法_谭炳香

收稿日期:2004-07-12;修订日期:2005-01-18 基金项目:北京市自然科学基金重点项目“官厅库区土壤水分承载量及植被恢复机理研究”(6011003)。 作者简介:谭炳香(1966-),女,副研究员,研究方向为遥感在林业中的应用,现主要从事遥感和GIS 技术的森林资源监测与评估,森林参 数遥感估测等方面的研究。 基于遥感数据的流域土壤侵蚀强度快速估测方法 谭炳香1,李增元1,王彦辉2,于澎涛2,柳立兵3 (1.中国林业科学研究院资源信息研究所,北京 100091;2.中国林业科学研究院森林生态环境与保护 研究所,北京 100091;3.北京市延庆县水利局水土保持工作站,北京 102100) 摘要:以北京延庆县境内的妫水河流域为例,提出了一种基于遥感数据的土壤侵蚀强度快速估测方法。首先,利用遥感数据和植被指数模型提取流域内土地利用类型信息和植被覆盖度信息;其次,利用数字高程模型数据生成坡度图;然后,结合土壤侵蚀强度分级指标,将坡度图与土地类型图、植被覆盖度图空间叠加,判断和计算侵蚀强度等级,结果获得了流域土壤侵蚀强度等级图;最后,计算了流域的年平均侵蚀模数。结果表明,妫水河流域的土壤侵蚀以微度和轻度为主,所占面积比例为74.88%,极度和剧烈侵蚀很少,不到总面积的2%。整个流域的年侵蚀模数估计为1746.1t /km 2·a 。关 键 词:遥感;植被覆盖;土壤侵蚀;流域 中图分类号:TP79 文献标识码:A 文章编号:1004-0323(2005)02-0215-06 1 引 言 植被具有截持降雨、减缓径流、保土固土等生态功能,尤其是对控制土壤流失起着决定性的作用,植被盖度(特别是地面覆盖度)的大小直接影响着土壤流失的强弱。已有的大量对比观测和试验发现,植被防治土壤侵蚀的能力随植被覆盖度的增加而增强。在其它条件一定时,侵蚀量与植被覆盖度成反比关系〔1〕。因此,进行植被覆盖调查和监测,是预测水土流失和制定水土保持规划的最基础的工作。但是,常规的植被覆盖地面调查费时、费力、成本高,而且不利于大范围的植被监测调查。近些年来,遥感技术的快速发展和广泛应用为植被覆盖信息的提取提供了可靠的技术途径。相对于传统的地面调查,遥感方法具有耗资少、周期短、覆盖广等特点,遥感信息已成为无实测资料的广大地区植被覆盖估算的一种极其重要的信息源〔2~5〕。目前,有关植被覆盖的遥感研究主要集中在植被类型分类制图方面,而对植被覆盖度的应用研究相对不足。 应用遥感技术能够及时、快速地获取流域内的大范围区域植被覆盖和土壤侵蚀强度的空间分布状 况,为流域水土保持规划提供科学依据,加强水源涵养型植被建设,改善水源区生态环境,增强植被的水源涵养与土壤保护功能。因此,本文以北京市延庆县 的妫水河流域为例,试图提出一种基于遥感数据的土壤侵蚀强度快速估测方法,包括流域植被覆盖遥感监测、流域土壤侵蚀强度图绘制、流域年平均侵蚀模数计算等环节。 2 试验区及其数据获取 2.1 试验区概况 官厅水库是北京市仅次于密云水库的第二大水源,是首都水资源保护和水环境治理的重点地区。妫水河是官厅水库的一级流域和主要水源之一,主要分布在北京市延庆县境内,代表着华北半干旱区的水源地,具有相对丰富的前期调查研究基础,开展华北半干旱区水源涵养型植被研究较为理想。妫水河流域是官厅水库主要水源之一,位于北京延庆县境内。延庆县属延怀盆地的一部分,北、东、南三面环山,一般海拔600~800m ,西面是官厅水库。平原面积5.4万hm 2,占总面积的27.2%,山区面积14.5万hm 2,占总面积的72.8%,是华北平原到坝 第20卷 第2期2005年4月 遥 感 技 术 与 应 用 REM OT E S EN SING TEC HNOLOGY AND APPLICA TION Vol .20 No .2Apr .2005

土壤水分测定法

土壤水分测定法 依据标准:NY/T52-1987 1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 3仪器、设备 3.1土钻; 3.2土壤筛:孔径1mm; 3.3铝盒:小型的直径约40mm,高约20mm; 大型的直径约55mm,高约28mm; 3.4分析天平:感量为0.001g和0.01g; 3.5小型电热恒温烘箱; 3.6干燥器:内盛变色硅胶或无水氯化钙。 4试样的选取和制备 4.1风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 4.2新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。

5测定步骤 5.1风干土样水分的测定 取小型铝盒在105℃恒温箱中烘烤约2h ,移入干燥器内冷却至室温,称重,准确至0.001g 。用角勺将风干土样拌匀,舀取约5g ,均匀的平铺在铝盒中,盖好,称重,准确至0.001g 。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h 。取出,盖好,移入干燥器内冷却至室温(约20min ),立即称重。风干土样水分的测定应做两份平行测定。 5.2新鲜土样水分的测定 将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.01g 。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘箱中烘烤12h 。取出,盖好,移入干燥器内冷却至室温(约30min ),立即称重。新鲜土样水分的测定应做三份平行测定。 6测定结果的计算 6.1计算公式 水分(分析基),%=100m m m m 0 121?--……………………(1) 水分(干基),%=100m m m m 0 221?--……………………(2) 式中:m0——烘干空铝盒质量,g ; M1——烘干前铝盒及土样质量,g ; M2——烘干后铝盒及土样质量,g 。 6.2平行测定的结果用算术平均值表示,保留小数后1位。 6.3平行测定结果的相差,水分小于5%的风干土样不得超过0.2%,水分为5~25%的潮湿土样不得超过0.3%,水分大于15%的大粒(粒径约10mm )粘重潮湿土样

土壤容重的测定方法

土壤容重的测定方法 土壤容重是指单位容积原状土壤干土的质量,通常以克/厘米3表示;孔隙度是指单位容积土壤中孔隙所占的百分率,即土壤固体颗粒间孔隙的百分率.土壤总孔隙度包括毛管孔隙及非毛管孔隙. 土壤容重大小反映土壤结构、透气性、透水性能以及保水能力的高低,一般耕作层土壤容重1~1.3克/厘米3,土层越深则容重越大,可达1.4~1.6克/厘米3,土壤容重越小说明土壤结构、透气透水性能越好。测定土壤容重的方法很多,着重介绍环刀法: 1、仪器:环刀(容积为100厘米3)、天平(感量0.1克和0.01克)、烘箱、环刀托、削小刀、小铁铲、铝盒、钢丝锯、干燥器等。 2、操作步骤:先在田间选择挖掘土壤剖面的位置,然后挖掘土壤剖面,观察面向阳。挖出的土放在土坑两边。挖的深度一般是1米,如只测定耕作层土壤容重,则不必挖土壤剖面。 用修土刀修平土壤剖面,并记录剖面的形态特征,按剖面层次分层采样,每层重复3个。 将环刀托放在已知重量的环刀上,环刀内壁稍涂上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满样品为止。若土层坚实,可用手锄慢慢敲打,环刀压如时要平稳,用力一致。 用修土刀切开环刃周围的土样,取出已装上的环刀,细心削去环刀两端多余的土,并擦净外面的土。同时在同层采样处用铝盒采样,测定自然含水量。 把装有样品的环刀两端立即加盖,以免水分蒸发。随即称重(精确到0.01克),并记录。 将装有样品的铝盒烘干称重(精确到0.01克),测定土壤含水量。或者直接从环刀筒中取出样品测定土壤含水量。 3、结果计算:环刀容积按下式计算: V=лr2h 式中:V——环刀容积(厘米3); r——环刀内半径(厘米); h——环刀高度(厘米); л——圆周率(3.1416)。 按下式计算土壤容重: rs=g.100/v.(100+W)

相关文档
最新文档