高三数列强化训练二
高考数学模拟试题与解析(数列)-普通用卷

数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。
高三数列专题练习30道带答案(2)

〔2〕若数列满足,求的前项和.
13.已知数列是等比数列,满足,数列满足,且是等差数列.
〔I〕求数列和的通项公式;
〔II〕求数列的前n项和.
14.设数列满足,.
〔1〕求数列的通项公式;
〔2〕设,求数列的前项和.
15.数列的前项和满足,且成等差数列.
〔1〕求数列的通项公式;
〔2〕设,求数列的前项和.
考点:1、等差等比知识;2、裂项相消求和.
11.〔1〕;〔2〕.
【解析】
试题分析:〔1〕根据,令解得,进而得数列的通项公式为;〔2〕由〔1〕,进而得是首项为,公比为的等比数列,再由等比数列前项和公式可得结果.
试题解析:〔1〕,则,又,得,等差数列的公差,所以数列的通项公式为.
〔2〕,所以数列是首项为,公比为的等比数列,.
【方法点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 〔其中是各项均不为零的等差数列,c为常数〕的数列. 裂项相消法求和,常见的有相邻两项的裂项求和〔如本例〕,还有一类隔一项的裂项求和,如或.
2.〔Ⅰ〕〔Ⅱ〕
【解析】
试题分析:〔Ⅰ〕将已知条件转化为首项和公差表示,解方程组可得到基本量,从而确定数列的通项公式;〔Ⅱ〕首先化简数列得到的通项公式,结合特点采用裂项相消法求和
试题解析:〔Ⅰ〕依题意得
………2分
解得, …………4分
. ………………………6分
〔Ⅱ〕, …………………7分
……………………9分
∴ ………………………………12分
考点:数列求通项公式及数列求和
3.〔1〕;〔2〕.
【解析】
试题分析:〔1〕设数列的公比为,由,,称等差数列,求解,即可求解数列的通项公式;〔2〕由〔1〕可知,利用乘公比错位相减法,求解数列的和,再根据不等式恒成立,利用关于单调性,即可求解的取值范围.
高中数列强化练习题及讲解

高中数列强化练习题及讲解在这个阳光明媚的午后,让我们来一场数学的奇幻之旅,探索数列的奥秘。
数列,就像是一串珍珠,每一颗都闪耀着智慧的光芒。
而我们今天要玩的,就是把它们串起来,变成一串美丽的项链。
首先,让我们来点“倒装”修辞,把问题倒过来看。
比如说,数列\( a_n = n^2 \),如果我们倒过来看,就是 \( a_n = 2^n \),这是不是有点像把苹果倒过来看,变成了橙子呢?哈哈,开个小玩笑,数学可不会这么调皮。
接下来,我们来点“排比”,让数列的项排成一队,像是在排队买票。
比如,数列 \( a_n = 2n - 1 \),它的前几项就是 1, 3, 5, 7... 看,它们排得多整齐,一个接一个,像是在说:“我比前一个多2哦!”再来点“设问”,让我们自问自答。
比如,有人问:“数列 \( a_n = n \) 是等差数列吗?”我们回答:“是的,它的公差是1,所以每一项都比前一项多1,就像我们每天比昨天多活了一天。
”现在,让我们来点“夸张”,给数列加点料。
比如,数列 \( a_n = 100n \),如果我们说:“这个数列的项,每一项都比前一项多100倍!”是不是感觉这个数列的增长速度像是坐火箭一样快?最后,我们来点“反问”,让我们的数列自己说话。
比如,数列\( a_n = 1/n \),如果我们问:“这个数列的项,是不是越到后面越小?”它可能会回答:“当然,我可是越来越谦虚的。
”好了,数列的奇幻之旅就到这里。
希望这些幽默风趣的修辞手法,能让你在数学的世界里找到欢乐。
记住,数学不仅仅是冰冷的公式和数字,它也可以是充满乐趣和惊喜的冒险。
下次再见,别忘了带上你的数学魔杖,我们一起去探索更多的数学奥秘!。
高三数学 提高题专题复习数列多选题练习题含答案

高三数学 提高题专题复习数列多选题练习题含答案一、数列多选题1.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <, 所以()11111112111111n nn n a q a a q a a q aS qq q q q q-==-+<------,所以数列{}n a 是“T 数列”,故B 正确. 在C 中,因为11211(1)22(1)2n n n n n a n n n n +++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22n n n n S n n n ++=-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a 是“T 数列”,故C 正确.在D 中,因为22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222111114342143141n S n n ⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故D 错误. 故选:BC. 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.2.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk k S k +=--【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k k S k ++=--结论计算即可.【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2, 则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=,60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.3.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.4.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯①12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.5.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r +-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-.选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即p q ==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知,1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值.【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.10.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.。
2020年高考数学二轮复习第1部分重点强化专题专题2数列突破点4等差数列等比数列学案文

突破点4 等差数列、等比数列[核心知识提炼]提炼1 等差数列、等比数列的运算 (1)通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1.(2)求和公式 等差数列:S n =n a 1+a n2=na 1+n n -12d ;等比数列:S n =a 11-q n 1-q =a 1-a n q1-q(q ≠1).(3)性质 若m +n =p +q ,在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 提炼2 等差数列、等比数列的判定与证明数列{a n }是等差数列或等比数列的证明方法: (1)证明数列{a n }是等差数列的两种基本方法 ①利用定义,证明a n +1-a n (n ∈N *)为同一常数; ②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明{a n }是等比数列的两种基本方法 ①利用定义,证明a n +1a n(n ∈N *)为同一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2). 提炼3 数列中项的最值的求法(1)根据数列与函数之间的对应关系,构造相应的函数f (n )=a n ,利用求解函数最值的方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数. (2)利用数列的单调性求解,利用不等式a n +1≥a n (或a n +1≤a n )求解出n 的取值范围,从而确定数列单调性的变化,进而确定相应的最值.(3)转化为关于n 的不等式组求解,若求数列{a n }的最大项,则可解不等式组⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1;若求数列{a n }的最小项,则可解不等式组⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1,求出n 的取值范围之后,再确定取得最值的项.[高考真题回访]回访1 等差数列基本量的运算1.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172B .192C .10D .12B [∵公差为1, ∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.]2.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7 C.9D .11A [法一:∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,∴a 3=1, ∴S 5=5a 1+a 52=5a 3=5,故选A.法二:∵a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3,∴a 1+2d =1, ∴S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.]3.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C.n n +12D.n n -12A [由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2,∴S n =2n +n n -12×2=2n +n 2-n =n (n +1).]回访2 等比数列基本量的运算4.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D.18C [法一:∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12,故选C.法二:∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1), 将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C.]5.(2015·全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列, 又∵S n =126,∴21-2n1-2=126,∴n =6.]热点题型1 等差、等比数列的基本运算题型分析:以等差(比)数列为载体,考查基本量的求解,体现方程思想的应用是近几年高考命题的一个热点,题型以客观题为主,难度较小.【例1】(1)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )【导学号:04024053】A .152B .135C .80D .16(2)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C.12D .-12(1)B (2)D [(1)设等比数列{a n }的公比为q , 由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90, 所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q2=3,所以a n =3n,b n =1+log 33n=1+n ,则数列{b n }是等差数列,前15项的和为15×2+162=135,故选B.(2)由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列, 所以S 22=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12,故选D.][方法指津]在等差(比)数列问题中最基本的量是首项a 1和公差d (公比q ),在解题时往往根据已知条件建立关于这两个量的方程组,从而求出这两个量,那么其他问题也就会迎刃而解.这就是解决等差、等比数列问题的基本量的方法,这其中蕴含着方程的思想. 提醒:应用等比数列前n 项和公式时,务必注意公比q 的取值范围.[变式训练1] (1)在数列{a n }中,a 1=1,a n +1=a n +3,S n 为{a n }的前n 项和,若S n =51,则n =__________.(2)(2017·东北三省四市联考)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.(1)6 (2)30 [(1)由a 1=1,a n +1=a n +3,得a n +1-a n =3, 所以数列{a n }是首项为1,公差为3的等差数列. 由S n =n +n n -12×3=51,即(3n +17)(n -6)=0, 解得n =6或n =-173(舍).(2)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2a 1+a 1q +a 1q 2=8a 1+3a 1q ,a 1q 3=16,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以S 4=21-241-2=30.]热点题型2 等差、等比数列的基本性质题型分析:该热点常与数列中基本量的运算综合考查,熟知等差(比)数列的基本性质,可以大大提高解题效率.【例2】(1)(2016·南昌一模)若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )【导学号:04024054】A.32B.94C .1D .2(2)(2017·中原名校联考)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A .10B .20C .30D .40(1)D (2)B [(1)由题意得S 4=a 11-q 41-q =9,所以1-q 41-q =9a 1.由a 1·a 1q ·a 1q 2·a 1q 3=(a 21q 3)2=814得a 21q 3=92.由等比数列的性质知该数列前4项倒数的和为1a 1⎝ ⎛⎭⎪⎫1-1q 41-1q=q 4-1a 1q 3q -1=1a 1q 3·9a 1=9a 21q 3=2,故选D.(2)∵数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,∴11x n +1-11x n=x n +1-x n =d ,∴{x n }是等差数列,∵x 1+x 2+…+x 20=200=20x 1+x 202,∴x 1+x 20=20,又∵x 1+x 20=x 5+x 16,∴x 5+x 16=20.][方法指津]1.若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },⎩⎨⎧⎭⎬⎫S n n 仍为等差数列,其中m ,k 为常数.2.若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数,m ≠0),{a 2n },⎩⎨⎧⎭⎬⎫1a n 仍为等比数列.3.公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .4.(1)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.(2)等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d .5.若A 2n -1,B 2n -1分别为等差数列{a n },{b n }的前2n -1项的和,则a n b n =A 2n -1B 2n -1.[变式训练2](1)已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )A .16B .8 C.4D .2(2)(2017·武汉二模)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12 B .10 C .8D .2+log 35(1)A (2)B [(1)∵{a n }是等差数列,∴a 2+a 12=2a 7, ∴2a 2-a 27+2a 12=4a 7-a 27=0.又a 7≠0,∴a 7=4. 又{b n }是等比数列,∴b 3b 11=b 27=a 27=16. (2)由等比数列的性质知a 5a 6=a 4a 7=9,所以log 3a 1+log 3a 2+log 3a 3+…+log 3a 10=log 3(a 1a 2a 3…a 10) =log 3(a 5a 6)5=log 395=10,故选B.]热点题型3 等差、等比数列的证明题型分析:该热点在考查数列的通项公式,前n 项和公式的同时,考查学生的推理论证能力.【例3】 (2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.2分 解得q =-2,a 1=-2.4分 故{a n }的通项公式为a n =(-2)n. 6分(2)由(1)可得S n =a 11-q n 1-q =-23+(-1)n 2n +13.8分由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n2n +13=2S n , 10分 故S n +1,S n ,S n +2成等差数列.12分[方法指津] 判断或证明数列是否为等差或等比数列,一般是依据等差数列、等比数列的定义,或利用等差中项、等比中项进行判断.提醒:利用a 2n =a n +1·a n -1(n ≥2)来证明数列{a n }为等比数列时,要注意数列中的各项均不为0.[变式训练3] (2014·全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n -1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[解] (1)证明:由题设知a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1,2分由于a n+1≠0,所以a n+2-a n=λ. 4分(2)由题设知a1=1,a1a2=λS1-1,可得a2=λ-1. 5分由(1)知,a3=λ+1.6分令2a2=a1+a3,解得λ=4. 7分故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3. 9分{a2n}是首项为3,公差为4的等差数列,a2n=4n-1. 11分所以a n=2n-1,a n+1-a n=2,因此存在λ=4,使得数列{a n}为等差数列.12分。
《最高考》聚焦小题强化训练50练(提升版)(含详细解答)

(第 7 题) 6.已知函数 f(x)=sinx(x∈[0,π])和函数 g(x)=12tanx 的图象交于 A,B,C 三点,则△ABC 的面 积为________. 7.如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切.记圆柱 O1O2 的体积为 V1,球 O 的体积为 V2,则VV12的值是________. 8.已知函数 f(x)=mx3x++x22+,mx>,1,0≤x≤1,若函数 f(x)有且只有两个零点,则实数 m 的取值范围是 ________.
11.(本小题满分 16 分) 某农场有一块农田,如图,它的边界由圆 O 的一段圆弧 MPN(P 为此圆弧的中点)和线段 MN 构成.已知圆 O 的半径为 40 米,点 P 到 MN 的距离为 50 米.现规划在此农田上修建两个温 室大棚,大棚Ⅰ内的地块形状为矩形 ABCD,大棚Ⅱ内的地块形状为△CDP,要求 A,B 均在 线段 MN 上,C,D 均在圆弧上.设 OC 与 MN 所成的角为 θ. (1)用 θ 分别表示矩形 ABCD 和△CDP 的面积,并确定 sinθ 的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值 之比为 4∶3.求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.
小题强化训练二
一、填空题:本大题共 8 小题,每题 5 分,共 40 分. 1.已知复数 z 满足(z-2)i=1+i(i 为虚数单位),则复数 z 的共轭复数 z 在复平面内对应的点位 于第________象限. 2.设集合 A={x|y=ln(x2-3x)},B={y|y=2x,x∈R},则 A∪B=____________. 3.若 θ∈(0,π4),且 sin2θ=14,则 sin(θ-π4)=________. 4.已知一个正方体的外接球体积为 V1,其内切球体积为 V2,则VV12的值为________. 5.记等差数列{an}的前 n 项和为 Sn.已知 a1=3,且数列{ Sn }也为等差数列,则 a11=________. 6.在▱ABCD 中,∠BAD=60°,E 是 CD 上一点,且A→E=12A→B+B→C,|A→B|=λ|A→D|.若A→C·E→B=12A→D 2,则 λ=________. 7.设函数 f(x)=lnx+mx ,m∈R,若对任意 x2>x1>0,f(x2)-f(x1)<x2-x1 恒成立,则实数 m 的 取值范围是__________. 8.已知实数 x,y 满足 x2+y2=1,则(x-1y)2+(x+1y)2的最小值为________. 二、解答题:本大题共 4 小题,共 60 分.解答时应写出必要的文字说明、证明过程或演算步 骤. 9.(本小题满分 14 分) 在平面四边形 ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求 cos∠ADB 的值; (2)若 DC=2 2,求 BC 的值.
高三数列提速练习题

高三数列提速练习题在高三数学学习中,数列是一个重要的概念和内容。
为了帮助同学们提高对数列的理解和应用能力,下面将提供一些数列的练习题,帮助同学们提速。
一、选择题(每题2分,共20分)1. 设数列an的通项公式为an = 3n + 2,则该数列的首项为:A. 2B. 5C. 3D. 12. 已知数列bn的前n项和为Sn = n^2 + 2n,则数列bn的首项为:A. 1B. 0C. 2D. -13. 数列cn的通项公式为cn = 2^n + 3,则数列cn的公比为:A. 2B. 3C. 4D. 54. 若数列dn的公差为3,且d4 = 13,则数列dn的前n项和Sn为:A. 6n - 6B. 3n^2 - 3nC. 2n^2 - nD. n^2 + n5. 数列en的前n项和Sn = 2n^2 + 4n,则数列en的首项为:A. 2B. 3C. 4D. 16. 设数列fn的通项公式为fn = n^3 + n^2 + n,则数列fn的首项为:A. 3B. 6C. 5D. 17. 若数列gn满足g1 = 1,g2 = 2,且gn = 2gn-1 - gn-2,则数列gn的前5项依次为:A. 1, 2, 3, 4, 5B. 1, 2, 4, 8, 16C. 1, 2, 0, -4, -8D. 1, 2, -2, -6, -108. 若数列hn的公差为2,且h3 = -1,则数列hn的前n项和Sn为:A. n^2B. n^2 - 2C. n^2 - 3nD. n^2 - 4n9. 已知数列kn的前n项和为Sn = 2n^2 + 3n,则数列kn的公差为:A. 0B. 1C. 2D. 310. 设数列ln的通项公式为ln = 4n - 3,则数列ln的第6项为:A. 15B. 18C. 21D. 24二、填空题(每题4分,共40分)1. 对于等差数列an,若公差为3,前n项和为Sn = 2n^2 + 5n,则数列an的通项公式为_____________________。
2014高考数列考前强化训练 学生

2014高考数列考前强化训练1. 数列{}n a 满足a 1=2,*110()n n a a n N +-+=∈,则此数列的通项a n 为=2. 在等差数列{}n a 中,前15项之和15S =90,则8a =3.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于4.在等比数列{b n }中,S 4=4,S 8=20,那么S 12= .5.数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式a n =__ .6.已知数列{}n a 中,a n ≠0,a 1=21,a 1+n =nn a a 21+(n ∈N +)求a n =__ 7已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式__ 题型一 利用方程思想,求数列通项公式1已知数列{a n }是一个公差大于0的等差数列,且满足a 2a 6=55,a 2+a 7=16(1)求数列{a n }的通项公式;(2)数列{a n }和数列{b n }满足等式a n =(n ∈N *),求数列{b n }的前n 项和S n .2.已知{a n }是等差数列,a 1=3, Sn 是其前n 项和;在各项均为正数的等比数列{b n }中, b 1=1且b 2+S 2=1O, S 5 =5b 3+3a 2.(I )求数列{a n }, {b n }的通项公式; (II )设n c =n }的前n 项和为T n ,求证23<n T题型二 利用Sn 与n a 关系,求通项公式1.已知数列{}n a 中,11a =,前n 项和23n n n S a +=。
(1)求2a ,3a ;(2)求a n =__ . 2.已知数列{a n }的前n 项和为S n (0n S ≠),且*11120(2,),.2n n n a S S n n a -+=∈=N ≥ (1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)求a n ;(3)若2(1)(2)n n b n a n =-≥,求证:22223 1.n b b b +++<3 设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n=1,2,3,…. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式;(Ⅲ)设c n =n(3-b n ),求数列{c n }的前n 项和T n .4设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.题型三 已知递推关系,求通项公式1已知数列{}n a 中,a 1=3,a n =21a 1-n +1(n ∈N +)求数列{}n a 的通项公式 2数列.23,5,2}{1221n n n n a a a a a a -===++满足(1)求证:数列}{1n n a a -+是等比数 列;(2)求数列{n a }的通项公式;3.已知数列{}n a 为等差数列,且11=a ,55=a ;设数列{}n b 的前n 项和为n S ,且2n n b S =-(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)若(1,2,3,),n n n c a b n =⋅=…求数列{}n c 的前n 项和.n T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列强化训练二
一、选择题
1.(2008天津)若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )
A.12
B.13
C.14
D.15
2.(2008陕西)已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120
3.(2008广东)记等差数列{}n a 的前n 项和为n S ,若112a =
,420S =,则6S =( ) A .16 B .24 C .36
D .48 4.(2008浙江)已知{}n a 是等比数列,
41252==a a ,,则13221++++n n a a a a a a =( )A.16(n --41) B.6(n --21) C.332(n --41) D.3
32(n --21) 5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是()
A.(],1-∞-
B.()(),01,-∞+∞
C.[)3,+∞
D.(][),13,-∞-+∞
6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128
7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( )
A .2
B .3
C .4
D .8
8.(2007安徽)等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( )
A .12
B .10
C .8
D .6
9.(2007辽宁)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63 B .45 C .36 D .27
10.(2007湖南) 在等比数列{}n a (n ∈N *)中,若11a =,418
a =,则该数列的前10项
和为( )A .4122- B .2122- C .10122- D .11122
- 11.(2007湖北)已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且
7453n n A n B n +=+,则使得n n
a b 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5
12.(2007宁夏)已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( )A .3 B .2 C .1 D .2-
13.(2007四川)等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n=( )
A .9
B .10
C .11
D .12
14.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,
则a = A .4 B .2 C .-2 D .-4
15.(2005福建)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )
A .15
B .30
C .31
D .64
16.(2005江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) A .33 B. 72 C. 84 D .189
二、填空题
17.(2008四川)设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为______.
18.(2008重庆)设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .
19.(2007全国I) 等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .
20.(2007江西)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= .
,,a b c ,,c a b
21.(2007北京)若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.
22.(2006湖南)数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .
三、解答题
23.(2008四川卷). 设数列{}n a 的前n 项和为n S ,已知()21n
n n ba b S -=- (Ⅰ)证明:当2b =时,{}
12n n a n --⋅是等比数列;(Ⅱ)求{}n a 的通项公式
24.(2008江西卷)数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.
(1)求,n n a b ;(2)求证
1211134
n S S S +++<.
25..(2008湖北).已知数列{}n a 和{}n b 满足: 1a λ=,124,(1)(321),3
n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论; (Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.
26.(2005北京)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++的值.
27.(2005福建)已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.。