2017高考试题分类汇编-数列

合集下载

湖北省各地2017届高三最新考试数学理试题分类汇编:数列 含答案 精品

湖北省各地2017届高三最新考试数学理试题分类汇编:数列 含答案 精品

湖北省各地2017届高三最新考试数学理试题分类汇编数列2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)设数列{}n a 满足122,6a a ==,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则122017201720172017a a a ⎡⎤+++=⎢⎥⎣⎦. 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,则(Ⅰ)7S =__________; (Ⅱ)若2017a m =,则2015S =__________.(用m 表示) 3、(荆州市五县市区2017届高三上学期期末)已知数列{}n a 的前n 项和为n S ,且满足41n n S a =+*()n ∈N ,设3log ||n n b a =,则数列{}n b 的通项公式为________.4、(襄阳市2017届高三1月调研)在等差数列{}n a 中,已知123249,21a a a a a ++==,数列{}n b 满足()12121211,2n n n n n b b b n N S b b b a a a *+++=-∈=+++,若2n S >,则n的最小值为A. 5B. 4C. 3D. 25、(襄阳市优质高中2017届高三1月联考)已知121,,,9a a --成等差数列,1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8 B. 8- C. 8± D.98±6、(孝感市七校教学联盟2017届高三上学期期末)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .7、(湖北省部分重点中学2017届高三上学期第二次联考)在等差数列{}n a 中,36954a a a ++=,设数列{}n a 的前n 项和为n S ,则11S =A. 18B. 99C. 198D. 2978、(荆州中学2017届高三1月质量检测)已知数列{}n a 为等差数列,满足32015OA a OB a OC =+uu r uur uu u r,其中,,A B C 在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2017S 的值为( ) A.20172 B. 2017 C. 2016 D. 201529、(荆州中学2017届高三1月质量检测)对于数列{}n a ,定义na a a Hn nn 12122-+++=为{}n a 的“优值”.现在已知某数列{}n a 的“优值”12+=n Hn ,记数列{}n a kn -的前n 项和为n S ,若6n S S ≤对任意的正整数n 恒成立,则实数k 的取值范围是二、解答题1、(黄冈市2017届高三上学期期末) 已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭,n为正整数.(1)令2n n n b a =,求证:数列{}n b 为等差数列,并求出数列{}n a 的通项公式; (2)令121,n n n n n c a T c c c n+==+++,求n T .2、(荆门市2017届高三元月调考)已知数列{}n a 的前n 项和为n S ,11=a ,当2n ≥时,2)1(2-+=n n a n S .(Ⅰ)求2a ,3a 和通项n a ;(Ⅱ)设数列{}n b 满足12-⋅=n n n a b ,求{}n b 的前n 项和n T .3、(荆州市五县市区2017届高三上学期期末)已知等差数列{}n a 的前n 项和为n S ,且623518,3n n S S a a =+=,数列{}n b 满足124n S n b b b =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)令2log n n c b =,且数列11n n c c +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求2016T .4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知函数()x f x a =的图象过点1(1,)2,且点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,若数列{}n b 的前n 项和为n S ,求证5n S <.5、(武汉市2017届高三毕业生二月调研考) 已知数列{}n a 的前n 项和为n S ,0n a >,且满足()22441,.n n a S n n N *+=++∈(1)求1a 及通项公式n a ;(2)若()1nn n b a =-,求数列{}n b 的前n 项和n T .6、(武汉市武昌区2017届高三1月调研)设等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤ .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:49n T ≤.7、(襄阳市2017届高三1月调研)设各项均为正数的等比数列{}n a 中,132464,72.a a a a =+= (1)求数列{}n a 的通项公式; (2))设21log n nb n a =,n S 是数列{}n b 的前n 项和,不等式()log 2n a S a >-对任意正整数n 恒成立,求实数a 的取值范围.8、(孝感市七校教学联盟2017届高三上学期期末)已知数列{n a }的前n 项和为n s ,且1a =2,n +1n a =2(n+1)n a(1)记=nn a b n,求数列{n b }的通项公式; (2)求通项n a 及前n 项和n s .9、(湖北省部分重点中学2017届高三上学期第二次联考)已知等差数列{}n a 满足()()()()()1223121.n n a a a a a a n n n N *+++++++=+∈(1)求数列{}n a 的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S .10、(荆州中学2017届高三1月质量检测)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .参考答案一、选择、填空题1、20162、(Ⅰ)33 (Ⅱ)1m -3、n b n =-4、B5、A6、357、C 8、A 9、167[,]73二、解答题 1、解:(I )在中,令n=1,可得,即当时,,.又数列是首项和公差均为1的等差数列.于是.……6分(II)由(I )得,所以由①-②得……12分2、(I)11=a ,当2n =时,22222(1)32S a a =+=-,则24a =,当3n =时,24)41(22333-=++=a a S ,则63=a ,………………2分 当2n ≥时,2)1(2-+=n n a n S ,∴当3n ≥时,2211-=--n n na S , ∴当3n ≥时,n n n n n a na a n S S 2)1()(211=-+=---, 即3n ≥时,1)1(-=-n n na a n ,所以11-=-n an a n n , …………………4分 因为22323==a a ,111=a ,所以11n n a a n n -==-…32232a a===,因此,当2n ≥时,n a n 2=,故1,(1),2,(2)n n a n n =⎧=⎨⎩≥. ……………6分(Ⅱ)由(I)可知,1,(1),2,(2)n nn b n n =⎧=⎨⋅⎩≥,所以当1=n 时,11==b T n ,…………8分 当2n ≥时,12n T b b =++…2312232n b +=+⨯+⨯+…2n n +⋅, 则34222232n T =+⨯+⨯+…1(1)22n n n n ++-⋅+⋅, 作差得:3418(22n T =--++…112)2(1)21n n n n n ++++⋅=-⋅+ 故12)1(1+⋅-=+n n n T ,)(+∈N n . ……………………………………………………12分3、解:(Ⅰ)设数列{}n a 的公差为d ,则[]11116155(2)18(1)(31)3(1)(2)a d a d a n d a n d +=++⎧⎪⎨+-=+-⎪⎩由(1)得12590a d -+=, ·················· 2分 由(2)得1a d =,联立得13a d ==, ············· 3分 所以3n a n =. ························· 4分易知164b =, ························ 5分 当2n ≥时11214n S n b b b --=,又124n S n b b b =,两式相除得64(2)n n b n =≥, ················· 7分 164b =满足上式,所以64n n b =. ··············· 8分 (Ⅱ)2log 646n n c n ==,111111()36(1)361n n c c n n n n +==-++, 10分11(1)361n T n =-+, ····················· 11分 因此2016562017T =. ····················· 12分 4、【解析】(Ⅰ)∵函数()x f x a =的图象过点1(1,)2, ∴11,()()22x a f x ==………………………………………………2分又点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上从而2112n n a n -=,即212n n n a -=……………………………………6分(Ⅱ)证明:由22(1)21222n n n n n n n b ++=-= 得23521222n n n S +=+++………………………………8分 则231135212122222n n n n n S +-+=++++ 两式相减得, 23113111212()222222n n n n S ++=++++- ∴2552n nn S +=-…………………………………………11分∴5n S <……………………………………………………12分5、6、解:(Ⅰ)由19a =,2a 为整数可知,等差数列{}n a 的公差d 为整数, 由5n S S ≤,知560,0a a ≥≤, 于是940d +≥ ,950d +≤,d 为整数,2d ∴=-.故{}n a 的通项公式为112n a n =-…………6分 (Ⅱ)由(Ⅰ),得()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, 1111111111......27957921122929n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,令192n b n =-,由函数()192f x x=-的图象关于点()4.5,0对称及其单调性,知12340b b b b <<<<,567...0b b b <<<<,41n b b ∴≤=.1141299n T ⎛⎫∴≤-= ⎪⎝⎭………12分7、(Ⅰ)解:设数列{a n }的公比为q ,则错误!未找到引用源。

2017年高考 数列

2017年高考 数列

2017年高考数列一、单选题1、(2017•新课标Ⅰ卷)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A、1B、2C、4D、82、(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件3、(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A、1盏 B、3盏 C、5盏 D、9盏4、(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2, a3, a6成等比数列,则{a n}前6项的和为()A、﹣24B、﹣3C、3D、85、(2017•新课标Ⅰ卷)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20, 21,再接下来的三项是20, 21, 22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A、440B、330C、220D、110二、填空题1、(2017•新课标Ⅲ)设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=________2、(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n, a3=3,S4=10,则=________.3、(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3= ,S6= ,则a8=________.(2017•北京卷)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=________.4、三、解答题1、(2017•山东)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2)…P n+1(x n+1, n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1, x=x n+1所围成的区域的面积T n.2、(2017·天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1, S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).3、(2017•北京卷)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1, x2,…,x s}表示x1, x2,…,x s这s个数中最大的数.(13分)(1)若a n=n,b n=2n﹣1,求c1, c2, c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m, c m+1, c m+2,…是等差数列.4、(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.1(Ⅰ)证明:等差数列{a n}是“P(3)数列”;(Ⅱ)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.一、单选题1、C考点等差数列的通项公式,等差数列的前n项和解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.2、C考点必要条件、充分条件与充要条件的判断,等差数列的前n项和解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,3、B考点等比数列的前n项和解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381= =127a,解得a=3,则这个塔顶层有3盏灯,4、A考点等差数列的通项公式,等差数列的前n项和,等比数列解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为= =﹣24.5、A考点数列的求和解:设该数列为{a n},设b n= +…+ =2n﹣1,(n∈N+),则= a i,由题意可设数列{a n}的前N项和为S N数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+ (2)﹣1=2n﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n﹣n ﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,… ,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n= ,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n= ﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=2,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=17,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.二、填空题1、-8考点等比数列的通项公式解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.2、考点等差数列的前n项和,数列的求和解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n= ,= ,则=2[1﹣+ +…+ ]=2(1﹣)= .故答案为:.3、32考点等比数列的通项公式,等比数列的前n项和解:设等比数列{a n}的公比为q≠1,∵S3= ,S6= ,∴= ,= ,解得a1= ,q=2.则a8= =32.故答案为:32.4、1考点等差数列与等比数列的综合解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.三、解答题1、解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,即梯形P n P n+1Q n+1Q n的面积为b n,则b n= =(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n= +(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1= + ﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n= .考点等比数列的通项公式,等比数列的前n项和(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.2、解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(Ⅱ)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1= 4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1= =﹣(3n﹣2)4n+1﹣8得T n= .所以,数列{a2n b2n﹣1}的前n项和为.考点数列的求和,数列递推式,等差数列与等比数列的综合(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.3、(1)解:a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n+1﹣c n=﹣1对∀n∈N*均成立,∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d1>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n+1﹣c n=d2﹣a1,∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此,当n≥s时,c n=b n﹣a n n,此时= =﹣a n+ ,=﹣d2n+(d1﹣a1+d2)+ ,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[ +1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[ +1]+B>A• +B=M,此时命题成立;若C<0,取m=[ ]+1,当n≥m时,≥An+B+ ≥Am+B+C>A• +B+C ≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.考点数列的应用,等差关系的确定(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1对∀n∈N*均成立;(2.)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.4、解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.考点等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.。

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列)考点1 等差数列1.(2017·全国卷Ⅰ理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 CA .1B .2C .4D .82.(2017·全国卷Ⅱ理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 21n n + 3.(2017·浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是 “465+2S S S >”的 CA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考点2等比数列1.(2017·全国卷Ⅲ理科)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =____.8-2.(2017·江苏卷)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 32 3.(2017·全国卷Ⅱ理科)我国古代数学名著《算法统宗》中有如下问题:“远 望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯 BA .1盏B .3盏C .5盏D .9盏 考法3 等差数列与等比数列综合1.(2017·全国卷Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为 AA .24-B .3-C .3D .82.(2017·北京理科)若等差数列{}n a 和等比数列{}n b 满足11a b ==-,44a b =8=,则22a b =____. 1 3.(2017·全国卷Ⅰ文科)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (Ⅰ)求{}n a 的通项公式;(2)n n a =-(Ⅱ)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.4.(2017·全国卷Ⅱ文科)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的 前n 项和为n T .11a =-,11b =,222a b +=.(Ⅰ)若335a b +=,求{}n b 的通项公式; 12n n b -= (Ⅱ)若321T =,求3S . 321S =或36S =-.5.(2017·北京文科)已知等差数列{}n a 和等比数列{}n b 满足111a b ==,24a a +10=,245b b a ⋅=.(Ⅰ)求{}n a 的通项公式;21n a n =- , (Ⅱ)求和:13521n b b b b -++++.312n T -=.6.(2017·天津理科)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 1328433n n n T +-=⨯+ 7.(2017·天津文科)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 2(34)216n n T n +=-⨯+8.(2017·山东理科)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=.(Ⅰ)求数列{}n x 的通项公式; 12n n x -=(Ⅱ)如图,在在平面直角坐标xOy 中,依次连接点11(,1)P x ,22(,1)P x ,,11(,1)n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域面积n T .1211222n n n T --=⨯+9.(2017·山东文科)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(Ⅰ)求数列{}n a 通项公式; 2n n a =(Ⅱ){}n b 为各项非零的等差数列,其前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 15(25)()2n n T n =-+⨯考法4 一般数列1.(2017·全国卷Ⅲ文科)设数列{}n a 满足123(21)2n a a n a n +++-=.(Ⅰ)求{}n a 的通项公式;221n a n =- (Ⅱ)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 221n n S n =+。

全国卷高考数学真题数列

全国卷高考数学真题数列

高考数学——数列17年全国I卷17、设为等比数列的前项和,已知,(1)求的通项公式(2)求,并判断是否成等差数列17年全国II卷17题、已知等差数列的前n项和为,等比数列的前n项和为,(1)若,求的通项公式(2)若求17年全国III卷17题、设数列满足(1)求的通项公式(2)求数列的前n项和16年全国I卷17题、已知是公差3为的等差数列,数列满足,(1) 求的通项公式(2) 求数列的前n项和16年全国II卷17题、等差数列中,(1) 求的通项公式(2设,求数列的前10项和,其中表示不超过x的最大整数,如16年全国III卷17题、已知各项都为正数的数列满足(1)求(2) 求的通项公式15年全国I卷7题、已知是公差为1的等差数列,为的前n项和,若,则1215年全国I卷13题、在数列中,为的前n项和.若()15年全国II卷5题、设为等差数列的前n项和,若,则1115年全国II卷9题、已知等比数列满足则14年全国I卷17题、已知是递增的等差数列,是方程的根(1) 求的通项公式(2) 求数列的前n项和14年全国II卷5题、等差数列的公差为2,若成等差数列,则的前n项和14年全国II卷16题、数列满足13年全国I卷6题、设首项为1,公比为的等比数列的前n项和,则13年全国I卷17题、已知等差数列的前n项和满足(1) 求的通项公式(2) 求数列的前n项和13年全国II卷17题、已知等差数列的公差不为零,且成等比数列(1) 求的通项公式(2)求欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

-2017年新课标全国卷2理科数学试题分类汇编(数列)

-2017年新课标全国卷2理科数学试题分类汇编(数列)

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编9.数列一、选择题 (2017·3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 (2015·4)已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .84(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-(2012·5)已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. -5D. -7二、填空题(2017·15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS==∑ .(2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________. (2013·16)等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为____. (2012·16)数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 三、解答题(2016·17)(满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28. 记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1 000项和.(2014·17)已知数列{a n }满足a 1 =1,a n +1 =3 a n +1. (Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}nb 的前n 项和.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编9.数列(逐题解析版)一、选择题(2017·3)B 【解析】一座7层塔共挂了381盏灯,即7381S =;相邻两层中的下一层灯数是上一层灯数的2倍,即2q =,塔的顶层为1a ;由等比前n 项和()()1111n n a q S q q-=≠-可知:()171238112n a S -==-,解得13a =.(2015·4)B 【解析】:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B. (2013·3)【答案:C 】解析:由S 3=a 2+10a 1,得,a 1+a 2+a 3=a 2+10a 1即,a 3=9a 1,亦即a 1q 2=9a 1,解得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19.(2012·5).【答案:D 】解析:472∵a a +=,56478a a a a ==-,4742a a ∴==-,或4724a a =-=,,14710∵,,,a a a a 成等比数列,1107a a ∴+=-.二、填空题 (2017·15)2,1nn N n *∈+【解析】∵ 410S =,2314a a a a +=+ ,∴ 235a a +=,∵ 33a =,∴ 22a = ∴ n a n =,∵ ()12n n n a a S += ∴ ()21n S n n =+ ∴ ()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭∴ 11122111ni nn S n n =⎛⎫=-=⎪++⎝⎭∑, ∴ 112,1ni nnn N Sn *==∈+∑ (2015·16)1n-【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1n S n =-. (2013·16)-49【解析】设数列{a n }的首项为a 1,公差为d ,则S 10=1109102a d ⨯+=10a 1+45d =0①,S 15=11514152a d ⨯+=15a 1+105d =25②,联立①②,得a 1=-3,23d =,所以S n 2(1)211032333n n n n n -=-+⨯=-. 令f (n )=nS n ,则32110()33f n n n =-,220()3f n n n '=-. 令f ′(n )=0,得n=0或203n =. 当203n >时,f ′(n )>0,200<<3n 时,f ′(n )<0,所以当203n =时,f (n )取最小值,而n ∈N+,则f (6)=-48,f (7)=-49,所以当n =7时,f (n )取最小值-49.(2012·16)1830【解析】由1(1)21n n n a a n ++-=-得2212124341①②k k k ka a k a a k -+-=-⎧⎪⎨+=-⎪⎩L L ,由②-①得,21212k k a a +-+=③由①得,2143656059()()()()奇偶S S a a a a a a a a -=-+-+-++-L (1117)30159********+⨯=++++==L . 由③得,3175119()()()奇S a a a a a a =++++++5957()21530a a ++=⨯=L ,所以60()217702301830奇奇奇偶偶S S S S S S =+=-+=+⨯=. 三、解答题(2016·17).(满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28. 记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1 000项和.(2016·17)解析:⑴设数列{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=.∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===, [][]101101lg lg1012b a ===.⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.(2014·17).解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+,又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=⋅,即312n n a -=.(Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=≤=∈-N*,∴21211()11111131331[1()]133323213nn n n a a a -++⋅⋅⋅+≤+++⋅⋅⋅+==-<- 故:1211132n a a a ++⋅⋅⋅+<(2011·17)解析:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =. 由条件可知a >0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为13n n a =.(Ⅱ )31323(1)log log log =(12)2n n n n b a a a n +=+++-+++=-, 故12112()(1)1n b n n n n =-=--++,121111111122((1)()())22311n nb b b n n n +++=--+-++-=-++, 所以数列1{}n b 的前n 项和为21nn -+.。

2017-2019年高考真题数学(理)分项汇编_专题12 数列

2017-2019年高考真题数学(理)分项汇编_专题12 数列

专题12数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12- B .10- C .10D .12【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d ,的关系,从而求得结果.5.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230l n a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥6.【2017年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C . 【秒杀解】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C .【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.7.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 8.【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏D .9盏【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.9.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.11.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=___________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.12.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.13.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________. 【答案】 0,10-. 【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.14.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.15.【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.16.【2018年高考北京卷理数】设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为___________.【答案】63n a n =-【解析】设等差数列的公差为d ,()133343663616 3.n a d d d a n n =∴+++=∴=∴=+-=-,,, 【名师点睛】先根据条件列出关于公差的方程,求出公差后,代入等差数列通项公式即可.在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.17.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.18.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【答案】21nn + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩,解得111a d =⎧⎨=⎩, 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knSn n n n ==-+-++-=-=+++∑. 【名师点睛】等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.19.【2017年高考全国III 卷理数】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 =___________.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.20.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.21.【2017年高考北京卷理数】若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________. 【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法. 22.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式. 【答案】(1)见解析;(2)1122n n a n =+-,1122n nb n =-+. 【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.23.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(1) 1,3,5,6(答案不唯一);(2)见解析;(3)见解析. 【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤. 所以00m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中. 又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件.所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.24.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(1)31n a n =+;32nn b =⨯(2)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(2)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.25.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.26.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.27.【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.28.【2018年高考全国III 卷理数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.29.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1)75[,]32;(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. (1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.31.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N ,(i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【答案】(1)12n n a -=,n b n =;(2)(i )122n n T n +=--;(ii )见解析.【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d +=从而11,1,b d ==故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑. 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.32.【2017年高考天津卷理数】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -=①. 由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(14)324343434(31)44(314n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 33.【2017年高考山东卷理数】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(1)12n n x -=;(2)(21)21.2n n n T -⨯+=【解析】(1)设数列{}n x 的公比为q ,由已知0q >.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过123,,,P P P …,1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q …,1n Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++…+n b=101325272-⨯+⨯+⨯+…+32(21)2(21)2n n n n ---⨯++⨯①,又0122325272n T =⨯+⨯+⨯+…+21(21)2(21)2n n n n ---⨯++⨯②,①-②得121132(222)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. 34.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k nnnk n ka aa a aa --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可. 35.【2017年高考北京卷理数】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(1)详见解析;(2)详见解析. 【解析】(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-.所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当n m ≥时,nc M n>. 【名师点睛】近几年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对新的信息的理解和接受能力,本题考查数列的有关知识及归纳法证明,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二问难度较大,适合选拔优秀学生. 36.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1−x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.。

2017高考试题分类汇编-数列

2017高考试题分类汇编-数列

数列1(2017山东文)(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .2(2017新课标Ⅰ文数)(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。

3((2017新课标Ⅲ文数)12分)设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.4(2017浙江)(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)().证明:当时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤; (Ⅲ)≤x n≤. . n N *∈n N *∈12n n x x +112n -212n -112()2n n n n x x x x n *++-≤∈N5(2017北京理)(本小题13分)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅, 其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 6(2017新课标Ⅱ文)(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .7(2017天津文)(本小题满分13分)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 8(2017山东理)(本小题满分12分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,x =x i (x {x n })所围成的区域的面积n T .9(2017天津理)(本小题满分13分)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是 .网首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 10(2017北京文)(本小题13分)已知等差数列和等比数列满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求的通项公式; (Ⅱ)求和:.11(2017新课标Ⅲ理数)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .812(2017新课标Ⅲ理数)设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 13(2017新课标Ⅱ理)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏B .3盏C .5盏D .9盏14(2017新课标Ⅱ理)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS==∑____________.15(2017新课标Ⅰ理数)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,{}n a {}n b {}n a 13521n b b b b -++++则{}n a 的公差为 A .1B .2C .4D .816(2017新课标Ⅰ理数)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .11017(2017江苏)等比数列的各项均为实数,其前项和为,已知,则= ▲ .18(2017江苏)(本小题满分16分)对于给定的正整数,若数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列.19(2017北京理)若等差数列和等比数列满足a 1=b 1=–1,a 4=b 4=8,则=_______.{}n a n n S 3676344S S ==,8a k {}n a 1111n k n k n n n k n ka a a a a a --+-++-++++++++2n ka =()n n k >{}n a ()P k {}n a (3)P {}n a (2)P (3)P {}n a {}n a {}n b 22a b。

湖北省各地2017届高三最新考试数学理试题分类汇编-数列

湖北省各地2017届高三最新考试数学理试题分类汇编-数列

湖北省各地2017届高三最新考试数学理试题分类汇编数列2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)设数列{}n a 满足122,6a a ==,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则122017201720172017a a a ⎡⎤+++=⎢⎥⎣⎦L . 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8L ,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,则(Ⅰ)7S =__________; (Ⅱ)若2017a m =,则2015S =__________.(用m 表示) 3、(荆州市五县市区2017届高三上学期期末)已知数列{}n a 的前n 项和为n S ,且满足41n n S a =+*()n ∈N ,设3log ||n n b a =,则数列{}n b 的通项公式为________.4、(襄阳市2017届高三1月调研)在等差数列{}n a 中,已知123249,21a a a a a ++==,数列{}n b 满足()12121211,2n n n n n b b b n N S b b b a a a *+++=-∈=+++L L ,若2n S >,则n 的最小值为A. 5B. 4C. 3D. 25、(襄阳市优质高中2017届高三1月联考)已知121,,,9a a --成等差数列,1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8 B. 8- C. 8± D.98±6、(孝感市七校教学联盟2017届高三上学期期末)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .7、(湖北省部分重点中学2017届高三上学期第二次联考)在等差数列{}n a 中,36954a a a ++=,设数列{}n a 的前n 项和为n S ,则11S =A. 18B. 99C. 198D. 2978、(荆州中学2017届高三1月质量检测)已知数列{}n a 为等差数列,满足32015OA a OB a OC =+u u r u u r u u u r,其中,,A B C 在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2017S 的值为( ) A.20172B. 2017C. 2016D. 201529、(荆州中学2017届高三1月质量检测)对于数列{}n a ,定义na a a Hn nn 12122-+++=Λ为{}n a 的“优值”.现在已知某数列{}n a 的“优值”12+=n Hn ,记数列{}n a kn -的前n 项和为n S ,若6n S S ≤对任意的正整数n 恒成立,则实数k 的取值范围是二、解答题1、(黄冈市2017届高三上学期期末) 已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭,n为正整数.(1)令2nn n b a =,求证:数列{}n b 为等差数列,并求出数列{}n a 的通项公式;(2)令121,n n n n n c a T c c c n+==+++L ,求n T .2、(荆门市2017届高三元月调考)已知数列{}n a 的前n 项和为n S ,11=a ,当2n ≥时,2)1(2-+=n n a n S .(Ⅰ)求2a ,3a 和通项n a ;(Ⅱ)设数列{}n b 满足12-⋅=n n n a b ,求{}n b 的前n 项和n T .3、(荆州市五县市区2017届高三上学期期末)已知等差数列{}n a 的前n 项和为n S ,且623518,3n n S S a a =+=,数列{}n b 满足124n Sn b b b =gg L g . (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)令2log n n c b =,且数列11n n c c +⎧⎫⎨⎬⎩⎭g 的前n 项和为n T ,求2016T .4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知函数()x f x a =的图象过点1(1,)2,且点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,若数列{}n b 的前n 项和为n S ,求证5n S <.5、(武汉市2017届高三毕业生二月调研考) 已知数列{}n a 的前n 项和为n S ,0n a >,且满足()22441,.n n a S n n N *+=++∈(1)求1a 及通项公式n a ;(2)若()1nn n b a =-,求数列{}n b 的前n 项和n T .6、(武汉市武昌区2017届高三1月调研)设等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤ .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:49nT ≤.7、(襄阳市2017届高三1月调研)设各项均为正数的等比数列{}n a 中,132464,72.a a a a =+=(1)求数列{}n a 的通项公式; (2))设21log n nb n a =,n S 是数列{}n b 的前n 项和,不等式()log 2n a S a >-对任意正整数n 恒成立,求实数a 的取值范围.8、(孝感市七校教学联盟2017届高三上学期期末)已知数列{n a }的前n 项和为n s ,且1a =2,n +1n a =2(n+1)n a(1)记=nn a b n,求数列{n b }的通项公式; (2)求通项n a 及前n 项和n s .9、(湖北省部分重点中学2017届高三上学期第二次联考)已知等差数列{}n a 满足()()()()()1223121.n n a a a a a a n n n N *+++++++=+∈L(1)求数列{}n a 的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S .10、(荆州中学2017届高三1月质量检测)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .参考答案一、选择、填空题1、20162、(Ⅰ)33 (Ⅱ)1m -3、n b n =-4、B5、A6、35 7、C 8、A 9、167[,]73二、解答题1、解:(I)在中,令n=1,可得,即当时,,.又数列是首项和公差均为1的等差数列.于是.……6分(II)由(I)得,所以由①-②得……12分2、(I)11=a ,当2n =时,22222(1)32S a a =+=-,则24a =,当3n =时,24)41(22333-=++=a a S ,则63=a ,………………2分 Θ当2n ≥时,2)1(2-+=n n a n S ,∴当3n ≥时,2211-=--n n na S , ∴当3n ≥时,n n n n n a na a n S S 2)1()(211=-+=---, 即3n ≥时,1)1(-=-n n na a n ,所以11-=-n a n a n n , …………………4分 因为22323==a a ,111=a ,所以11n n a a n n -==-…32232a a ===,因此,当2n ≥时,n a n 2=,故1,(1),2,(2)n n a n n =⎧=⎨⎩≥. ……………6分(Ⅱ)由(I)可知,1,(1),2,(2)n nn b n n =⎧=⎨⋅⎩≥,所以当1=n 时,11==b T n ,…………8分当2n ≥时,12n T b b =++…2312232n b +=+⨯+⨯+…2n n +⋅, 则34222232n T =+⨯+⨯+…1(1)22n n n n ++-⋅+⋅, 作差得:3418(22n T =--++…112)2(1)21n n n n n ++++⋅=-⋅+ 故12)1(1+⋅-=+n n n T ,)(+∈N n . ……………………………………………………12分3、解:(Ⅰ)设数列{}n a 的公差为d ,则[]11116155(2)18(1)(31)3(1)(2)a d a d a n d a n d +=++⎧⎪⎨+-=+-⎪⎩ 由(1)得12590a d -+=, ·················· 2分 由(2)得1a d =,联立得13a d ==, ············· 3分 所以3n a n =. ························· 4分 易知164b =, ························ 5分当2n ≥时11214n S n b b b --=gg L g ,又124n Sn b b b =gg L g , 两式相除得64(2)nn b n =≥, ················· 7分164b =满足上式,所以64n n b =. ··············· 8分(Ⅱ)2log 646nn c n ==,111111()36(1)361n n c c n n n n +==-++g , 10分11(1)361n T n =-+,····················· 11分 因此2016562017T =. ····················· 12分 4、【解析】(Ⅰ)∵函数()x f x a =的图象过点1(1,)2, ∴11,()()22x a f x ==………………………………………………2分又点2(1,)()n an n n*-∈N 在函数()x f x a =的图象上从而2112n n a n -=,即212n n n a -=……………………………………6分(Ⅱ)证明:由22(1)21222n n n n n n n b ++=-= 得23521222n n n S +=+++L ………………………………8分 则231135212122222n nn n n S +-+=++++L 两式相减得, 23113111212()222222n n n n S ++=++++-L ∴2552n nn S +=-…………………………………………11分∴5n S <……………………………………………………12分5、6、解:(Ⅰ)由19a =,2a 为整数可知,等差数列{}n a 的公差d 为整数, 由5n S S ≤,知560,0a a ≥≤, 于是940d +≥ ,950d +≤,d Q 为整数,2d ∴=-.故{}n a 的通项公式为112n a n =-…………6分(Ⅱ)由(Ⅰ),得()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, 1111111111......27957921122929n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,令192n b n =-,由函数()192f x x=-的图象关于点()4.5,0对称及其单调性,知12340b b b b <<<<,567...0b b b <<<<,41n b b ∴≤=.1141299n T ⎛⎫∴≤-= ⎪⎝⎭………12分 7、(Ⅰ)解:设数列{a n }的公比为q ,则2131()64(1)72a q a q q ⎧=⎨+=⎩ 2分∴q = 2,a 1 = 4∴数列{a n }的通项公式为12n n a +=.4分 (Ⅱ)解:21111log (1)1n n b n a n n n n ===-⨯++ 6分 ∴11111111(1)()()()12233411n S n n n =-+-+-++-=-++L 8分 易知{S n }单调递增,∴S n 的最小值为112S =10分∴要使log (2)n a S a >-对任意正整数n 恒成立,只需1log (2)2a a -≥由a -2 > 0得:a > 2,∴122a a -<,即2540a a -+≤,解得:1≤a ≤4 ∴实数a 的取值范围是(2,4]. 12分 8、解:(1)因为n=2(n+1)所以即…………………………2分所以{}是以为首项,公比q=2的等比数列………………4分所以数列{}的通项…………………………5分(2)由(1)得……………………6分所以……………7分…………8分所以 ………10分所以 …………………………12分9、(1)设等差数列{}n a 的公差为d ,由已知得1212234,()()12,a a a a a a +=⎧⎨+++=⎩ ……2分即12234,8,a a a a +=⎧⎨+=⎩所以1111()4,()(2)8,a a d a d a d ++=⎧⎨+++=⎩解得11,2,a d =⎧⎨=⎩ ……4分所以21n a n =-. ……6分(2)由(1)得,所以122135232112222n n n n n S ----=+++++…,① 23111352321222222n n n n n S ---=+++++……,② ……8分 -①②得:2211112123113222222n n n n n n S --+=+++++-=-… ……10分112122n n n a n ---=所以4662n nn S +=-. ……12分 10、解 :(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=,所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21.当1=n 时,d b -=1121;当2=n 时,d b -=1722,解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T Λ,两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T Λ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T Λ2222)33(21)21(2323+⋅+---⋅+⋅=n n n ,222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
1(2017山东文)(本小题满分12分)
已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)
{}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .
2(2017新课标Ⅰ文数)(12分)
记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.
(1)求{}n a 的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。

3((2017新课标Ⅲ文数)12分)
设数列{}n a 满足123(21)2n a a n a n +++-=K .
(1)求{}n a 的通项公式;
(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭
的前n 项和.
4(2017浙江)(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n N *∈).
证明:当n N *∈时,
(Ⅰ)0<x n +1<x n ;
(Ⅱ)2x n +1− x n ≤12
n n x x +; (Ⅲ)112
n -≤x n ≤212n -. 112()2
n n n n x x x x n *++-≤∈N . 5(2017北京理)(本小题13分)
设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,
其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.
(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;
(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,
n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.
6(2017新课标Ⅱ文)(12分)
已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.
(1)若335a b +=,求{}n b 的通项公式;
(2)若321T =,求3S .
7(2017天津文)(本小题满分13分)
已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于
0,
2334111412,2,11b b b a a S b +==-=.
(Ⅰ)求{}n a 和{}n b 的通项公式;
(Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N .
8(2017山东理)(本小题满分12分)
已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2
(Ⅰ)求数列{x n }的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,x =x i (x {x n })所围成的区域的面积n T .
9(2017天津理)(本小题满分13分)
已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是 .网首项为2的等比数列,且公比
大于0,2312b b +=,3412b a a =-,11411S b =.
(Ⅰ)求{}n a 和{}n b 的通项公式;
(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .
10(2017北京文)(本小题13分)
已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.
(Ⅰ)求{}n a 的通项公式;
(Ⅱ)求和:13521n b b b b -++++K .
11(2017新课标Ⅲ理数)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为
A .-24
B .-3
C .3
D .8
12(2017新课标Ⅲ理数)设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 13(2017新课标Ⅱ理)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A .1盏
B .3盏
C .5盏
D .9盏 14(2017新课标Ⅱ理)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则
11n
k k
S ==∑____________.
15(2017新课标Ⅰ理数)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为
A .1
B .2
C .4
D .8 16(2017新课标Ⅰ理数)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大
家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是
A .440
B .330
C .220
D .110
17(2017江苏)等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344
S S ==,,则8a = ▲ .
18(2017江苏)(本小题满分16分)
对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.
(1)证明:等差数列{}n a 是“(3)P 数列”;
(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.
19(2017北京理)若等差数列{}n a 和等比数列{}n b 满足a 1=b 1=–1,a 4=b 4=8,则22
a b =_______.。

相关文档
最新文档