2017高考试题分类汇编-集合与简易逻辑
2017高考试题分类汇编-集合与简易逻辑

A. AI B {x|x 0}B. AUB R集合与简易逻辑专题1. (2017北京)已知U R ,集合A {x|x2或x 2},则e u A(A ) ( 2,2) (B )(,2)U(2, )(C ) [2,2] (D )(,2]U[2,) 2( 2017新课标U理) 设集合A1,2,4 ,Bx 2x4x m0 .若 AI B 1 ,则BA. 1, 3B. 1,0C.1,3D. 1,53 ( 2017天津理)设集合A {1,2,6}, B{2,4}, C {xR| 1 x 5},则(AU B) I C(A) {2} (B ) {1,2,4} (C ) {124,6} (D ) {x R| 1 x 5}4 (2017 新课标川理)已知集合 A= (x,y)| x 2 y 2 1 , B= (x, y)| y x ,则 AI B 中元素的个数为 A. 3B. 2C. 1D. 05 (2017山东理)设函数y=4x 2的定义域A ,函数y=ln (1-x )A I B=(B) (1,2(C ) (-2,1 )( D ) [-2,1)6 (2017新课标 I 理)已知集合 A={x| x<1} , B={x| 3x 1},则的定义域为B,则(A ) (1,2 )C. AU B {x|x 1}D. AI B13 (2017 新课标 I)已知集合 A= x|x 2 , B= x|3 2xB. A | BD. A U B=R7 (2017江苏)已知集合A {1,2} , B {a, a 2 3},若A B ⑴,贝U 实数a的值 为 ______ . 8 (2017天津)设集合 A {1,2,6}, B {2,4}, C {1,2,3,4},则(AUB)I C (A ) {2}(B ) {1,2,4} (C ) {1,2,4,6} (D ) {1,2,3,4,6} 9 (2017新课标U)设集合 A {1,2,3}, B {2,3,4},则 AUB A. 1,2,3,4 B . 1,2,3 C . 2,3,4 D . 1,3,4 10 (2017北京理)若集合 A={x| - 2<x< 1} , B={x| x< - 1 或 x> 3},则 AAB= (A ) {x| - 2< x< - 1} (B ) {x| — 2< x< 3} (C ) {x| - 1<x< 1} (D ) {x|1 <x<3} 11 (2017浙江)已知集合 P {x| 1 x 1} , Q {0 x 2},那么 P Q A. ( 1,2) B. (0,1) C. ( 1,0) D. (1,2)12 (2017新课标川)已知集合 A={1,2,3,4} ,B={2,4,6,8},则A B 中元素的个数为()A. 1B. 2C. 3D. 4,则A. A ] B= x|x I3 C. A U B x|x -218. (2017天津理)设 R ,贝| -|亠”是“sin 1 ”的12 12 214 (2017山东)设集合M x x 11 , N(A )1,1 (B ) 1,2 (C) 0,215 . (2017浙江)已知等差数列{a n }的公差为d ,前n 项和为S ,则“ d>0”是 “S + S>2S 5 ”的D.既不充分也不必要条件16. (2017新课标U )甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成 绩,老师说:你们四人中有 2位优秀,2位良好,我现在给甲看乙、丙的成绩,根据以上信息,则绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我 的成绩.根据以上信息,则(C )充要条件(D )既不充分也不必要条件xx 2,则 M I N(D ) 1,2A.充分不必要条件B.必要不充分条件C.充分必要条件给乙看丙的成绩,给丁看甲的成绩 .看后甲对大家说:我还是不知道我的成绩,A.乙可以知道四人的成绩 B .丁可以知道四人的成绩 C •乙、丁可以知道对方的成绩.乙、丁可以知道自己的成绩17. (2017新课标U 理)甲、乙、 丙、丁四位同学一起去向老师询问成语竞赛的 成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成A.乙可以知道四人的成绩B. 丁可以知道四人的成绩 C •乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩(A)充分而不必要条件(B)必要而不充分条件19. (2017 山东)已知命题p:x R, x2 x 1 0 ;命题q:若a2 b2,则a<b.下列命题为真命题的是(A)p q (B)p q (C)p q (D)p q20. (2017 山东理)已知命题p:x>o,in x 1 >0 ;命题q:若a>b,则a2>b2,列命下题为真命题的是(A)p q (B)p q (C)p q (D)p q21. (2017北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1O80.则下列各数中与M最接近的N 是(参考数据:Ig3〜0.48 )(A)1033(B)1053(C)1073(D)109322. (2017北京)能够说明“设a, b, c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a, b, c的值依次为23. (2017北京理)设mn为非零向量,贝“存在负数,使得m n ”是“m n<0 的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件答案: 1 -5 CCBBD 6-10 A 1 BAA 11-15 ABACC 16-20 DABBD21 -1,-2,-3 (答案不唯一)22.A。
2017届高三最新考试数学文试题分类汇编_集合与常用逻辑用语 含答案

山东省13市2017届高三最新考试数学文试题分类汇编集合与常用逻辑用语2017.03一、集合 1、(滨州市2017届高三上期末)设集合{}02A x x =≤≤,{}21B x x =>,则集合A B =I ( )A .{}01x x ≤≤B .{}01x x x ><-或C .{}12x x <≤D .{}02x x <≤2、(德州市2017届高三第一次模拟考试)设集合{}2|230A x x x =--<,{}|ln(2)B x y x ==-,则A B =I ( )A .{}|13x x -<<B .{}|12x x -<<C .{}|32x x -<<D .{}|12x x << 3、(菏泽市2017年高考一模)若集合A={﹣2,﹣1,0,1,2},集合B={x |lg (x +1)>0},则A ∩B 等于( )A .{﹣1,0,1,2}B .{﹣1,﹣2}C .{1,2}D .{0,1,2}4、(济宁市2017届高三第一次模拟(3月))已知全集{}1,2,3,4,5U =,{}3,4,5M =,{}2,3N =,则集合()U N M =I ð( )A .{}2B .{}1,3C .{}2,5D .{}4,55、(聊城市2017届高三上期末)设集合,{0,1,2,3,4,5}{0,1,3}{1,2,5}U A B ===,,,则()U C A B =∩( )A.{2,4,5}B.{1,2,4,5}C.{2,5}D.{0,2,3,4,5}6、(临沂市2017届高三2月份教学质量检测(一模))若集合{}0A x x =≥,且A B B =I ,则集合B 可能是(A ){}2x x ≥ (B ){}1x x ≤ (C ){}1x x ≥-(D )R 7、(青岛市2017年高三统一质量检测)设全集2I {|9Z}x x x =<∈,,{12}A =,,{2,1,2}B =--,则 I ()A B =U ðA .{1}B .{1,2}C .{2}D .{0,1,2}8、(日照市2017届高三下学期第一次模拟)已知集合{}{}0,1,2,11,M N x x x Z ==-≤≤∈,则M ∩N 为(A)()0,1 (B) []0,1 (C) {}0,1 (D) ∅9、(泰安市2017届高三第一轮复习质量检测(一模))已知集合{}}2230,03A x x x B x x A B =+-<=<<⋂=,则A .(0,1)B .(0,3)C .(-1,1)D .(-1,3)10、(潍坊市2017届高三下学期第一次模拟)设集合A={}2,x x n n N*=∈,B=122x x ⎧⎫⎪⎪≤⎨⎬⎪⎪⎩⎭,则A ∩B=A .{}2B .{}2,4C . {}2,3,4D .{}1,2,3,4 11、(烟台市2017届高三3月高考诊断性测试(一模))设集合2{90}A x x =-<,{2}B x x N =∈,则A B I 中元素的个数为( )A .3B .4C .5D .612、(枣庄市2017届高三下学期第一次模拟考试)已知集合{}(){}()32,1,log 21,R A x x x B x x A C B =≥≤-=-≤⋂=或则A .{}1x x <-B .{}1,2x x x ≤-或> C .{}2,=1x x x ≥-或 D .{}1,2x x x <-≥或13、(淄博市2017届高三3月模拟考试)已知集合{}24A x x =>,{}0,1,2,3B =,则A B =I ( )A .∅B .{}0C .{}0,1D .{}0,1,2参考答案1、C2、B3、C4、D5、C6、A7、D 8、C 9、A 10、B 11、D 12、D13、C二、常用逻辑用语1、(滨州市2017届高三上期末)下列说法中,不正确的是( )A .“1sin 2θ=”是“30θ=”的充分不必要条件B .命题p :0n N ∃∈,021000n >,则:p n N ⌝∀∈,21000n ≤C.命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”D .命题“若()0x ∀∈+∞,,则23x x <”是真命题2、(德州市2017届高三第一次模拟考试)“22ac bc >”是“a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3、(菏泽市2017年高考一模)“m >1“是“函数f (x )=3x +m ﹣3在区间1,+∞)无零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、(济宁市2017届高三第一次模拟(3月))设a R ∈,“,,16为等比数列”是“4a =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5、(聊城市2017届高三上期末)已知,αβ是相交平面,直线l ⊂平面α,则“l β⊥”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、(临沂市2017届高三2月份教学质量检测(一模))已知命题:(,0),23;x x P x ∃∈-∞<命题:(0,),sin 1,q x x π∀∈≤则下列命题为真命题的是(A) p q ∧ (B) ()p q ∨⌝ (C) ()p q ∧⌝ (D) ()p q ⌝∧ 7、(青岛市2017年高三统一质量检测)已知R λ∈,向量()()3,,1,2a b λλ==-r r ,则“35λ=”是“a b ⊥r r ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8、(日照市2017届高三下学期第一次模拟)“()2log 231x -<”是“32x >”的 (A)充分不必要条件(B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 9、(泰安市2017届高三第一轮复习质量检测(一模))以下命题①“1x =”是“2320x x -+=”的充分不必要条件②命题“若23201x x x -+==,则”的逆否命题为“若21320x x x ≠-+≠,则” ③对于命题2:0,10p x x x ∃>++<使得,则2:010p x x x ⌝∀≤++≥,均有④若p q ∨为假命题,则p 、q 均为假命题其中正确命题的序号为 ▲ (把所有正确命题的序号都填上)10、(潍坊市2017届高三下学期第一次模拟)已知命题p :对任意x ∈R ,总有22x x >;q :“1ab >”是“a >l ,b >l ”的充分不必要条件.则下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝11、(烟台市2017届高三3月高考诊断性测试(一模))设0,a b R <∈,则“a b <”是“a b <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12、(枣庄市2017届高三下学期第一次模拟考试)已知R a ∈,则“0<a ”是“函数()()()01,在∞-+=ax x x f 上是减函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要13、(淄博市2017届高三3月模拟考试)下列命题为真命题的是( ).A .若0x y >>,则ln ln 0x y +>B .“4πϕ=”是“函数sin(2)y x ϕ=+为偶函数”的充要条件C .0(,0)x ∃∈-∞,使0034x x <成立D .已知两个平面,αβ,若两条异面直线,m n 满足,m n αβ⊂⊂且//,//m n βα,则//αβ参考答案1、B2、A3、A4、B5、A6、D7、C 8、A 9、①②④ 10、D 11、B 12、A13、D。
湖北省各地2017届高三最新考试数学理试题分类汇编:集合与常用逻辑用语

湖北省各地2017届高三最新考试数学理试题分类汇编集合与常用逻辑用语2017.02一、集合1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)设集合{}2A x x =<,{}|21,x B y y x A ==-∈,则A B =A.(,3)-∞B.[)2,3C.(,2)-∞D.(1,2)-2、(荆门市2017届高三元月调考)已知集合{|03}A x x =<<,{|(2)(1)0}B x x x =+->,则A B 等于A .(0,3)B .(1,3)C .(2,3)D .(,2)(0,)-∞-+∞3、(荆州市五县市区2017届高三上学期期末)若集合{}1216xA x =≤≤,{}23log (2)1B x x x =->,则A B 等于A .(]3,4B .[]3,4C .(](,0)0,4-∞D .(](,1)0,4-∞-4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知集合2{|230}A x x x =--≥,{|22}B x x =-≤≤,则A B =A . [-2,-1]B .[-1,2]C .[-1,1]D .[1,2]5、(武汉市2017届高三毕业生二月调研考)已知集合{}{}|13,|A x x B x x a =-<<=<,若A B A = ,则实数a 的取值范围是A.a >3B.a ≥3C.a ≥-1D.a >-16、(武汉市武昌区2017届高三1月调研)设,A B 是两个非空集合,定义集合{,A B x x A -=∈且}x B ∉,若{}05A x N x =∈≤<,{}27100B x x x =-+<,则A B -=( )A .{}0,1B .{}1,2C .{}0,1,2 D. {}0,1,2,57、(襄阳市2017届高三1月调研)设集合{}{}2|20,|M x x x N x x k =--<=≤,若M N M = ,则k 的取值范围是A. (],2-∞B. [)1,-+∞C. ()1,-+∞D. [)2,+∞ 8、(襄阳市优质高中2017届高三1月联考)已知集合{}{}2|60,|31x A x x x B x =+-<=>,则()R A C B =A.(]3,1-B. ()1,2C. (]3,0-D.[)1,29、(孝感市七校教学联盟2017届高三上学期期末)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则)(B C A U = ( )A .{}12x x << B .{}01x x <≤ C .{}01x x << D .{}12x x ≤< 10、(湖北省部分重点中学2017届高三上学期第二次联考)已知集合{}2|230A x x x =-->,集合{}|04B x x =<<,则()R C A B =A. (]0,3B. [)1,0-C.[]1,3-D.()3,4参考答案1、D2、B3、A4、A5、B6、D7、D8、C9、c 10、A二、常用逻辑用语 1、(黄冈市2017届高三上学期期末)下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C. “若tan α≠3πα≠”是真命题D.()0,0x ∃∈-∞使得0034xx<成立2、(荆州市五县市区2017届高三上学期期末)设命题0300:(0,),3x p x x ∃∈+∞<,则p ⌝为A .3(0,),3x x x ∀∈+∞≥ B .3(0,),3x x x ∃∈+∞≥ C .3(0,),3xx x ∀∈+∞<D .3(0,),3xx x∃∈+∞<3、(襄阳市2017届高三1月调研)已知下列四个命题:1:p 若()22x x f x -=-,则()(),x R f x f x ∀∈-=-;2:p 若函数()()21,0,2,0,axax x f x a e x ⎧+≥⎪=⎨+<⎪⎩为R 上的单调函数,则实数a 的取值范围是()0,+∞; 3:p 若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是10,2⎛⎫⎪⎝⎭;4:p 已知函数()f x 的定义域为R, ()f x 满足()[)[)222,0,1,2,1,0,x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩且()()2f x f x =+,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上所有实根之和为-7.其中真命题的个数是.A. 1B. 2C. 3D. 4 4、(襄阳市优质高中2017届高三1月联考)下列说法错误的是( ) A. 若2:,10p x R x x ∃∈-+≥,则2:,10p x R x x ⌝∀∈-+<B. “1sin 2θ=”是"30150"θθ==或的充分不必要条件 C. 命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D.已知2:,cos 1,:,20p x R x q x R x x ∃∈=∀∈-+>,则()""p q ∧⌝为假命题5、(孝感市七校教学联盟2017届高三上学期期末)下列说法正确的个数是 ( ) ①命题“x R ∀∈,3210x x -+≤”的否定是“32000,10x R x x ∃∈-+>;②“b ,,a b c 成等比数列”的充要条件;③“1m =-”是“直线(21)10mx m y +-+=和直线32=0x my ++垂直”的充要条件: A .0 B .1 C .2D .36、(荆州中学2017届高三1月质量检测)下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π是“1a =”的必要不充分条件;③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立;④“平面向量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”.A. 1B. 2C. 3D. 4参考答案1、C2、A3、C4、b5、b6、B。
三年(2017-2019)高考真题数学(文)分项汇编:专题01 集合与常用逻辑用语(含解析)

专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U BA =ð{6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-. 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集 , , 所以根据补集的定义得 . 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得 . 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】 , . 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算. 14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =.故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】 , , 因此A B = . 故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()AB C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}【答案】C【解析】由并集的定义可得: ,结合交集的定义可知: . 故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为 ,所以根据线面平行的判定定理得 . 由 不能得出 与 内任一直线平行, 所以 是 的充分不必要条件. 故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“ ⇒ ”为真,则 是 的充分条件.(2)等价法:利用 ⇒ 与非 ⇒非 , ⇒ 与非 ⇒非 , ⇔ 与非 ⇔非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若 ⊆ ,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件. 18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式 可得 , 求解绝对值不等式 可得 或 , 据此可知:“ ”是“ ” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当时, 不成等比数列,所以不是充分条件; 当 成等比数列时,则 ,所以是必要条件. 综上所述,“ ”是“ 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“ ⇒ ”以及“ ⇒ ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =.故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则AB 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =,故AB 中元素的个数为2.所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =,所以{}()1,2,4A B C =.故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<, 故={|02}{|2}{|02}M N x x x x x x <<<=<<.故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>, 反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件. 故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向, 即不一定存在负数λ,使得λ=m n , 所以是充分而不必要条件. 故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题; 由221(2),12<->-可知q 是假命题, 所以p q ∧⌝是真命题. 故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤, 所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件; ②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ . 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合 , ,那么 ________.【答案】{1,8}【解析】由题设和交集的定义可知: .【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________. 【答案】 , (答案不唯一)【解析】使“若 ,则 ”为假命题,则使“若 ,则 ”为真命题即可, 只需取 即可满足,所以满足条件的一组 的值为 (答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
三年高考(2017_2019)高考数学真题分项汇编专题01集合与常用逻辑用语文(含解析)

专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合,则{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,U B A =ðA .B .{}1,6{}1,7C .D .{}6,7{}1,6,7【答案】C【解析】由已知得,{}1,6,7U A =ð所以.U B A = ð{6,7}故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合,,则A ∩B =={|1}A x x >-{|2}B x x =<A .(-1,+∞)B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,.(1,2)A B =- 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合,则2{1,0,1,2},{|1}A B x x =-=≤A B = A .B .{}1,0,1-{}0,1C .D .{}1,1-{}0,1,2【答案】A【解析】∵∴,∴,21,x ≤11x -≤≤{}11B x x =-≤≤又,∴.{1,0,1,2}A =-{}1,0,1A B =- 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵,{|12},{|1}A x x B x =-<<=>∴.(1,)A B =-+∞ 故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集,集合,,则={}1,0,1,2,3U =-{}0,1,2A ={}1,0,1B =-()U A B ðA .B .{}1-{}0,1C .D .{}1,2,3-{}1,0,1,3-【答案】A【解析】∵,∴.{1,3}U A =-ð(){1}U A B =- ð故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合,则{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ()A C B = A .B .{}2{}2,3C .D .{}1,2,3-{}1,2,3,4【答案】D【解析】因为,所以.{1,2}A C = (){1,2,3,4}A C B = 故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设,则“”是“”的x ∈R 05x <<|1|1x -<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由可得,|1|1x -<02x <<易知由推不出,05x <<02x <<由能推出,02x <<05x <<故是的必要而不充分条件,05x <<02x <<即“”是“”的必要而不充分条件.05x <<|1|1x -<故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到的取值范围.x 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当时,,则当时,有,解得,充0, 0a >b >a b +≥4a b +≤4a b ≤+≤4ab ≤分性成立;当时,满足,但此时,必要性不成立,=1, =4a b 4ab ≤=5>4a+b 综上所述,“”是“”的充分不必要条件.4a b +≤4ab ≤故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取的特殊值,从假设情况下推出合理结果或矛盾结果.,a b 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是的充分条件;αβαβ∥由面面平行的性质定理知,若,则内任意一条直线都与平行,所以内有两条相交直线都与αβ∥αβα平行是的必要条件.βαβ∥故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当时,,为偶函数;0b =()cos sin cos f x x b x x =+=()f x 当为偶函数时,对任意的恒成立,()f x ()()f x f x -=x 由,得,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-则对任意的恒成立,sin 0b x =x 从而.0b =故“”是“为偶函数”的充分必要条件.0b =()f x 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .B .{1,3}∅C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集,,U ={1,2,3,4,5}A ={1,3}所以根据补集的定义得.∁U A ={2,4,5}故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合,,则{}02A =,{}21012B =--,,,,A B = A .B .{}02,{}12,C .D .{}0{}21012--,,,,【答案】A【解析】根据集合的交集中元素的特征,可以求得.A ∩B ={0,2}故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合,,则{}1,3,5,7A ={}2,3,4,5B =A B =A .B .{}3{}5C .D .{}3,5{}1,2,3,4,5,7【答案】C【解析】,.∵A ={1,3,5,7},B ={2,3,4,5}∴A ∩B ={3,5}故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合,,则{|10}A x x =-≥{0,1,2}B =A B =A .B .{0}{1}C .D .{1,2}{0,1,2}【答案】C【解析】易得集合,所以.{|1}A x x =≥{}1,2A B = 故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】∵|x|<2,∴-2<x <2,因此A B =.∩(-2,2)∩{-2,0,1,2}={0,1}故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合,,,则{1,2,3,4}A ={1,0,2,3}B =-{|12}C x x =∈-≤<R ()A B C =A .B .{1,1}-{0,1}C .D .{1,0,1}-{2,3,4}【答案】C【解析】由并集的定义可得:,A ∪B ={-1,0,1,2,3,4}结合交集的定义可知:.(A ∪B )∩C ={-1,0,1}故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.17.【2018年高考浙江】已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得.m ⊄α,n ⊂α,m//n m//α由不能得出与内任一直线平行,m//αm α所以是的充分不必要条件.m//n m//α故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则p q q p p q 是的充分条件.p q (2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是p q q p q p p q p q q p 否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.A B A B B A A B A B 18.【2018年高考天津文数】设,则“”是“”的x ∈R 38x >||2x >A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式可得,x 3>8x >2求解绝对值不等式可得或,|x |>2x >2x <-2据此可知:“”是“” 的充分而不必要条件.x 3>8|x|>2故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当时,不成等比数列,所以不是充分条件;a =4,b =1,c =1,d =14a,b,c,d 当成等比数列时,则,所以是必要条件.a,b,c,d ad =bc 综上所述,“”是“成等比数列”的必要不充分条件.ad =bc a,b,c,d 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命p ⇒q q ⇒p 题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A =,B =,则{}|2x x <{}|320x x ->A .A B =B .A B 3|2x x ⎧⎫<⎨⎬⎩⎭ =∅C .A BD .A B=R3|2x x ⎧⎫=<⎨⎬⎩⎭【答案】A【解析】由得,320x ->32x <所以.33{|2}{|}{|}22A B x x x x x x =<<=< 故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合,则{1,2,3},{2,3,4}A B ==A B =A .B .{}123,4,,{}123,,C .D .{}234,,{}134,,【答案】A【解析】由题意.{1,2,3,4}A B = 故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.22.【2017年高考北京文数】已知全集,集合,则U =R {|22}A x x x =<->或U A =ðA .B .(2,2)-(,2)(2,)-∞-+∞ C .D .[2,2]-(,2][2,)-∞-+∞ 【答案】C【解析】因为或,所以.{2A x x =<-2}x >{}22U A x x =-≤≤ð故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则中元素的个数为A B A .1B .2C .3D .4【答案】B【解析】由题意可得,{}2,4A B = 故中元素的个数为2.A B所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合,则{1,2,6},{2,4},{1,2,3,4}A B C ===()A B C =A .B .{2}{1,2,4}C .D .{1,2,4,6}{1,2,3,4,6}【答案】B【解析】由题意可得,{}1,2,4,6A B = 所以.{}()1,2,4A B C = 故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合,,那么{|11}P x x =-<<{02}Q x =<<P Q =A .B .(1,2)-(0,1)C .D .(1,0)-(1,2)【答案】A【解析】利用数轴,取中的所有元素,得.,P Q P Q = (1,2)-故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合则{}11M x x =-<,{}2N x x =<,M N = A .B .()1,1-()1,2-C .D .()0,2()1,2【答案】C【解析】由得,|1|1x -<02x <<故.={|02}{|2}{|02}M N x x x x x x <<<=<< 故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由,46511210212(510)S S S a d a d d +-=+-+=可知当时,有,即,0d >46520S S S +->4652S S S +>反之,若,则,4652S S S +>0d >所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前项和公式,通过套入公式与简单运算,可知,n 4652S S S d +-=结合充分必要性的判断,若,则是的充分条件,若,则是的必要条件,该题“p q ⇒p q p q ⇐p q ”“”,故互为充要条件.0d >⇔46520S S S +->28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数,使得”是“”的λλ=m n 0<⋅m n A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若,使,则两向量反向,夹角是,0λ∃<λ=m n ,m n 180︒那么;cos1800⋅=︒=-<m n m n m n 若,那么两向量的夹角为,并不一定反向,0⋅<m n (]90,180︒︒即不一定存在负数,使得,λλ=m n 所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若,则是的充分条件,若p q ⇒p q ,则是的必要条件.p q ⇐p q 29.【2017年高考山东文数】已知命题p :;命题q :若,则a <b .下列命题为,x ∃∈R 210x x -+≥22a b <真命题的是A .B .p q∧p q ∧⌝C .D .p q⌝∧p q ⌝∧⌝【答案】B【解析】由时,成立知p 是真命题;0x =210x x -+≥由可知q 是假命题,221(2),12<->-所以是真命题.p q ∧⌝故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设,则“”是“”的x ∈R 20x -≥|1|1x -≤A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由,可得,20x -≥2x ≤由,可得,即,|1|1x -≤111x -≤-≤02x ≤≤因为,{}{}022x x x x ≤≤⊂≤所以“”是“”的必要而不充分条件.20x -≥|1|1x -≤故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,那么是的充分而不必要条件,同时是的必要而不充分条件,,/p q q p ⇒⇒p q q p 若,那么是的充要条件,若,那那么是的既不充分也不必要条件;p q ⇔p q ,//p q q p ⇒⇒p q②当命题是以集合的形式给出时,那就看包含关系,若,,若是的真子集,那:p x A ∈:q x B ∈A B 么是的充分而不必要条件,同时是的必要而不充分条件,若,那么是的充要条件,p q q p A B =p q 若没有包含关系,那么是的既不充分也不必要条件;p q ③命题的等价性,根据互为逆否命题的两个命题等价,将“是”的关系转化为“是”的关p q q ⌝p ⌝系进行判断.31.【2019年高考江苏】已知集合,,则▲.{1,0,1,6}A =-{|0,}B x x x =>∈R A B = 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,.{1,6}A B = 【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合,,那么________.A ={0,1,2,8}B ={-1,1,6,8}A ∩B =【答案】{1,8}【解析】由题设和交集的定义可知:.A ∩B ={1,8}【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合,,若,则实数的值为 ▲ .{1,2}A =2{,3}B a a =+{1}A B = a 【答案】1【解析】由题意,显然,所以,1B ∈233a +≥1a =此时,满足题意.234a +=故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关等集合问题时,往往容易忽略空集的情况,一定要先考,A B A B =∅⊆ 虑时是否成立,以防漏解.∅34.【2018年高考北京文数】能说明“若a ﹥b ,则”为假命题的一组a ,b 的值依次为_________.11a b<【答案】(答案不唯一)1,-1【解析】使“若,则”为假命题,则使“若,则”为真命题即可,a >b 1a <1b a >b 1a ≥1b 只需取即可满足,a =1,b =-1所以满足条件的一组的值为(答案不唯一).a,b 1,-1【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】,矛盾,()123,1233->->--+-=->-所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
高考试卷分类汇编01----集合与简易逻辑

高考试卷分类汇编集合与简易逻辑一、选择题•(安徽理)集合A -R|y=lgx,x 1, B =「-2, -1,1,2?则下列结论正确的是()•AnB-「-2,—1? •G R A)U B=(」:,0)•A[JB =(0, =)•(e R A)n B・._2,-1解:A m y R y0 ?, 6 A) = { y | y 岂0},又B—-2,-1,1,2}••• (e R A)PlB J—2,-1 ?,选。
.(安徽理文)a :0是方程ax2 2x ^0至少有一个负数根的()•必要不充分条件•充分不必要条件•充分必要条件•既不充分也不必要条件2 1解:当,=2…4a_0,得a_1时方程有根。
<时,X1X2 0,方程有负根,又时,方程根为ax = -1,所以选•(安徽文)若A为位全体正实数的集合,B_-2,-1,1,2?则下列结论正确的是()APl B = :-2,-1 f •G R A) U B =(-〜0)•AUB =(0,二)•(e R A)n^f.-2^1 /解:e R A是全体非正数的集合即负数和,所以(€R A)p]B =「-2,-1•(北京理)已知全集U = R,集合A,x| -2 < x< 3 , B=「x|x :::-1或x - 4,那么集合A「| $B 等于()•'x| -2 < x 4• x | x < 3或x > 4』•「x| -2 < x :-1 • 1x|—1W x < 3?解: U [, ], AR e u B = 'x| -1 < x < 3?•(北京理)“函数f(x)(x・R)存在反函数”是“函数f(x)在R上为增函数”的()•充分而不必要条件•必要而不充分条件•充分必要条件•既不充分也不必要条件解:函数f(x)(x・R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必有条件显然成立。
湖北省各地2017届高三最新考试数学理试题分类汇编集合与常用逻辑用语Word版含答案

湖北省各地2017届高三最新考试数学理试题分类汇编集合与常用逻辑用语2017.02一、集合1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)设集合{}2A x x =<,{}|21,x B y y x A ==-∈,则A B =A.(,3)-∞B.[)2,3C.(,2)-∞D.(1,2)-2、(荆门市2017届高三元月调考)已知集合{|03}A x x =<<,{|(2)(1)0}B x x x =+->,则AB 等于A .(0,3)B .(1,3)C .(2,3)D .(,2)(0,)-∞-+∞3、(荆州市五县市区2017届高三上学期期末)若集合{}1216x A x =≤≤,{}23log (2)1B x x x =->,则AB 等于A .(]3,4B .[]3,4C .(](,0)0,4-∞D .(](,1)0,4-∞-4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知集合2{|230}A x x x =--≥,{|22}B x x =-≤≤,则AB =A . [-2,-1]B .[-1,2]C .[-1,1]D .[1,2]5、(武汉市2017届高三毕业生二月调研考)已知集合{}{}|13,|A x x B x x a =-<<=<,若AB A =,则实数a 的取值范围是A.a >3B.a ≥3C.a ≥-1D.a >-16、(武汉市武昌区2017届高三1月调研)设,A B 是两个非空集合,定义集合{,A B x x A -=∈且}x B ∉,若{}05A x N x =∈≤<,{}27100B x x x =-+<,则A B -=( )A .{}0,1B .{}1,2C .{}0,1,2 D. {}0,1,2,57、(襄阳市2017届高三1月调研)设集合{}{}2|20,|M x x x N x x k =--<=≤,若MN M =,则k 的取值范围是A. (],2-∞B. [)1,-+∞C. ()1,-+∞D. [)2,+∞ 8、(襄阳市优质高中2017届高三1月联考)已知集合{}{}2|60,|31x A x x x B x =+-<=>,则()R AC B =A.(]3,1-B. ()1,2C. (]3,0-D.[)1,29、(孝感市七校教学联盟2017届高三上学期期末)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则)(B C A U = ( )A .{}12x x << B .{}01x x <≤ C .{}01x x << D .{}12x x ≤< 10、(湖北省部分重点中学2017届高三上学期第二次联考)已知集合{}2|230A x x x =-->,集合{}|04B x x =<<,则()R C A B =A. (]0,3B. [)1,0-C.[]1,3-D.()3,4参考答案1、D2、B3、A4、A5、B6、D7、D8、C9、c 10、A二、常用逻辑用语 1、(黄冈市2017届高三上学期期末)下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤” B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C. “若tan α≠3πα≠”是真命题D.()0,0x ∃∈-∞使得0034xx<成立2、(荆州市五县市区2017届高三上学期期末)设命题0300:(0,),3xp x x ∃∈+∞<,则p ⌝为A .3(0,),3x x x ∀∈+∞≥ B .3(0,),3x x x ∃∈+∞≥ C .3(0,),3xx x ∀∈+∞<D .3(0,),3xx x∃∈+∞<3、(襄阳市2017届高三1月调研)已知下列四个命题:1:p 若()22x x f x -=-,则()(),x R f x f x ∀∈-=-;2:p 若函数()()21,0,2,0,axax x f x a e x ⎧+≥⎪=⎨+<⎪⎩为R 上的单调函数,则实数a 的取值范围是()0,+∞; 3:p 若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是10,2⎛⎫⎪⎝⎭;4:p 已知函数()f x 的定义域为R, ()f x 满足()[)[)222,0,1,2,1,0,x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩且()()2f x f x =+,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上所有实根之和为-7.其中真命题的个数是.A. 1B. 2C. 3D. 4 4、(襄阳市优质高中2017届高三1月联考)下列说法错误的是( ) A. 若2:,10p x R x x ∃∈-+≥,则2:,10p x R x x ⌝∀∈-+<B. “1sin 2θ=”是"30150"θθ==或的充分不必要条件 C. 命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D.已知2:,cos 1,:,20p x R x q x R x x ∃∈=∀∈-+>,则()""p q ∧⌝为假命题5、(孝感市七校教学联盟2017届高三上学期期末)下列说法正确的个数是 ( )①命题“x R ∀∈,3210x x -+≤”的否定是“32000,10x R x x ∃∈-+>;②“b =,,a b c 成等比数列”的充要条件;③“1m =-”是“直线(21)10mx m y +-+=和直线32=0x my ++垂直”的充要条件: A .0 B .1 C .2D .36、(荆州中学2017届高三1月质量检测)下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π是“1a =”的必要不充分条件;③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立;④“平面向量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”.A. 1B. 2C. 3D. 4参考答案1、C2、A3、C4、b5、b6、B。
(2017-2019年)高考真题数学(理)分项汇编 专题01 集合与常用逻辑用语 -含解析

(2017-2019年)高考真题数学(理)分项汇编专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N=A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞. 故选A .3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2 【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤, 又{1,0,1,2}A =-,∴{}1,0,1A B =-. 故选A .4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A Bð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð. 故选A.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与简易逻辑专题
1.(2017北京)已知,集合,则
(A ) (B ) (C ) (D )
2.(2017新课标Ⅱ理)设集合{}1,2,4A =,{}240B x x x m =-+=.
若{}1A B =I ,则B =
A .{}1,3-
B .{}1,0
C .{}1,3
D .{}1,5 3(2017天津理)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I
(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R
4(2017新课标Ⅲ理)已知集合A ={}
22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为
A .3
B .2
C .1
D .0
5(2017
山东理)设函数A ,函数y=ln(1-x)的定义域为B,则A B =I
(A )(1,2) (B )⎤⎦(1,2 (C )
(-2,1) (D )[-2,1) 6(2017新课标Ⅰ理)已知集合A ={x |x <1},B ={x |31x <},则
U =R {|22}A x x x =<->或U A =ð(2,2)-(,2)(2,)-∞-+∞U [2,2]-(,2][2,)-∞-+∞U
A .{|0}A
B x x =<I
B .A B =R U
C .{|1}A B x x =>U
D .A B =∅I
7(2017江苏)已知集合,,若}1{=⋂B A ,则实数的
值为 .
8(2017天津)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I
(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){1,2,3,4,6} 9(2017新课标Ⅱ)设集合{1,2,3},{2,3,4}A B ==,则A B =U
A .{}1
23,4,, B .{}123,, C .{}234,, D .{}134,, 10(2017北京理)若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A ∩B =
(A ){x |–2<x <–1} (B ){x |–2<x <3}
(C ){x |–1<x <1} (D ){x |1<x <3}
11(2017浙江)已知集合,,那么
A .
B .
C .
D . 12(2017新课标Ⅲ)已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( )
A .1
B .2
C .3
D .4
13(2017新课标Ⅰ)已知集合A ={}|2x x <,B ={}|320x x ->,则
{1,2}A =2{,3}B a a =+a }11|{<<-=x x P }20{<<=x Q =Q P Y )2,1(-)1,0()0,1(-)2,1(
A .A I
B =3|2x x ⎧⎫<⎨⎬⎩⎭
B .A I B =∅
C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭
D .A U B=R
14(2017山东)设集合{}11M x x =-<,{}2N x x =<,
则M N =I (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2
15.(2017浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
16.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则
A .乙可以知道四人的成绩
B .丁可以知道四人的成绩
C .乙、丁可以知道对方的成绩
D .乙、丁可以知道自己的成绩
17.(2017新课标Ⅱ理)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛
的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A .乙可以知道四人的成绩
B .丁可以知道四人的成绩
C .乙、丁可以知道对方的成绩
D .乙、丁可以知道自己的成绩 18.(2017天津理)设θ∈R ,则“ππ||1212θ-<”是“1sin 2
θ<”的 (A )充分而不必要条件 (B )必要而不充分条件
(C )充要条件 (D )既不充分也不必要条件
19.(2017山东)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是
(A )p q ∧ (B )p q ∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝
20.(2017山东理)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,列命下题为真命题的是
(A )
p q ∧ (B )p q ⌝∧ (C ) p q ⌝∧ (D )p q ⌝⌝∧
21.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而
可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与
最接近的是
(参考数据:lg3≈0.48)
(A )1033 (B )1053
(C )1073 (D )1093
22.(2017北京)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”
是假命题的一组整数a ,b ,c 的值依次为
______________________________.
23.(2017北京理)设m ,n 为非零向量,则“存在负数,使得”是“”的
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
答案:1-5 CCBBD 6-10 A 1 BAA 11-15 ABACC 16-20 DABBD 21 -1,-2,-3(答案不唯一)22.A
M N
λλ=m n 0<⋅m n。