第五章拉伸剪切与挤压的强度计算.
第五章拉伸剪切与挤压的强度计算

内力在截面上的集度称为 应力(垂直于杆 横截面的应力称为正应力,平行于横截面的 称为 切应力 ) 。应力是判断杆件是否破坏的 依据。
单位是帕斯卡,简称帕,记作 Pa ,即 l 平方米 的面积上作用1牛顿的力为1帕,1N/m2=1Pa。
1kPa=103Pa,1MPa=106Pa 1GPa=109Pa
二、拉(压)杆横截面上的正应力
平面假设
变形前的横截面,变形后仍为平面,仅其位置略作平移,这一假 设称为平面假设。
根据杆件变形的平面假设和材料均匀连续性假设可推 断:轴力在横截面上的分布是均匀的,且方向垂直于横截面。 所以,横截面的正应力σ计算公式为: m n F F F
σ=
N
A
MPa
m
n
FN 表示横截面轴力(N) F A 表示横截面面积(mm2)
40KN
B C
30KN
FN1= 10KN
L
10KN
L
σ1 =
FN1 / A1 = 50 MPa FN2= -30KN σ2 = FN2 / A2 = 100 MPa 轴力图如图:
FN1 FN2
10KN
30KN
FN
x
30KN
由于AB、BC两段面积不同,变形量应分别计算。
由虎克定律
:
FN L L EA
L1 —试件拉断后的标距 A1 —试件断口处的最小横截面面积
L1 L0 伸长率: 100 % L0 A0 A1 断面收缩率 : 100% A0
L0 —是原标距 A0 —原横截面面积。
、 值越大,其塑性越好。一般把 ≥5%的材 料称为塑性材料,如钢材、铜、铝等;把 <5%的 材料称为脆性材料,如铸铁、混凝土、石料等。
剪切和挤压

1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
§3-1 剪切与挤压的概念
剪切的工程实例
剪切件简化如下图
铆钉连接
螺栓连接
销轴连接
平键连接
焊接连接
榫连接
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
和板的材料相同,试校核其强度。
解:1.板的拉伸强度
2.板的剪切强度
Fs F 50103 A 4a 4 0.08 0.01
15.7106 15.7MPa [ ]
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: 常由实验方法确定
二.挤压的强度计算
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算
挤压强度条件:
bs 常由实验方法确定
切应力强度条件:
挤压强度条件: 塑性材料: 脆性材料:
为充分利用材料,切 应力和挤压应力应满足
材料力学第五章剪切和挤压的实用计算

> A[s]:=Pi*d*delta:
> d:=25e-3: tao[u]:=300e6: delta:=10e-3:
> ineq:=evalf(ineq,4);
ineq := 235600.F
答:需要 235.6kN 的冲剪力。
#清零。 #剪切强度条件 #剪切面积。 #已知条件。 #冲孔所需要冲剪力的数值。
图5-2连接轴与轮的键的工程实例
(1)作用于构件某一截面两侧的外力,大小相等,方向相反,作用线相距很近且垂 直于轴线。
(2)处于两个平行外力之间的截面,发生相对错动变形。 把有错动变形趋势的截面为剪切面,剪切面上的内力与截面相切,称为剪力, 用 FS 表示。
图5-3钢杆剪切实例
5.2剪切的实用计算
式中 bs 为材料的许用挤压应力,一般 bs 1.7 ~ 2 。
(a)
(b) (c)
图5-4圆孔及铆钉挤压应力的分布
当连接件与被连接件的接触面为平面时,如键连接,此时挤压面的面积 就是连接与被连接件的接触面积。
对于像销钉一类的连接件,它们的承压面实际上是半个圆柱面。在实用
> SOL1:=solve({eq1},{Fs}): > Fbs:=F: > tau:=Fs/A[s]: > tau:=subs(SOL1,tau): > sigma[bs]:=F/A[bs]: > A[s]:=Pi/4*d^2: > A[bs]:=delta1*d: > delta1:=1.5*delta: > d:=20e-3: delta:=8e-3: F:=15e3: > tau:=evalf(tau,4);
计算中通常是用半个圆柱面在垂直于总挤压作用线平面上的投影作为挤压 面的计算面积。这样得到的挤压应力更接近于挤压应力的最大值,因而可 以使设计更趋于安全。
剪切与挤压的实用计算

剪切与挤压的实用计算1.基本理论剪切是指沿着平面内条线上的应力沿剪切方向相对另一平面移位的力。
材料在受到剪切力作用时,会发生剪切变形并产生剪切应力。
剪切应力τ的计算公式为:τ=F/A其中,τ表示剪切应力,F表示受力,A表示受力面积。
材料的抗剪强度表示了材料在剪切载荷下破坏的抵抗能力,通常用剪切强度σs表示,剪切强度也可以通过横截面上的最大剪切应力来计算,即σs = τmax。
2.剪切计算方法在实际工程中,剪切常常涉及到材料的剪切强度计算、剪切连接件的设计以及剪切抗力的计算等。
(1)剪切强度计算根据材料的剪切性能参数,可以计算材料的抗剪强度。
一般来说,剪切强度与材料的抗拉强度有一定的关系。
对于金属材料来说,一般有以下公式用于计算剪切强度:σs=k·σu其中,σs表示材料的剪切强度,k表示剪切系数,一般取0.6~0.8,σu表示材料的抗拉强度。
(2)剪切连接件设计在机械设计中,常常需要设计剪切连接件,如销轴连接、键连接等。
设计剪切连接件时,需要根据剪切载荷和材料的强度参数来计算连接件的尺寸。
以销轴连接为例,假设在动力传动系统中,传递的扭矩为T,需设计一个销轴连接。
根据材料的抗剪强度和材料的弹性模量,可以计算出销轴的直径d。
d=[16·T/(π·τs)]^(1/3)其中,d表示销轴的直径,T表示扭矩,τs表示材料的抗剪强度。
(3)剪切抗力计算在工程结构设计中,剪切抗力的计算是非常重要的。
常见的剪切抗力计算方法有剪切弯曲理论、剪切流动理论等。
对于简支梁的剪切抗力计算来说,可以使用剪切弯曲理论。
根据弯矩与剪力之间的关系,可以得到梁上任意一点的剪切力V和弯矩M之间的关系:V = dM / dx其中,V表示剪切力,M表示弯矩,dM表示单位长度上的弯矩的变化,dx表示单位长度。
1.基本理论挤压是指沿轴线方向作用于材料上的静态或动态力。
当材料受到挤压力作用时,会发生长度方向的变形,并产生挤压应力。
机械设计中的强度计算方法

机械设计中的强度计算方法机械设计是一门综合性很强的学科,强度计算是其中的重要内容之一。
在机械设计中,强度计算的目的是确保设计的零件能够承受各种静态和动态载荷,并保持其结构完整。
本文将介绍机械设计中常用的强度计算方法。
一、静态强度计算方法静态强度计算是指对设计零件在静态载荷下的强度进行评估和计算。
常用的静态强度计算方法包括材料的强度学理论、挤压、拉伸和剪切等。
1. 材料的强度学理论材料的强度学理论是静态强度计算的基础。
常用的理论有最大应力理论、最大应变理论和能量方法等。
最大应力理论认为当材料受力时,其应力不能超过材料的屈服极限;最大应变理论认为当材料的应变超过其屈服点时,材料将发生破坏;能量方法根据材料在受力时的应力和应变关系来计算强度。
2. 挤压、拉伸和剪切挤压、拉伸和剪切是常见的静态强度计算方法。
挤压计算主要用于轴上的零件,其计算原则是在轴上施加的载荷与零件的强度进行匹配;拉伸计算主要用于拉杆、螺栓等零件,其计算原则是在零件上施加的拉力与零件的抗拉强度进行匹配;剪切计算主要用于薄板、焊缝等零件,其计算原则是在零件上施加的剪力与零件的剪切强度进行匹配。
动态强度计算是指对设计零件在动态载荷下的强度进行评估和计算。
常用的动态强度计算方法包括疲劳寿命计算、冲击载荷计算和振动计算等。
1. 疲劳寿命计算疲劳寿命计算用于评估设计零件在长期循环加载下的寿命。
常用的疲劳寿命计算方法有Wöhler曲线法和应力寿命法。
Wöhler曲线法建立了材料的应力与寿命关系曲线,通过对应力幅与平均应力的比值进行计算;应力寿命法通过疲劳试验获取材料的应力寿命曲线,并根据实际应力进行计算。
2. 冲击载荷计算冲击载荷计算用于评估设计零件在瞬态载荷下的强度。
常用的冲击载荷计算方法有冲击动力学分析法和能量法。
冲击动力学分析法通过分析冲击过程中的应力、应变和位移等参数,以及材料的冲击性能来计算强度;能量法基于能量守恒定律,将冲击能量与零件吸收能量进行比较。
拉伸、剪切、挤压、扭转许用应力

五 弯曲
许用弯曲应力与拉应力的关系:
1 对于薄壁型钢 一般采用轴向拉伸应力的许用值.
2 对于实心型钢 可以略高一点,具体数值可参见有关规范..拉应力与材料的屈服强度有关,
剪应力与抗拉强度关系
我们在设计的时候常常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样...校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力的关系
一 拉伸
钢材的屈服强度与许用拉伸应力的关系
[δ ]= δu/n n为安全系数
轧、锻件
n=1.2—2.2
起重机械
n=1.7
人力钢丝绳
n=4.5
土建工程
n=1.5
载人用的钢丝绳
n=9
螺纹连接
n=1.2-1.7
铸件
n=1.6—2.5
一般钢材
n=1.6—2.5
注::[σj]=(1.7—2)[σ](部分教科书常用)
四 扭转
许用扭转应力与许用拉应力的关系:
1 对于塑性材料 [δn]=0.5—0.6[δ]
2 对于脆性材料 [δn]=0.8—1.0[δ]
轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--/m;对于精密传动,可取[φ]=0.25°—0.5°/M;对于要求不严格的轴,[φ]可大于1°/M计算。
二 剪切
许用剪应力与许用拉应力的脆性材料 [τ]=0.8--1.0[δ]
三 挤压
许用挤压应力与许用拉应力的关系
1 对于塑性材料 [δj]=1.5—2.5[δ]
2 对于脆性材料 [δj]=0.9—1.5[δ]
工程力学剪切与挤压的实用计算

(b×h×L=20 ×12 ×100) d=70mm, m=2KNm []= 60M Pa , [jy]= 100M Pa
m P
2 剪切面与挤压面的判定
AQ bl
Abs
h 2
l
d
h
L
AQ
b
切应力和挤压应力的强度校核 FQ Pbs P
FQ P 57 103 28.6MPa
AQ bL 20 100源自 剪板机的工作原理工件1先落下压住钢板,随后剪刀2落下,剪断钢板;
P 12
钢板的变形
实例2:两块钢板的铆钉连接
F F
连接两块钢板的铆钉
连接两块钢板的鉚钉,给钢板沿两个方向施加外力F。
铆钉的变形
二、连接件受力分析 受力特点:
杆件受到: 两个大小相等, 方向相反、 作用线垂直于杆的轴线, 并且相互平行,
d
例2 电瓶车挂钩由插销联接,如图。插销材料为20 钢, 30 MPa ,直径 d 20mm 。挂钩及被联接的
板件的厚度分别为 t 8mm 和 1.5t 12mm 。牵引
力 P 15kN 。试校核插销的剪切强度。
分析插销受力
确定剪切面
d 2
A 4
计算内力
Fs
P 2
Fs A
15 10 3
Fs A
F / 2n
1 d 2
[ j ]
4
2F
n d 2[ j ] 3.98
jy
Fbs Ajy
F/n t1d
[
jy
]
n F
t1d[ jy ]
3.72
F
F
因此取 n=4.
I
F/n
F/n
F/n F/n
考研复习—工程力学——第5章 剪切和挤压

第5章
5.1 剪切和挤压的概念
5.1.1 剪切
2、结论
在发生剪切变形的连接构件中,发生相对错动的截面称作剪切面。剪切 与轴向拉伸与压缩变形不同,轴向拉压发生在整个构件或一段构件的内部, 而剪切变形只发生在剪切面上,因此,要分析连接件的剪切变形,就必须 弄清剪切面的位置。按照受力与变形的机理,剪切面通常平行于产生剪切 的外力方向,介于反向的外力之间。因此,要正确分析剪切面的位置,首 先必须正确分析连接件的受力,找出产生剪切变形的反向外力,据此分析 剪切面的位置。
第5章
5.2 剪切和挤压的实用强度计算
5.2.1 剪切实用强度计算
1.剪切面上的内力——剪力Q
如图5-5,用平面将铆钉从m-m假想截面处截开,分为上下两部分,任取上 部分或下部分为研究对象。为了与整体一致保持平衡,剪切面m-m上必有与外 力F大小相等、方向相反的内力存在,这个内力沿截面作用,叫做剪力。为了 与拉压时垂直于截面的轴力N相对应,剪力用符号Q表示。由截面法,根据截取 部分的平衡方程,可以求出剪力Q的大小,得出
第5章 剪切和挤压
训教 重点
剪切和挤压的实用强度计算 胡克定律
第5章
剪切和挤压
能力 目标
能够计算工程实例中剪切面和挤压面的面积。 解决机构连接件剪切和挤压强度问题。
第5章
5.1 剪切和挤压的概念
5.1.1 剪切
1、剪切变形: 作用在构件上的外力垂直于轴线,两侧外力的合力大小相等、方向 相反、作用线错开但相距很近。这样的受力所产生的剪切变形的变形特 点是:反向外力之间的截面有发生相对错动的趋势。工程中,把上述形 式的外力作用下所发生的变形称为剪切变形。
Fx 0
F Q 0
Q=F
第5章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力的概念 ●单位面积上内力的大小,称 为应力
●平均应力Pm,如图所 示
△F Pm= △A
正应力σ(垂直于截面的应力)
单位面积上轴力的大小,称为正应力
切应力τ(相切于截面的应力)
单位面积上剪力的大小,称为切应力
应力单位为:1Pa=1N/m2 (帕或帕斯卡) 常用单位:MPa(兆帕),1MPa=106 Pa=1N/mm2
2.相对变形(线应变): 单位长度的变形量。
纵向线应变
L L
横向线应变
′=
d d
纵向线应变和横向线应变均为无量纲量
虎克定律 :实验表明,对拉(压)杆,当应力不超过某一 限度时,杆的纵向变形与轴力FN 成正比,与杆长L成正比,与 横截面面积A 成反比。这一比例关系称为虎克定律。引入比 例常数E,其公式为:
∑Fx=0 FN1-F1=0 得:FN1=F1=2.5kN
2)求BC段轴力,从2-2截面处截开, 取右段,如图所示
∑Fx=0 –FN2-F3=0 得:FN2= - F3=-1.5kN
(负号表示所画FN2方向与实际相反)
3)右图为AB杆的轴力图
第二节 拉压杆横截面上的应力、
应变及胡克定理
一、杆件在一般情况下应力的概念
●变形
构件在载荷作用下,其形状和尺寸发生变化的现象
●变形固体的变形通常可分为两种:
(1)弹性变形---载荷解除后变形随之消失的变形 (2)塑性变形---载荷解除后变形不能消失的变形
●材料力学研究的主要是弹性变形,并且只限于弹性小变形,
即变形量远远小于其自身尺寸的变形
变形固体的基本假设
(1)均匀连续性假设
内力在截面上的集度称为 应力(垂直于杆 横截面的应力称为正应力,平行于横截面的 称为 切应力 ) 。应力是判断杆件是否破坏的 依据。
单位是帕斯卡,简称帕,记作 Pa ,即 l 平方米 的面积上作用1牛顿的力为1帕,1N/m2=1Pa。
1kPa=103Pa,1MPa=106Pa 1GPa=109Pa
二、拉(压)杆横截面上的正应力
轴力: 拉(压)杆的内力。 由平衡方程可求出 轴力的大小 :
m F m F F′N FN F F
FN F
规定:FN的方向离开截面为正 (受拉),指向截面为负(受压)。
以上求内力的方法称为截面法,截面法是求内力 最基本的方法。
注意:截面不能选在外力作用点处的截面上。 轴力图: 用平行于杆轴线的x坐标表 示横截面位置,用垂直于x 的坐标FN 表示横截面轴力的 大小,按选定的比例,把轴 力表示在x -FN 坐标系中, 描出的轴力随截面位置变化 的曲线,称为轴力图。 m F F
m
FN
x
例1 已知F1=20KN,F2=8KN,F3=10KN,试用截面法求图示杆件 指定截面1-1、2-2、3-3的轴力,并画出轴力图。 解:外力FR,F1,F2, F3将 杆件分为AB、BC和CD三 段,取每段左边为研究对 象,求得各段轴力为: 1 F2 F2 A 1 F1 B FN1 2 2 F3 C 3 D FR 3
假设材料无间隙、均匀地充满物体空间,各部分的性质相同。
(2)各向同性假设 假设材料沿各个方向的力学性能是相同的。 (3)小变形假设 设定材料在外力作用下的变形与其本身尺寸相比极小,可 略去不计
第五章 拉伸(压缩)、剪切与挤压的强度计算
材料的力学性能
是指材料在外力作用下其强度和变形等方面表现出来的性质。
FN1=F2=8KN FN2=F2 - F1 = -12KN FN3=F2 + F3 - F1 = -2KN
轴力图如图:
F2
F2 FN A 8KN
F1
F1
FN2
F3 FN3
B -12KN
C
D
x
-2KN
例2 F1=2.5kN,F3=1.5kN, 画杆件轴力图。
解:1)截面法求AC段轴力,沿截
面1-1处截开,取左段如图所示
A—截面面积
第一节 轴向拉伸与压缩的概念、截面法、 轴力与轴力图
发生轴向拉伸与压缩的杆件一般简称为拉(压)杆。
拉压杆受力特点:
外力(或外力的合力)沿 杆件的轴线作用,且作 用线与轴线重合。
F
F
变形特点 :
杆沿轴线方向伸长(或 缩短),沿横向缩短(或 伸长)。
F
F
一、内力与用截面法求内力
内力:
外力引起的杆件内部相互作用力的改变量。
FN L L EA
或
E
E 为材料的拉(压)弹性模量,单位是Gpa
FN、E、A均为常量,否则,应分段计算。 由此,当轴力、杆长、截面面积相同的等直杆,E 值越大, L就越小,所以 E 值代表了材料抵抗拉(压)变 形的能力,是衡量材料刚度的指标。
例3 如图所示杆件,求各段内截面的轴力和应力,并画出 2 轴力图。若杆件较细段横截面面积 ,较粗 A1 200mm 2 段 A2 300mm ,材料的弹性模量E 200GPa ,L 100mm 求杆件的总变形。 解:分别在AB、 10KN BC段任取截面, A 如图示,则:
平面假设
变形前的横截面,变形后仍为平面,仅其位置略作平移,这一假 设称为平面假设。
根据杆件变形的平面假设和材料均匀连续性假设可推 断:轴力在横截面上的分布是均匀的,且方向垂直于横截面。 所以,横截面的正应力σ计算公式为: m n F F F
σ=
N
A
MPa
m
n
பைடு நூலகம்
FN 表示横截面轴力(N) F A 表示横截面面积(mm2)
第二篇 材料力学
材料力学的研究模型
●材料力学研究的物体均为变形固体,简称“构件”; 现实中的构件形状大致可简化为四类,即杆、板、 壳和块。 ●杆---长度远大于其他两个方向尺寸的构件。杆的几 何形状可用其轴线(截面形心的连线)和垂直于轴 线的几何图形(横截面)表示。轴线是直线的杆, 称为直杆;轴线是曲线的杆,称为曲杆。各横截面 相同的直杆,称为等直杆。 ●材料力学的主要研究对象就是等直杆。
构件的承载能力:
强度---构件抵抗破坏的能力 刚度---构件抵抗变形的能力 稳定性---构件保持原有平衡状态的能力
内力的概念
构件在受外力作用时,形状和尺寸将发生变化,其内部质 点之间的相互作用力也将随之改变,这个因外力作用而引起的 构件内部相互作用力的改变量,称为附加内力,简称内力。
正应力、切应力
FN
三、 变形与应变
1.绝对变形 : 纵向变形和横向变形统称为绝对变形。
规定:L—等直杆的原长
d—横向尺寸 L1—拉(压)后纵向长度
d1—拉(压)后横向尺寸
纵向变形 : L 横向变形:
L1 L
d d1 d
拉伸时纵向变形为正,横向变形为负;
压缩时纵向变形为负,横向变形为正。
拉(压)杆的变形