初一数学上有理数与无理数的概念和练习(有详细的答案!)
乐乐课堂初一数学实数运算

乐乐课堂初一数学实数运算乐乐课堂:初一数学实数运算实数运算是数学学习的基础,也是数学应用的重要工具。
在初一数学中,实数运算涉及到有理数的运算、无理数的运算、实数的概念和运算等。
本文将通过实例和练习题,帮助同学们掌握初一数学实数运算的基本方法和技巧。
一、有理数运算1. 概念和性质:有理数运算包括加法、减法、乘法、除法四种基本运算。
在进行有理数运算时,需要注意符号的判断和运算法则的掌握。
2. 加法法则:同号两数相加,取相同的符号并把绝对值相加;异号两数相加,取绝对值较大的符号并把绝对值相减;互为相反数的两数相加得0;一个数与0相加仍得原数。
3. 减法法则:减去一个数等于加上这个数的相反数。
4. 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
5. 除法法则:除以一个不为0的数等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
二、无理数运算1. 概念和性质:无理数是无限不循环小数,如π等。
在进行无理数运算时,需要注意小数点的位置和运算结果的精度。
2. 运算技巧:对于无理数的运算,可以采用分数指数幂的概念和性质,将其转化为有理数的运算或者实数的乘方运算。
三、实数概念和运算1. 概念:实数包括有理数和无理数,是数学中的基本概念之一。
实数可以表示长度、面积、体积等实际问题的数量关系。
2. 运算规则:实数的运算规则与有理数相同,但在处理无理数时需要注意小数点的位置和运算结果的精度。
四、练习题为了巩固初一数学实数运算的基本方法和技巧,下面提供一些练习题供同学们参考:1. (选择题)下列各式中正确的是()A. (-3) + (-2) = - 5 B. (-3) + ( +2) = - 5 C. ( + 3) + ( + 2) = - 1 D. ( - 3) + ( - 2) = - 5 2. (填空题)计算(-4)÷( - 3)的结果是()A. 1 B. - 1 C. -4 D. -4.3( )是真分数,()是假分数.()的绝对值最小.A.B.C.D. 3. (解答题)已知|a|=3,|b|=2,且a>b,求a、b的值.五、总结初一数学实数运算包括有理数的运算、无理数的运算、实数的概念和运算等基本内容。
无理数的概念是什么

无理数的概念是什么
无理数是指实数范围内不能表示成两个整数之比的数。
简单的说,无理数就是10进制下的无限不循环小数,常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
扩展资料
有理数和无理数的区别
(1)性质区别:
有理数是两个整数的'比,总能写成整数、有限小数或无限循环小数;无理数不能写成两个整数之比,是无限不循环小数。
(2)结构区别:
有理数是整数和分数的统称;无理数是所有不是有理数的实数。
(3)范围区别:
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。
向你推荐的相关文章
相关文章列表
微信扫码分享。
有理数与实数中考专题复习-含答案

有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。
0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。
【绝对经典】初一数学有理数30题含详细答案

30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()
七年级有理数概念题

七年级有理数概念题有理数是整数和分数的统称,包括正整数、负整数、零以及正分数、负分数。
在学习有理数概念题时,需要掌握有理数的加减乘除运算规则、有理数的大小比较、有理数的绝对值等基本概念。
下面将为您介绍一些七年级有理数概念题的相关内容:1. 有理数的加减法:有理数的加减法遵循以下规则:- 同号相加,取绝对值相加,结果的符号与原数相同。
- 异号相加,取绝对值相减,结果的符号取绝对值较大的数的符号。
通过练习一些有理数的加减法题目,可以帮助学生掌握有理数的加减法规则,提高计算能力。
2. 有理数的乘法:有理数的乘法规则为:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
在乘法运算中,学生需要注意符号的运用,通过练习有理数的乘法题目,巩固乘法规则,提高计算水平。
3. 有理数的除法:有理数的除法也有相应的规则:- 除数不为0,被除数为0时,商为0。
- 同号相除,结果为正数。
- 异号相除,结果为负数。
在进行有理数的除法运算时,学生需要注意除数不能为0的情况,熟练掌握有理数的除法规则,避免出现计算错误。
4. 有理数的大小比较:在比较有理数的大小时,可以通过绝对值的大小来判断,绝对值大的数较大,绝对值小的数较小。
同时,注意有理数的正负情况,负数的绝对值大于正数的绝对值。
通过练习有理数的大小比较题目,可以帮助学生理解有理数的大小关系,提高比较能力。
5. 有理数的绝对值:有理数的绝对值是数的绝对值,即数到原点的距离,绝对值为正数,不考虑数的符号。
绝对值的概念在有理数的运算中有着重要的作用,通过练习有理数的绝对值题目,可以帮助学生理解绝对值的概念,提高数的理解能力。
通过练习以上的有理数概念题目,可以帮助学生巩固有理数的基本概念,提高有理数的运算能力,加深对数学知识的理解。
希望以上内容能对您有所帮助,有任何疑问,欢迎继续咨询。
人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.若的相反数是3,5,则的值为_________.【答案】2或-8【解析】因为的相反数是3,所以.因为,所以.所以的值为2或-8.2.某初中校为每个学生编号,设定末尾用1表示男生,用2表示女生,若201103202表示“2011年入学的3班20号同学,是位女生”,则2012年入学的5班13号男生的编号是.【答案】201205131.【解析】根据编号的方法,前四位表示入学年份,第五、六位表示班级,第七、八位表示学号,末尾数表示性别,然后写出该同学的编号即可.2012年入学的5班13号男生的编号是:201205131;故答案为:201205131.【考点】用数字表示事件.3.(1)问题:你能比较和的大小吗?为了解决这个问题,首先写出它的一般形式,即比较和的大小(是正整数),然后我们从分析,,,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):,,,,,…(2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是什么?(3)根据上面的归纳猜想,尝试比较和的大小.【答案】(1)<,<,>,>,>;(2)当时,<,当≥3时,>;(3)>.【解析】仔细分析所给各组数的大小即可得到规律,再应用这个规律解题即可.(1),,,,;(2)当时,<,当≥3时,>;(3)>.【考点】找规律-数字的变化点评:解答找规律的题目要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找到“<”、“>”的临界点.4.下列式子一定成立的是()A.x4+x4=2x8B.x4·x4 =x8C.(x4)4=x8D.x4÷x4=0【答案】B【解析】A.错误:x4+x4=2x4;C.错误:(x4)4=x16 D.错误:x4÷x4=1,选B正确。
【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
初一数学有理数无理数题目

2.2有理数与无理数同步精练一、单选题1.下列说法中,正确的个数有()①-3.14既是负数,又是小数,也是有理数;②-25既是负数,又是整数,但不是自然数;③0既不是正数也不是负数,但是整数;④0是非负数.A.1个B.2个C.3个D.4个2.下列说法正确的个数有()①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A.1个B.2个C.3个D.4个3.下列各数:1.414,π,13-,0,其中是无理数的为()A.1.414B.πC.13-D.04.对于 3.271-,下列说法不正确的是()A.是负数,不是整数B.是分数,不是自然数C.是有理数,不是分数D.是负有理数,且是负分数5.下列说法正确的是()A.有理数包括正有理数和负有理数B.2a是正数C.正数又可称为非负数D.有理数中有绝对值最小的数6.下列实数是无理数的是()A.-2B.16C D7.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.不是正数的数一定是负数8.下列四个数中,是正整数的是()A.﹣1B.0C.12D.1 9.下列实数中的无理数是()A BC D .22710.在5-,2.3,0,π,123-五个数中,非负的有理数共有().A .1个B .2个C .3个D .4个11.下列实数为无理数的是()A .-5B .72C .0D .π12.在3-,3π,1.62,0四个数中,有理数的个数为()A .4B .3C .2D .1二、填空题13.是整数而不是正数的有理数是______.14.在-42,+0.01,π,0,120这5个数中,正有理数是___________.15.在有理数﹣0.5,﹣3,0,1.2,2,312中,非负整数有____.16.在 3.5+,0,11,2-,23-,0.7-中,负分数有个______个.17.写出两个符合条件:是正数但不是整数的数,这两个数可以是____.三、解答题18.如图所示,将下列各数填入相应的集合圈内:12-,﹣7,+2.8,﹣900,﹣312,99.9,0,4.19.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4.(1)正数集合:{}(2)整数集合:{}(3)分数集合:{}(4)负数集合:{}(5)正整数集合:{}(6)负分数集合:{}20.请把下列各数填入相应的集合中:﹣(+4),|﹣3.5|,0,3,10%,2018,+(﹣5),﹣2.030030003…(每两个3之间逐次加一个0).正分数集合:{…};负有理数集合:{…};非负整数集合:{…};参考答案1--10DBBCD DBDCB11--12DB13.非正整教殊性.14.+0.01,120.15.0,216.217.12和13(答案不唯一).键.18.解:根据负数的定义,负数有1-2、﹣7、﹣900、﹣312;根据整数的定义,整数有﹣7、﹣900、0、4.根据正数的定义,正数有+2.8、99.9、4.∴既是负数又是整数的有﹣7、﹣900;既是整数又是正数的有4.19.(1)解:正数集合:{37+,0.8,12,17%,0.4}(2)整数集合:{-2,12,0}(3)分数集合:{37+,0.8,-2.1,375-,17%,0.4}(4)负数集合:{-2,-2.1,375 -}(5)正整数集合:{12}(6)负分数集合:{-2.1,375 -}20.正分数集合:{|﹣3.5|,10%,…};负有理数集合:{﹣(+4),+(-5),…};非负整数集合:{0,2018,…};。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数和无理数
1.什么是有理数?我们把能够写成分数形式
n
m (m 、n 是整数,n≠0)的数叫做有理数。
2.有理数的分类?
整数和分数都可以写成分数的形式,它们统称为有理数。
零既不是正数,也不是负数。
有限小数和无限循环小数是有理数。
2.什么是无理数?①无限②不循环小数叫做无理数。
3无理数的两个前提条件是什么?
(1) 无限(2)不循环
4两者的区别是什么?
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-6
1,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。
答:无理数有:3
π,0,3.101001000……,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-6
1,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r
2:下列说法正确的是:( )
A.整数就是正整数和负整数
B.分数包括正分数、负分数
C.正有理数和负有理数统称有理数
D.无限小数叫做无理数 答:B 因为:A 、C 的答案里缺少 0这一部分 D ,无限小数循环小数是有理数,
无限不循环小数才是无理数
3:我们把能够写成分数形式n
m (m 、n 是整数,n≠0)的数叫做 有理数 。
4:有限小数和无限循环小数都可以化为分数,他们都是有理数。
5:无限不循环小数叫做无理数。
6:无理数与有理数的差都是有理数;答:错,如3π-0=3
π 7:无限小数都是无理数;答:错,如:0.333…
8:无理数都是无限小数;答:对,无理数的两个前提条件之一无限
9:两个无理数的和不一定是无理数。
答:对,3π+(-3
π)=0 10:有理数不一定是有限小数。
答:对,如:0.333…
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。