浅谈输电线路防风偏的措施 向世聪

合集下载

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施
电力 系统 的建 设 。 众所周知 , 2 2 0 k V输 电线 路 通 常 都 是 设 置 在 户 外 的 , 一 旦 天 气 比较 恶 劣 时 , 特别是大风天气 时, 很 容 易 导 致 输 电线 路 出现 风 偏 故障 , 严重地影 响 2 2 0 k V输 电线 路 的 稳定 性 , 从 而 造 成 电弧烧 伤 及 线 路 短 路 等现 象 。如 果 出 现 风 偏 故 障 , 很 有 可 能导 致 输 电线 路 中 断 , 从 而 使
电力 系统 的稳 定 性 受 到严 重 的影 响 , 使 人们 的 正 常 工作 与 生 活 受 到 严 重 影 响 。
【 关键词 】 2 2 0 k V; 输 电线路 ; 风偏 ; 故障 ; 改造 【 中图分类号 】 T M 7 5 【 文献标识码 】 A
【 文章编号 】 1 0 0 6 — 4 2 2 2 ( 2 0 1 7 ) 0 9 — 0 1 6 7 — 0 2
若在 2 2 0 k V输 电线 路 风 偏 故 障 出现 时 未 及 时 消 除 .或 者 出现 短路现象 , 则有 可 能会 扩 大 事故 的 发 生 范 围 , 致 使 出现 更 加 恶 劣 的 影 响 。2 2 0 k V输 电 线路 风 偏 故 障 种 类 中最 为常 见 的 就 是 输 电线 对 杆 塔 的放 电[ 4 1
引 言
输 电线路 中比 较 常 见 的 一 种 故 障 种 类 就 是 2 2 0 k V 输 电 线 路风偏故 障. 其会 严 重 的 影 响 电 力 系统 的安 全 性 与 稳 定 性 , 特
别 是 天 气 比较 恶劣 时 .更 加 容 易 出现 2 2 0 k V 输 电 线 路 风 偏 故
间 隙进 行 检 测 与 计 算 . 同时 还 应 当对 导 线 与周 边 构 筑 物 、 建 筑

浅析高压架空输电线路中风偏的控制措施及监测

浅析高压架空输电线路中风偏的控制措施及监测

浅析高压架空输电线路中风偏的控制措施及监测架空输电线路设计中风偏影响线路走廊宽度,了解输电线路中风偏的影响因素,并提出了风偏控制的几种措施,以减小风偏,达到减小线路走廊,做出合理的输电线路设计方案。

标签:高压;架空输电线路;风偏;措施随着城市的发展,城镇化进程的加快,高压架空输电线路在线路路径选择中遇到的问题越发突出。

架空输电线路经过现有架空线路密集或征地困难的地区时,线路走廊往往十分紧凑。

受线路走廊影响,在线路设计过程中就需要根据实际情况,采用合理的方法控制导线风偏,从而降低运行风险、减小线路走廊用地,做出合理的设计方案,尽量减少或避免因线路走廊过宽而导致的拆迁成本或青赔成本的增加,从而节省工程投资。

一、架空线路设计中风偏的影响根据规范要求,架空线路设计时,架空线路走廊除了铁塔基础占地和导线边线间距离占地以外,还应考虑导线对地面、建筑物、树木、道路、河流、管道、索道及各种架空线路的距离。

包括,水平距离、垂直距离和净空距离。

导线对跨越物的垂直距离与导线的最大弧垂有关,导线对跨越物的水平距离和净空距离均与最大风偏有关。

同时,最大风偏又与导线的最大弧垂有关。

因此架空线路设计中线路走廊受导线风偏的影响很大。

二、风偏的定义及风偏的危害风偏是一种由风引起的导线摆动现象,风偏的形成一般取决于两个方面的因素,即风激励和线路结构与参数。

输电线路风偏对线路安全运行极具威胁而又颇为复杂,由于风偏的角度很大,轻则造成相间闪络、金属夹具损坏,重则造成线路跳闸停电、拉倒杆塔、导线折断等严重事故,从而造成重大的经济损失。

因此输电线路设计中对风偏的控制十分必要。

三、风偏的计算四、控制风偏的措施通过风偏角和风偏距离的计算公式分析可知,导线的风偏角主要与风速和导线自重及导线几何尺寸有关,绝缘子串的风偏角主要与绝缘子串的长度和重量、重锤重量、导线绝缘子片数和受风面积、弧垂大小、风速、导线几何尺寸、等有关。

结合输电线路设计中可控制因素分析,控制风偏从控制导线弧垂和控制绝缘子串风偏考虑,主要有以下几种方法:(1)减小档距在同一气象条件下,减小档距可以减小弧垂,从而减小风偏,从而达到控制线路走廊的目的。

输电线路防风害措施和方法

输电线路防风害措施和方法

输电线路防风害措施和方法
随着气候变化日益严重,大风现象也在频繁发生,这对于输电线路的安全运行带来了
极大的威胁。

为了保障输电线路的运行,我们需要采取相应的防风害措施和方法。

一、输电线路风险识别
针对不同地区,不同地形和不同季节,对输电线路进行风险识别,提前制定相关的防
风措施和应急预案是非常重要的。

二、输电线路杆塔结构加固
传统的输电线路杆塔结构较为单薄,很容易受到大风的侵袭,导致倒塌和损坏。

因此,在杆塔的设计和建造过程中,应该优先考虑结构的稳定性和抗风性能,增加杆塔的重量和
地基的深度,从而增加杆塔的稳定性和抗风能力。

三、导线绝缘和保护
导线是输电线路的核心组成部分,对导线做好防护措施也是非常重要的。

可以采用增
加导线沟道的方式,将导线更好的固定在杆架上,增强导线的稳定性和耐风性能。

同时,
在导线的绝缘处可以添加耐热层,提高绝缘强度和防风能力。

四、预警监测
预警监测是保护输电线路的重要手段,可以利用气象预报技术和现代化监测设备实时
监测气象状况,根据天气变化及时调整防风措施,保障线路的安全运行。

五、应急预案
在进行输电线路防风害措施的同时,还需要制定应急预案,在发生突发天气情况时能
够及时采取措施进行抢修,减少损失,保障供电的连续性和稳定性。

综合来看,输电线路防风害措施和方法的核心是提高线路的抗风性能,结合地形和气
象条件进行杆塔结构加固、导线绝缘和保护、预警监测、应急预案等措施,确保输电线路
的安全运行和稳定供电。

输电线路防风害措施和方法

输电线路防风害措施和方法

输电线路防风害措施和方法【摘要】输电线路在风场环境中容易受到风害影响,因此需要采取一系列的防风措施和方法。

首先要了解风场环境的特点,包括风速、风向等因素,然后根据这些特点进行输电线路的设计考虑。

预防措施包括选择合适的材料、加固结构等,同时制定紧急处理方案以应对突发风灾。

维护管理措施也至关重要,包括定期检查、维修等措施。

输电线路防风害措施和方法的重要性不言而喻,只有做好防风工作才能确保电网安全稳定运行。

未来发展趋势可能是在材料和技术方面的创新,以提高输电线路的抗风能力。

对输电线路防风害措施和方法的重视和实践至关重要,只有不断完善和提升防风措施,才能更好地保障输电线路的稳定运行。

【关键词】输电线路、防风害、风场环境、设计考虑、预防措施、紧急处理方案、维护管理、重要性、发展趋势、总结。

1. 引言1.1 输电线路防风害措施和方法输电线路防风害措施和方法是指针对输电线路在高风环境下可能遭受的破坏和损坏,采取有效的措施和方法进行预防和处理。

在输电线路建设和运行过程中,防风工作是至关重要的环节,因为风力是一种常见且具有破坏性的自然力量,能够对输电线路造成不可估量的危害。

科学有效的防风措施和方法的制定和实施对于保障输电线路的正常运行和延长其寿命具有重要意义。

随着科技的不断发展和进步,针对输电线路防风害的措施和方法也在不断完善和更新。

通过对风场环境特点的深入研究和分析,结合输电线路设计、预防措施、紧急处理方案和维护管理措施等方面的考虑,制定出更加系统和全面的防风方案,以应对不同风场环境条件下可能出现的风害问题。

在未来,随着气候变化的加剧,高风环境下输电线路防风工作将变得更加重要和紧迫。

加强对输电线路防风害措施和方法的研究和实践工作,不断提高防风能力和水平,将有助于确保输电线路的安全稳定运行,为能源输送和社会发展提供更加可靠的保障。

2. 正文2.1 风场环境特点风场环境特点是指在输电线路周围的气象条件和地理特征。

风场往往位于地势较高的地区,且风速较大,这会给输电线路造成较大的风害风险。

输电线路防风害措施和方法

输电线路防风害措施和方法

输电线路防风害措施和方法摘要:近几年来,台风、飑线风、暴风雪等各类灾害性天气频发,输电线路抗风设计考虑不够精细,再加上输电线路走廊通道隐患日益增多,导致输电线路风害日趋严重。

因此,深入研究输电线路风害的产生原因和机理,制定有针对性的措施,提高输电线路的抗风能力,通过技术和管理措施减少风害引起的线路跳闸和灾害,意义重大。

关键词:输电线路;防风害;措施;方法一、风偏事故现象和原因1.1杆塔发生倾斜或歪倒由于风力过大,超过了杆塔的机械强度,杆塔会发生倾斜或歪斜而造成杆塔损坏或停电事故,主要原因如下:①风力超过杆塔设计强度。

②杆塔部件腐蚀,强度降低。

③杆塔在修建后,由于基础未夯实,经过一段时间后,基础周围的土壤可能腐蚀,不均衡下沉,从而引起杆塔歪斜。

④由于冬季施工,回填土是冻结的土壤,到了春天土壤开始解冻,使基础附近的土壤松动,造成杆塔歪斜。

⑤杆塔各连接部分松动或拉线锈蚀,使杆塔发生故障。

1.2导线对地电位体或对其他相导线发生放电在风的作用下,导线与地电位体或与其他相导线之间的空气间隙小于大气击穿电压而造成放电事故,主要原因和现象如下:①架空线路导线,避雷线呈悬链状。

当风速超过设计时,会造成导线对塔身放电,直线杆塔绝缘子串在水平风荷载的作用下产生导线摇摆,使其与地电体(如杆塔、拉线等)之间的空气间隙减少,形成单相接地短路故障。

②线路施工单位、竣工验收单位和运行管理单位没有全部复核导线的弧垂和线路通道两侧的树木、建设计风速,但由于风的作用,使导线和塔身安全间隙不够,而形成单相接地短路故障。

1.3绝缘子串摇摆角度的确定架空线路导线水平偏移的因素主要有水平风荷载、垂直档距、水平档距、绝缘子串长度等。

二、风害故障的分类按照风害导致输电线路损害的结果,风害故障可分为倒塔断线、风偏闪络、异物短路等几类。

2.1倒塔断线故障输电线路杆塔、导线、地线等元件受到风力作用,导致荷载超过杆塔或导线极限荷载造成杆塔倒塌、导地线断线故障。

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施摘要:随着我国环境问题的持续恶化,气候天气也呈现出复杂的特性,一些国家的基础设施都受到天气的影响而无法获得有效的进展,其中受影响最大的莫过于电力系统建设。

通常来说,220kV输电线路都是安装在户外的,因此,一旦遇到大风天气时,很容易发输电线路的风偏故障,对输电线路的安全性及稳定性造成严重的影响,进而出现线路短路以及电弧烧伤等现象,不利于电力系统稳定发展,对人们的生产生活也带了一定的阻碍。

本文以广元电网220kV赤天一线为例,提出了输电线路风偏故障及防风偏改造措施。

关键词:220kV;输电线路;风偏;故障;改造220kV输电线路中出的风偏故障也是输电线路中较为常见的一种故障种类,一旦出现故障现象,就会使电力系统的稳定性及安全性造成严重的影响,尤其遇到气候条件较为恶劣的时候,经常会造成220kV输电线路风偏故障现象。

进而影响人们正常生活工作,因此,应采取有效的措施来对220kV输电线路风偏故障进行改造,具有一定的现实意义。

一、220kV输电线路风偏故障的规律和类型1. 220kV输电线路风偏故障的定义所谓220kV输电线路风偏故障指的是在强风的引导下,输电线路的导线向周边树木以及建筑物等进行放电,也可能是与其他导线有关的空气间隙较小,进而出现较大的击穿电压,使得220kV输电线路出现跳闸现象。

一般情况下,如果没有及时的对220kV输电线路风偏故障进行及时的预防,进而造成短路的现象,那么事故很有可能会因没及时处理而使事故范围加大,影响面更广。

而输电线路对杆塔的放电也是220kV输电线路风偏故障中较为常见的故障类型。

2. 220kV输电线路风偏故障规律在气候环境较为的情况下,尤其是遇到大风、大雾及暴雨天气环境下,极易出现220kV输电线路风偏故障,且强风的来袭必然会出现暴雨等一些强对流天气。

一旦局部出现强风天气,且风力风速都较为强劲的情形下,极易产生220kV输电线路风偏故障,与此同时,220kV输电杆塔也会受大风的影响出现位置偏移的现象,在空气放电间隙缩短时,强风所带来的强对流天气也会使导线和杆塔间的距离变小,使得放电频率增加,导致220kV输电线路的风偏故障,不利于220kV输电线路安全稳定运行。

输电线路防风害措施和方法

输电线路防风害措施和方法

输电线路防风害措施和方法在输电线路建设过程中,风害是一个较为常见的问题,因为它会对输电线路造成不可逆转的破坏,给输电系统带来隐患。

而输电系统的稳定运行对于现代社会来说具有重大意义,为了避免风害的影响,我们需要采取一些措施和方法来加强风害防范,使输电线路更加的安全可靠。

一、风害的类型在防风害前,首先要了解风害的类型,以便更好的制定防范措施。

1、风倒塔:在强风作用下,输电塔会倾斜或倒塌,导致输电线路中断。

2、风偏线:强风作用下,输电线路会侧向摆动,导致线间距发生变化,若超出安全范围则可能造成接触故障。

3、风断丝:在强风作用下,输电线路中的绝缘子受力过大,绝缘子与导线之间会发生断裂或接触不良的现象。

二、预防措施1、选择适合的线杆材料输电线路的杆塔是抵御风害的重要基础设施,因此选择合适的杆塔材料显得尤为重要。

目前,常用于输电线路建设的杆塔材料比较多样化,如混凝土、钢材、铸铁等。

对于防风害来说,应该选择抗风能力强的杆塔材料,如半螺旋型钢材、桥式杆塔和铁塔等材料,以保证线路在强风的情况下仍然稳定运行。

2、建立防风、防雷地网风害和雷击是输电线路的两个常见问题,因此在建设线路时可同时建立防风、防雷地网。

通过地下钢筋或铜板的互联,把输电线路地面接地。

地网的作用是使输电线路接地电阻变小,防止雷击,同时保证输电线路的稳定性。

3、加强线路维护输电线路的维护对于预防风害来说也非常重要。

在高风区建立定期检查机制,尤其是检查杆塔的固定情况和线路的张力,可以避免在强风下杆塔倒塌或者导线断裂等情况的出现,保障了线路的稳定运行。

4、加强新建线路设计在新建线路的设计之初,应考虑到输电线路的稳定性问题。

在设计时,应该选择能抵御强风的杆塔类型和线杆型号,合理规划输电线路的走向和高度。

另外,建议对于新建线路采用多种复合材料技术,加强横向和纵向的负载能力,使运行的该线路安全可靠。

三、检修方式在日常检修中,我们还需采取以下措施:1、尽量集中检查线路,以确保安全和检查的便利性。

输电线路防风害措施和方法

输电线路防风害措施和方法

输电线路防风害措施和方法摘要:10kV配网线路是连接电力用户与电力系统的关键部分,因为10kV配网线路有着点多、线长、面广的特点,运行环境复杂。

所以10kV配网线路安全运行能力就会对整个电力企业可持续化发展有着重要作用。

随着经济社会不断发展下,电网供电可靠性更加重要,因为地理原因,特别是沿海地区的大风、台风天气频繁发生,对于10kV配网线路破坏性影响更高。

所以,我们必须加强对10kV配网架空线路的防风加固,提升防风加固技术,采取切实可行的防风加固措施,以减少大风对架空线路的影响,进一步提高架空线路的可靠性和安全性。

下面就从作者实际工作经验入手,分析输电线路的防风害措施。

关键词:输电线路;防风害;措施前言:随着社会进步,我国的经济发展也有了创新。

台风是常见的自然灾害之一,会严重影响配电网基础设施的正常运行。

通过加固系统元件(如导线和电杆)提升其抗灾强度,是降低由极端天气事件所造成损失的一种有效方法。

为此,提出了考虑经济性约束的配电网基础设施灾前加固策略。

首先对极端天气自然灾害发生、元件脆弱性、灾害对配电网影响进行建模,并利用蒙特卡罗仿真方法评估配电网的抗灾能力。

然后,将配电网加固策略问题作为优化问题,综合考虑总加固预算约束、负荷的重要度和配电网元件脆弱性,并通过粒子群优化算法求解最优加固策略。

最后,将所提出策略应用于改进的18节点配电系统以验证其有效性。

1 安装防风拉线在直线杆中安装防风拉线是提高架空电力线路防风能力的主要措施,对于具备安装防风拉线的直线杆来说,在对其进行防风加固时,应该首先选择安装防风拉线的方式进行加固处理。

直线杆需要满足《10kV直线杆防风拉线配置表》中电杆强度、埋藏深度、安装角度以及拉线型号等方面的要求。

首先,应该使用镀锌钢绞线作为拉线,确保拉线的截面≥50mm2,且电杆与拉线之间的夹角应在45°,最低不可以低于30°。

其次,对于横穿道路或者跨越的拉线来说,应确保其对路面中心的垂直距离>6m,且拉线棒的直径应≥16mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈输电线路防风偏的措施向世聪
发表时间:2019-06-25T09:41:28.100Z 来源:《基层建设》2019年第7期作者:向世聪[导读] 摘要:现阶段,随着社会不断发展,我国电网技术也不断快速发展,电网建设规模快速扩张,输电走廊变得越来越紧张。

国网江苏省电力有限公司泗洪县供电分公司江苏泗洪 223900摘要:现阶段,随着社会不断发展,我国电网技术也不断快速发展,电网建设规模快速扩张,输电走廊变得越来越紧张。

在对输电线路进行建设的过程里需要经历越来越复杂的地形和恶劣的天气条件。

同时,因为自然环境条件对输电线路的影响,输电线路的发生风偏事故的概率大大增加,严重影响到了输电线路的安全性和稳定性。

输电线路的风偏闪络过程主要包括以下形式:导线对铁塔部件放电,导线
放电到周围物体。

通过对输电线路走廊进行有效地清理,可以解决导线向周围物体的放电。

导线向杆塔构件放电比较的常见,有必要采取针对性地防犯措施。

因为在多风区域中的风的持续时间通常很长,所以在线路发生风偏故障的重新闭合操作期间的放电间隙仍然小于安全的距离。

另外,当执行重合闸时,系统激活过电压并再次在间隙放电。

所以,如果在线路上发生由风引起的事故,则重合闸的成功率低,这会对线路的可靠性产生较大的影响。

关键词:输电线路;防风偏;措施引言
在人们生活水平的持续攀升的背景下,人们对电能的需求量也不断攀升,这些现实情况促进着电力行业的快速发展,也加速了电网的形成,同时国家电网也更加注重向超高压的方向发展,超高压输电线能够实现大容量以及远距离传输,并且能够降低传输的成本,减少线路的损耗,是经济效益非常显著的运输方式。

但是由于我国疆土辽阔,地理环境特殊,使得超高压输电线路的建设以及维护存在诸多困难,尤其是大风天气对输电线路的影响非常显著。

因此,为了输电线路的能够长久发展,必须对风偏故障进行分析,对现在已有的经验进行总结,提出相应的预防或者解决风偏现象的措施,以促进输电线路的健康长久发展,满足人们对电能的需求。

1风偏概述
风偏是这样一种现象,其中架空输电线路被风移动并且到塔身的距离变得小于最小安全距离,这可能导致线路放电跳闸发生故障。

如果三相线移位的方向相同,并且每相的线之间的相对距离基本不变,从而没有相间放电的事故发生。

如果导线由于除冰和风而在不同时间被冰覆盖,则线路的位移导致被归类为线路跳动。

1.2输电线路风偏发生的原因
针对近年来发生的风偏跳闸事故,国内外相关领域的专家进行了研究与分析,认为线路风偏闪络主要是由外因和内因两方面因素造成的。

外因是自然界发生的强风和暴雨天气,造成输电线路空气间隙减小,当间隙的电气强度不能承受系统运行电压时就会发生击穿放电;内因是线路设计时,对恶劣气象条件的估计不足,线路风偏角安全裕度偏小,导致输电线路抵御强风的能力不强。

1.3风偏故障的规律和特点
第一,放电烧痕明显,放电路径清晰。

从放电路线的角度来看,有三种主要形式的风偏:导线放电到塔架构件,导线之间的放电,以及导线放电到周围物体。

它们有一个共同的特点就是,在发生风偏并且放电路径清晰后,导线或导线侧配件上的烧痕显而易见。

当导线放电到塔架构件时,主放电点主要位于钉子的突出位置和角钢的末端,当导线放电到周围物体时,导线上放电痕迹的长度不低于1m。

第二,跳闸重合的成功率会被降低。

当发生风偏故障的时候,一般会伴随着强风天气的出现,强风使得重合闸消耗的时间过长超过1s,因此其跳闸重合的成功率会被降低,最终导致输电线路出现非计划停运,影响人们的正常生产生活。

第三,风偏现象会造成放电混乱,一般表现为导线之间会进行放电,导线会对杆塔以及对周围的物体进行放电,这种风偏引起的放电行为会烧伤塔身以及导线等等,最终影响输电线路的安全。

第四,风偏故障多发于天气恶劣的时候,比如说出现雷雨以及冰雹天气的时候,风速超过杆塔可承受范围的时候,出现飑线风的时候等等天气情况恶劣的时候,容易减低放电间隙,因此造成风偏现象的出现。

2防风偏措施
2.1加装防风拉线
防风拉线主要设置绝缘材料以及拉线,并固定悬挂绝缘子串和导线,以避免在恶劣天气条件下对杆塔发生放电。

在导线的逆风侧,使用一种复合绝缘材料来悬挂导线,并且通过电缆固定支架的类型以固定支架或电缆的底座。

为了防止强风,下拉线给铁塔横担施加过大的下拉力,导致横臂变形,线路复合绝缘子的最大摆角控制在30~50°的范围内,拉线下端较轻的重量用于控制拉线张力。

在没有风的环境下,拉线由于重量而保持垂直的状态,并且在最大风偏的条件下,电缆的最大行程受到滑道终端的限制[7]。

2.2采用防风偏绝缘子
大风地区常年频繁的横线路大风是造成绝缘子伞裙疲劳破损的主要外界原因。

受风速、频率影响,伞裙出现迎风偏折变形、周期摆动现象,根部与芯棒护套交接处产生周期性的应力集中,导致绝缘子局部硅橡胶材料应力疲劳,出现初步裂纹并最终发展成伞裙撕裂破损。

防风偏绝缘子目前是通过改变绝缘子伞形结构,降低绝缘子风压荷载,减小线路风偏,配合改进绝缘子端头金具,使之与杆塔横担直接相连,将其与杆塔固定,从而减小绝缘子串风偏,保证与塔身的空气间隙,采用固定式防风偏绝缘子可以有效减少悬垂I型绝缘子串的风偏摇摆,减少导线风偏闪络风险,在110、220 kV输电线路耐张杆塔跳线上均有一定的应用,目前运行情况良好。

2.3设计要合理规范
尽管风偏故障的出现主要是由于强风等自然环境引起的,但是我们能够根据不同地区、不同自然环境的特点,设计符合该环境的输电线路。

因此,在新建500千伏超高压输电线路的时候,首先要对新建地区的自然环境进行考察,其次严格按照已有的标准和气候环境来计算参数从而设计输电线路以及选择材料,同时在设计的时候要留有余地,以便线路老化后能够进行改造,提高其抵抗恶劣环境的能力。

另外,在选择架设输电线路的时候要尽量避免容易发生强风的地带,比如:峡谷交汇的地方等。

2.4氟硅橡胶导线护套
氟硅橡胶是一类新型高性能有机合成新材料,具有优异的电气及物理化学性能,尤其可贵的是对电场、臭氧长期耐受,可保证材料在自然环境下的长期机电性能,在输电线路绝缘子悬垂端两端导线上包裹一定厚度的氟硅橡胶导线护套(防风偏导线护套)已成为抑制风偏放电的重要方法之一。

2.5防风偏绝缘拉索
防风偏绝缘拉索是由棒体和棒体两端的连接金具串联而成,棒体包括内部的棒芯和棒芯外部的伞裙,伞裙为硅橡胶复合材料。

根据不同塔形,防风偏绝缘拉索被设计成柔性和刚性两种,主要区别在于棒芯是刚性环氧树脂玻璃纤维引拔棒还是柔性高强度承力的锦纶材料。

同时,为满足不同安装距离的要求,可采用长度可调节的分节组合式绝缘拉索。

绝缘拉索安装在塔身上,当导线在大风作用下偏向杆塔时,会被绝缘拉索阻挡,从而保证导线和塔身之间满足安全距离要求。

2.6加装支撑绝缘子
加装支撑绝缘子方案主要是在杆塔上,加装一个支撑绝缘子,在悬垂绝缘子串风偏时,通过支撑绝缘子承受风偏压力,避免绝缘子串风偏接近杆塔塔身,使导线与塔身保持足够的安全间隙。

国内曾在低压交流线路上采用过该方法作为输电线路风偏严重地带杆塔的防风偏改造措施。

结语
近年来,电网在风偏防范措施的理论研究以及实践等方面取得了丰硕的成果。

不断出现不同类型的防风偏技术,线路风偏故障的发生日益减少,并且电网的可靠性得到了极大的提高。

我们提交了各种技术思路来抑制线路的风偏,但防止风对输电线路的影响不能只以单一方式进行,在实际工作中,它通常是一种多方面、综合控制措施,才可以有效防止事故的发生。

参考文献:
[1]许靖,何均衡,张林峰.浅谈220kV输电线路风偏故障及防风偏改造措施[J].通讯世界,2017(9):167~168.
[2]韩宏亮.超高压输电线路风偏故障分析与防风偏措施探讨[J].山东工业技术,2014(3):210.
[3]程峰,谢文,岳华刚,等.输电线路防风偏措施研究[J].应用能源技术,2017(1):30~32.。

相关文档
最新文档