几何组成分析
建筑力学第八章 结构体系的几何组成分析

第一节 几何组成分析的基本概念 第二节 平面体系的自由度 第三节 几何不变体系的组成规则 第四节 几何组成的分析方法 第五节 体系的几何组成与静定性的关系
第一节 几何组成分析的基本概念
几何组成分析,是以几何不变体系的组成规则为根据,确定体系的几何形状和空 间位置是否稳定的一种分析方法
分析时可针对体系的具体情况,从以下几个方面入手: ①、依次撤除体系上的一元片及二元片,使体系的组成简化,再根据基本组成 规则进行分析 ②尽可能地将体系中几何不变的局部归结为两个或三个刚片,然后考察刚片间 的连接方式是否满足几何不变体系的组成规则; ③体系仅用不共点的三根链杆与地基相连时,可先拆除这三根链杆,再由体系 的内部可变性确定整个体系的几何性质。
解:将图8-13a中的AEC、DFB与基础分别视为刚片I、II、III,刚片I和III以 铰A相联,A铰用(1,3)表示,B铰联系刚片II、III以(2,3)表示,刚片I和 刚片II是用CD、EF两链杆相联,相当于一个虚铰O用(1,2)表示,如图813b所示。则连接三刚片的三个铰(1,3)、(2,3)、(1,2)不在一直线上, 符合规则二,故为不变体系,且无多余约束。
二 、 三刚片规则
三刚片规则:三个刚片用不共线的三个铰两两相连,组成几何不变体系, 且无ቤተ መጻሕፍቲ ባይዱ余约束。
第三节 几何不变体系的组成规则
常变体系 瞬变体系
瞬变体系是不可以用于工程结构的
第四节 几何组成的分析方法
一、计算体系的自由度W,判别体系是否满足几何不变的必要条件。 若自由度W>0,体系是几何可变的 若自由度W≤0,在此基础上进一步对体系进行几何组成分析。 二、对体系进行几何组成分析,判别其是否满足几何不变的充分条件。 (1)一元片撤除 (2)二元片撤除 (3)刚片的合成
结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
几何组成分析—刚片、自由度、约束的概念(建筑力学)

m2
(2)g
m5
m3 (3)r
(1)h (1)g m6
(2)g (1)h m8
m7
(3)r
m=9,g=6,r=9
(1)h
m9 (3)r
W = 3m-(3g+2h+r) = 3×9-(3×6+2×4+9) = -8
式中: m为刚片数,g为结点数; h为体系内部链杆数; r为支承链杆数 。
图3.8 链杆的约束简图 (a)梁AB有一个约束;(b)梁AB有两个约束; (c)梁AB有三个约束
I B
1根链杆(支杆)相当于1个约束
A II
铰的约束作用
(1) 单铰(连接两个刚片的铰)
1个单铰相当于2个约束,减少2个自由度。
(2) 复铰(连接两个刚片以上的铰)
连接n个刚片的复铰可折算成(n-1)个 单束的概念
刚片、自由度、约束的概念 一、刚片
体系的几何组成分析不考虑材料的应变,任一杆件(或体系中一 几何不变部分)均可看为一个刚体,一个平面刚体称为一个刚片。
注意:链杆和几何不变体系都可看成钢片。
刚片、自由度、约束的概念
二. 自由度:
体系的自由度是指体系运动时, 可以独立改变的几何参数的数目; 即确定体系位置所需要的独立坐标 的数目。
r 为与地基之间加入的支杆数。
刚片、自由度、约束的概念
三、约束
减少自由度的装置称为约束(或联系)。可以减少1个自由度的装 置是1个约束。
杆件与地基之间常用的约束是支杆、固定铰支座和固定支座,称 为外部约束;
杆件之间常用的约束是链杆、铰结和刚结,称为内部约束。
刚片、自由度、约束的概念
链杆(支杆)的约束作用
刚结的约束作用
第2章 平面体系的几何组成分析

瞬变体系
去支座后再分析
有
是什么 体系?
O是虚 O不是
铰吗?
O
无多不变
II
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。 方法2: 利用规则将小刚片变成大刚片.扩大刚片范围,减少刚片数。 方法3: 将只有两个铰与其它部分相连的刚片看成链杆。 方法4: 去掉暴露在最外边的二元体.使结构简化。 例:对图示体系作几何组成分析
刚片Ⅲ
2.几何组成分析的目的
1)如何设计一个体系为几何不变体系,从而能承受荷载。 2)判断一个已知体系是否为几何不变体系,从而确定能否作 为结构。 3)区分静定与超静定结构,以便选择计算方法。
3.几何组成分析时的注意点
1)一个结构的几何属性只于结构的几何组成有关,而与所 受荷载无关。 2)由于不考虑材料的自身应变,因此可把一根梁、一根 杆、或体系中已经确定为几何不变的某个部分看作一个刚片。
5)定向支座(平行支链杆):可以减少二个自由度。
3.多余约束
材力中多余约束的概念是从平衡方程的个数和未知力的个数的 比较找出多余约束的。从体系自由度的角度同样可以引出多余约束 的概念 。
在一个体系中增加或减少一个约束,体系的自由度并不因 此而减少或增加,则该约束称为多余约束。
4.体系的计算自由度
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。
例:对图示体系作几何组成分析
解:该体系为瞬变体系.
方法3: 将只有两个铰与其它部分相连的刚片看成链杆。
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。
第2章 平面体系的几何组成分析

[例] 试对图示体系进行几何组成分析
因三铰在一直线上, 故该体系为瞬变体系。
例 试分析图所示体系的几何组成。
解 (1) 用公式 (2-1) 计算体 系的自由度 m = 3, h = 2, r = 5 W = 3m-2h-r = 3 × 3-2 × 2-5 = 0
(2)几何组成分析 先把杆 AB 、 BC 及地基分别看作是刚片 I ,Ⅱ,Ⅲ, 相互用实铰 A(1 , 3) 、实铰 B(1 , 2) 及虚铰 (2 , 3) 相连, (虚铰是在两平行支承链杆的交点处,即无限远处。) 三铰不在 — 直线上,此部分是几何不变的。然后再加上 一个二元体,亦是几何不变。 因此,整个体系是几何不变的。
2.平面链杆系的自由度
仅在杆的两端用铰连接的杆件称为链杆,它是刚 片的特殊形式,桁架是由这类杆件组成。 链杆系的自由度也可以用式W = 3m – 2h – r ,但 在链杆系中复铰较多,计算有所不便,因此另外从 节点出发推导两个方便计算的公式。
在链杆系中,假如各节点都是互不相连地独 立存在,则每一节点在平面内的自由度是2。
例2-4 计算图所示体系的自由度。
解: 用式(2-3)计算 W=2j–b–r 因为 j=9,b=15,r=3 所以 W= 2×9 –15 – 3 = 0 即体系没有自由度。
例2-5 计算图所示体系的自由度。
解:图中 A , B , C 应算作 节点。其余与地基相连的 铰不算入节点数 j 内 (因为两 斜杆视作支承链杆)。 因为 j = 3,b = 2,r = 5 所以 W = 2 j-b-r = 2× 3-2-5=-1 即体系不但没有自由度, 且多一个约束。
解: 该体系不与基础相连,r=0,故 用式(2-2) V = 3m – 2h – 3 因为 m=7,h=7+2=9
第十二章 平面结构体系的几何组成分析

若原体系几何不变(或可变),则新增加一个 二元体后,新体系仍为几何不变(或可变); 同样,在一个已知体系上拿掉二元体,也不
会影响原体系的几何不变性或几何可变性。
因此可将二元体规则叙述如下:在一个体系
上依次增加或减少二元体,原体系的几何可 变性保持不变。
第四节 几何组成分析举例
第四节 几何组成分析举例
=-3
应用此方法解本题时须注意:此时结点B为混合结点, 对于此类结点,计算单刚结点数时,可把铰接杆当作不存 在;而在计算铰结点数时,则把刚接各杆看作一个刚片。
所以,应用式(12-1)计算可得 W=3×m-3×g-2×h-b-r =3×9-3×6 -2×4-9 =-8
表明此体系具有8个多余约束。
三、瞬变体系
在对结构进行分析计算时,必须先分析体系的几 何组成,以确定体系的几何不变性。
几何组成分析的目的是:
(1)判别给定体系是否是几何不变体系,从而确 定它能否作为结构使用;
(2)研究几何不变体系的组成规则,以保证设计 出安全合理的结构;
(3)正确区分静定结构和超静定结构,为结构的 内力计算打下必要的基础
(二)自由度
体系的自由度是指确定体系空间位置所需的独立坐标 数,或者体系运动时可以独立改变的几何参数的数目,通 常记作S。
一个点在平面内自由运动时,它的位置用坐标X,Y完全 可以确定,则平面内一点的自由度等于2,如图12-3(a)所 示。
一个刚片在平面内自由运动时,它的位置
用其上任一点A的坐标x,y和过A点的任一 直线AB的倾角φ完全可以确定,则一个平面 刚片的自由度等于3,如图12-3(b)所示。
解法二:把体系内部看成是由7个刚片AB、BC、CD、DE、 EF、FA、EB,3个单铰F、B、D,3个单刚结点A、B、
结构力学第二章结构的几何组成分析

链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。
结构力学 (几何组成分析)

机动分析示例 方法:首先算计算自由度W,若W>0,体系为几 何可变,若W≤0 , 须进行几何组成分析。但通常可略 去W的计算。
ⅠⅢⅡ
解:地基视为——刚片Ⅰ。AB梁与地基按“两 刚片规则”相联,构成了一个扩大的刚片Ⅱ。刚片Ⅱ 与梁BC按 “两刚片规则”相联,又构成一个更扩 大的刚片ⅢC。D梁与大纲片Ⅲ又是按“两刚片规则”相 联。则此体系为几何不变,且无多余约束。 返 回
单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
A
0 0'
P
M0 0
N3Pr0 B
N1
N2
N3
N3
P
r
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
1. 一个点与一个刚片之间的组成方式 一个点与一个刚片之间用两根链杆相连,且三铰不 在一直线上,则组成无多余约束的几何不变体系。
j 7 b 3 3 5 3 14
W 2 7 1 4 0
三、混合体系的自由度
W (3 m 2 j) (2 h b )
四、自由度与几何体系构造特点
W0 体系几何可变;
m2 j 2
W0 无多余约束时,体系几何不变;h 1 b 8
W0 体系有多余约束。W ( 3 2 2 2 ) ( 2 1 8 ) 0
分析实例 4
A
B
C
D
E
F
1,3
A
A
2,3
2,3
B 1,2 C
D
E
F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章几何组成分析
[几何可变体系与几何不变体系]
几何可变体系——在任意荷载的作用下,即使不考虑材料的应变,它的形状和位置
也是可以改变的。
几何不变体系——如果不考虑材料的应变,它的形状和位置是不能改变的。
[自由度与刚片]
物体在运动时决定其位置的几何参变数称为自由度。
几何形状不变的平面体称为刚片。
一个刚片在平面内运动有三个自由度;
一个点在平面内运动有两个自由度;
一个点在空间内运动有三个自由度;
一个刚体在空间内运动有六个自由度。
[约束]
减少自由度的装置称为约束。
[约束的影响]
(1)支座约束
可动铰支座相当于一个约束,减少一个自由度;
固定铰支座相当于两个约束,减少两个自由度;
固定端支座相当于三个约束,减少三个自由度;
定向支座相当于两个约束,减少两个自由度。
(2)链杆
两刚片加一链杆约束,减少一个自由度。
(3)铰结点
单铰:两刚片加一单铰结点约束,减少两个自由度。
复铰:n个刚片在同一点用铰连接,相当于n-1个单铰的约束。
(4)刚结点
单刚结点:两刚片加一刚结点约束,减少三个自由度。
复刚结点:n个刚片在同一点用刚结点连接,相当于n-1个单刚结点的约束。
[结构体系自由度的计算公式]
(1)一般公式
=各部件自由度总和-全部约束数
为结构体系自由度。
(2)平面杆件体系自由度的计算公式
式中为刚片个数,为单刚结点个数;为单铰结点个数;为链杆个数;为支
座约束个数,如果为自由体,即无支座约束,则=3 。
(3)平面桁架自由度的计算公式
式中为结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则=3 。
[自由度与几何不变性的关系]
体系为几何不变的必要条件是自由度等于或小于零,此条件并非充分条件。
如果>0,则体系为几何可变体系;
如果<0或=0 ,则不能确定。
[实铰与虚铰]
两根不共线链杆的约束作用与一个单铰的约束作用是等效的。
两链杆交于一点所构成的铰为实铰。
两链杆的延长线交于一点,约束作用等效于该点一个单铰的约束作用,这种铰称为虚铰或瞬铰。
[二元体]
两根不共线的链杆在一端铰结而构成一个结点,称为二元体。
[二元体规则]
在体系中增加一个二元体或拆除一个二元体不影响体系的几何不变或几何可变性。
[两刚片规则]
两刚片用一个铰和一根链杆相联结,且链杆不通过铰,则组成的体系是几何不变体系,并且无多余约束。
两刚片用三根链杆相联结,且三根链杆不全部平行或不全部相交于一点,则组成的体系是几何不变体系,并且无多余约束。
[三刚片规则]
三个刚片用三个铰两两相连,且三个铰不在同一直线上,则组成的体系是几何不变体系,并且无多余约束。
[瞬变体系]
一个几何可变体系发生微小的位移以后,成为几何不变体系,称为瞬变体系。
[两刚片规则]
两刚片用一个铰和一根链杆相联结,链杆通过铰,则组成的体系虚交为瞬变体系,实交为可变体系。
两刚片用三根链杆相联结,三根链杆全部平行,则组成的体系不等长为瞬变体系,等长为可变体系。
两刚片用三根链杆相联结,三根链杆全部相交于一点,则组成的体系虚铰为瞬变体系,实铰为可变体系。
[三刚片规则]
三个刚片用三个铰两两相连,三个铰在同一直线上,则组成的体系为瞬变体系。
[虚铰在无穷远时三刚片规则]
(1)一个虚铰在无穷远处
若组成虚铰的两平行链杆与其余两铰连线不平行,则组成的体系是几何不变体系,并且无多余约束;若平行为瞬变体系。
(2)两个虚铰在无穷远处
若组成虚铰的两对平行链杆互不平行,则组成的体系是几何不变体系,并且无多余约束;若两对链杆互相平行且不等长,为瞬变体系;若两对链杆互相平行且等长,为可变体系。
(3)三个虚铰在无穷远处
三个刚片分别用任意方向的三对平行链杆相联,则组成的体系是瞬变体系。
[几何不变体系,且无多余约束]
几何不变体系,且无多余约束,为静定结构。
自由度W=0 。
[几何不变体系,有多余约束]
几何不变体系,有多余约束,为超静定结构,多余约束的数目为超静定的次数。
自由度W<0 。
[几何可变体系]
几何可变体系在任意荷载作用下不能维持平衡。
自由度一般W>0 。
[几何瞬变体系]
几何瞬变体系其平衡方程没有有限值的解答,或者解答为不定值。
自由度一般W=0 。