几何组成分析习题及答案.

合集下载

02结构的几何组成分析--习题

02结构的几何组成分析--习题
几何不变体系 结构
静定结构 无多余约束几何不变体系
二、无多余约束几何不变体系的组成规则有三个: 无多余约束几何不变体系的组成规则有三个:
①三刚片规则 三刚片用不在一直线上的三个铰两两相连。 三刚片用不在一直线上的三个铰两两相连。 ②两刚片规则 两刚片用一个铰和一根不通过此铰的链杆或 不全平行也不交于一点的三根链杆连接。 不全平行也不交于一点的三根链杆连接。 一刚片和一个点用不共线的两根链杆连接。 ③二元体规则 一刚片和一个点用不共线的两根链杆连接。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
结构力学电子教程
2 结构的几何组成分析 (c)
2.5 分析所示体系的几何构造。 分析所示体系的几何构造。 (a) (b)
结构力学电子教程
2 结构的几何组成分析 2.5
2.4
【解】
【解】
结论: 结论:无多余约束的几何 不变体系。 不变体系。 2.6 【解】 I
结论: 结论:有1个多余约束的几 个多余约束的几 何不变体系。 何不变体系。
III
II 结论:无多余约 结论: 束的几何不变体 系。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
结构力学电子教程
2 结构的几何组成分析

福大结构力学课后习题详细答案..-副本

福大结构力学课后习题详细答案..-副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)(d-1)(d-2)(d-3)解原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)解原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

1-1 (h)解原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。

因此,可以只分析余下部分的内部可变性。

这部分(图(h-1))可视为阴影所示的两个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。

福大结构力学课后习题详细答案(祁皑).. - 副本

福大结构力学课后习题详细答案(祁皑).. - 副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)(解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)[(c-1)(a)(a-1)(b)(b-1)*(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)!(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)~解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)[解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相(d )(e )(e-1)AB}AB (e-2)(f )(f-1)连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

东南大学结构力学练习题(附答案)详解

东南大学结构力学练习题(附答案)详解

第一部分 平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。

2、图中链杆1和2的交点O 可视为虚铰。

O二、分析题:对下列平面体系进行几何组成分析。

3、 4、ACDBAC DB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK9、 10、11、 12、1234513、 14、15、 16、17、 18、19、 20、1245321、 22、124567831234523、 24、12345625、 26、27、 28、29、 30、31、 32、33、ACBDEF三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。

34、35、第二部分 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。

3、静定结构的几何特征是几何不变且无多余约束。

4、图(a)所示结构||M C =0。

(a)BCa aA ϕ2a2 (b)5、图(b)所示结构支座A 转动ϕ角,M AB = 0,R C = 0。

6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。

7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。

ABC(c)8、图(d)所示结构B 支座反力等于P /2(。

)↑9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。

AB(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。

—— 1 ——11、图(f)所示桁架有9根零杆。

(f)a a a a(g)12、图(g)所示桁架有:=== 0。

N 1N 2N 313、图(h)所示桁架DE 杆的内力为零。

a a(h)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。

对图示体系进行几何组成分析(10分)

对图示体系进行几何组成分析(10分)

一、对图示体系进行几何组成分析。

(10分)解:折杆ABC 、CDE 与BD 形成刚片I ,为几何不变体系且无多余约束。

(5分)刚片I 与地面由4链杆相连,整个结构为几何不变且有1个多余约束。

(5分)二、计算图示静定桁架的支座反力及1、2杆的轴力。

(14分)解:求支座反力)(2),(6),(2↑=↑=←=kN R kN Y kN X B A A (6分)求1、2杆的轴力截面法: )(52025111拉kN N N Y ==+⨯-=∑ (4分) 取E 结点: )(240214022压kN N N Y -==⨯--=∑(4分)三、P = 1在图示静定多跨梁ABCD 上移动。

(1)作截面E 的剪力影响线;(2)画出使Q E 达最大值和最小值时可动均布荷载的最不利布置;(3)当可动均布荷载q = 20 kN/m 时,求Q Emax 值。

(16分)(1) Q E 影响线见图(5分)(2)Q Emax 的最不利位置 (3分)Q Emin 的最不利位置 (3分)(3)kN q Q E 38)5332152521(20max =⨯⨯+⨯⨯⨯=∑=+ω(5分) 四、用力法计算图示刚架,画M 图。

EI 为常数(20分)解:1、一次超静定结构,基本体系和基本未知量,如图 (2分)A B C D E0.40.6 +-+0.4 C C D2、列力法方程 01111=∆+P X δ (1分)3、作图和P M M ___1 (6分)4、计算系数、自由项 EI 14411=δ (3分) EIP 8101-=∆ (3分) 5、解方程 kN X 625.51= (1分)6、作M 图 (4分)五、用位移法计算图示刚架,并作M 图。

各杆EI 为常数。

(20分)解:1、以刚结点角位移为基本未知量,得基本体系 (2分);2、绘1M P M 图(图略) (6分)3、列位移法典型方程: 01111=+P F z k (2分)(4分)图(kNm )33.75六、用力矩分配法绘制图示连续梁的弯矩图。

结构力学习题及答案

结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。

假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。

(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

平面体系的几何组成分析

平面体系的几何组成分析

平面体系的几何组成分析(总分:100.00,做题时间:90分钟)一、{{B}}判断题{{/B}}(总题数:6,分数:12.00)1.下图所示体系为有一个多余约束的几何不变体系。

(分数:2.00)A.正确B.错误√解析:利用三刚片规则。

可选择AB、CD、EF作为刚片进行分析。

正确答案是无多余约束的几何不变体系。

2.下图所示体系中链杆1和2的交点O可称为虚铰。

(分数:2.00)A.正确B.错误√解析:3.自由度W≤0是体系保持几何不变的充分条件。

(分数:2.00)A.正确B.错误√解析:4.静定结构是无多余约束的几何不变体系,超静定结构是有多余约束的几何不变体系。

(分数:2.00)A.正确√B.错误解析:5.下图所示体系是几何不变体系,且无多余约束。

(分数:2.00)A.正确B.错误√解析:原体系为有一个多余约束的几何不变体系。

6.下图所示对称体系是几何瞬变体系。

(分数:2.00)A.正确√B.错误解析:如下图所示选取刚片,用三刚片规则分析,刚片Ⅰ与Ⅱ交于A点,刚片Ⅰ与Ⅲ交于B点,刚片Ⅱ与Ⅲ交于无穷远处C点,由于A、B的连线与连系刚片Ⅱ、Ⅲ的两杆平行。

根据无穷远点规则判断可知,该体系为几何瞬变体系。

[*]二、{{B}}填空题{{/B}}(总题数:6,分数:12.00)7.下图所示体系的几何组成为______体系。

(分数:2.00)填空项1:__________________ (正确答案:无多余约束的几何不变体系)解析:利用三刚片规则分析。

8.下图所示体系的几何组成为______,______。

(分数:2.00)填空项1:__________________ (正确答案:几何不变体系,无多余约束)解析:先选择基础为一个刚片,然后按“双藤摸瓜”方法找到另外两个刚片。

9.下图所示体系为几何______体系,多余约束数为______个。

(分数:2.00)填空项1:__________________ (正确答案:不变,1)解析:利用三刚片规则分析。

福大结构力学课后习题详细问题详解(祁皑).. - 副本

福大结构力学课后习题详细问题详解(祁皑).. - 副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)(c-1)(a )(a-1)(b )(b-1)(b-2)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)(d ) (e )(e-1)A(e-2)(f )(f-1) (g ) (g-1) (g-2)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题15.7试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W- 2j -6-r=2×8-9-7=0(2)几何组成分析。

首先把三角形ACD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。

在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。

最后得知整个体系为几何不变,且无多余约束。

题15.8试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W- 3m - 2h -r=3×6-2×7—4=0(2)几何组成分析。

刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BICEG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。

题15.9试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W- 3m - 2h -r=3×14 -2×19 -4一O(2)几何组成分析。

在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O 相联,构成几何不变体系,且无多余约束。

题15.10试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W-2j—b-r=2×7—11-3一O(2)几何组成分析。

由于AFG部分由基础简支,所以可只分析AFG部分。

可去掉二元体BAC只分析BFGC部分。

把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。

题15.11试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W- 2j -6-r=2×9-13—5一O(2)几何组成分析。

首先在基础上依次增加二元体12、AE3、AFE、ABF、FI4,成一个大的刚片I。

其次,把CDHG部分看做刚片Ⅱ,刚片I、Ⅱ由三根共点的链杆BC、IG、5相联,因而整个体系为瞬变。

题15.12试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W一2j -6-r=2×7- 11-3一O(2)几何组成分析。

由于ABCDEF部分由基础简支,所以可只分析ABCDEF部分。

把三角形ABD看做刚片I,BCF看做刚片I,杆件GE看做刚片Ⅲ,则三个刚片由不共线的单铰B,虚铰Ol、02分别两两相联,构成几何不变体系,且无多余约束。

题15.13试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -6-r’=2×6—8-4=0(2)几何组成分析。

把三角形CDF看做刚片I,杆件AB看做刚片Ⅱ,基础和二元体23看做刚片Ⅲ。

刚片I和刚片Ⅱ由链杆BC、AD相联,相当于虚铰D;刚片I和刚片Ⅲ由链杆CE、4相联,相当于虚铰Ol;刚片Ⅱ和Ⅲ由链杆EB、1相联,相当于一个虚铰,三个虚铰不共线,因此构成几何不变体系,且无多余约束。

题15.14试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W- 2j-b-r=2×12 - 21-3—0(2)几何组成分析。

由于ABCGLKD部分由基础简支,所以可只分析ABCGLKD部分。

在三角形ADE上依次增加二元体ABE、BFE、BCF、CGF、FHE组成刚片I。

将三角形HJI 看做刚片Ⅱ,杆件KL看做刚片Ⅲ。

刚片I和刚片Ⅱ由单铰H相联;刚片Ⅱ和Ⅲ由链杆KI 和JL相联,即在H点由虚铰相联;刚片I和刚片Ⅲ由链杆EK、 FL相联,即在无穷远处由虚铰相联显然,这三个铰共线,因而整个体系为瞬变。

;B题15.15试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h -r=3×7-2×9-3=O(2)几何组成分析。

由于ACEFG部分由基础简支,所以可只分析ACEFG部分。

在杆件ABC 上增加二元体BGA构成刚片I,同理可把CDEF部分看做刚片Ⅱ,刚片I和刚片I由不共线的单铰C及链杆GF相联,因而整个体系为几何不变,且无多余约束。

题15.16试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m一2h -r=3×9—2×13 -3=-2(2)几何组成分析。

由于ADEFG部分由基础简支,所以可只分析ADEFG部分。

把三角形AED看做刚片I,杆BE看做多余约束;把三角形AFG看做刚片I,杆CF看做多余约束。

刚片I和刚片Ⅱ由不共线的铰A及链杆EF相联,因而整个体系为几何不变,且有两个多余约束。

题15.17试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -b-r=2×9-15-3=0(2)几何组成分析。

由于ADIHGFEB部分由基础简支,所以可只分析ADIHGFEB部分。

在三角形BEF上依次增加二元体BCE、CGF组成刚片I,同理可把CDIH部分看做刚片Ⅱ。

刚片I和刚片I由不共线的铰C及链杆GH相联,构成一个更大的刚片,然后再增加二元体BAD。

最后得知整个体系为几何不变,且无多余约束。

题15.18试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h -r=3×6-2×8-3=-1(2)几何组成分析。

由于ABCDFE部分由基础简支,所以可只分析ABCDFE部分。

在杆件ABCD上依次增加二元体AEB、CFD构成几何不变体系,链杆EF可看做多余约束。

因而整个体系为几何不变,且有一个多余约束。

.题15.19试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -b-r=2×6-8—4=O(2)几何组成分析。

把三角形BCE看做刚片I,杆件DF看做刚片Ⅱ,基础上增加二元体12看做刚片I。

刚片Ⅱ和刚片Ⅲ由链杆AD、3相联,即由虚铰F相联;I刚片I和刚片I由链杆BD、EF相联,交点在无穷远处;刚片I和刚片I由链杆AB、4相联,即由虚铰C相联;显然三铰在一条直线上,因而整个体系为瞬变。

题15.20试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -b-r=2×8-13 -3=O(2)几何组成分析。

首先在三角形AEF上依次增加二元体ABF、BCF、CGF组成刚片I,而杆件BG可看做一个多余约束。

其次,去掉二元体CDH、GH3。

把基础上增加二元体12看做刚片Ⅱ,则刚片I和刚片1只用铰E相连,因而整个体系为几何可变,但在BCGF部分有一个多余约束。

题15- 21试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -6-r=2×9-14-4=O(2)几何组成分析。

首先在体系上依次去掉二元体DAB、BCF、DBF不改变原体系的几何组成性质,所以下面只分析DEF以下部分即可。

把三角形EFI看做刚片I;把杆件DH看做刚片Ⅱ;把基础上增加二元体12看做刚片I。

刚片I和刚片Ⅱ由虚铰F相联;刚片I和刚片Ⅲ由链杆GE及链杆4相连,交点在CI直线上;刚片I和刚片Ⅲ由平行链杆DG及链杆3相联,由于链杆DG、3和直线CI平行,且三直线将在无穷远处相交,所以三个虚铰在同一直线上,因而整个体系为瞬变。

题15.22试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m一2h一r=3×10 -2×14=2(2)几何组成分析。

该体系没有和基础相联,只需要分析其内部几何性质。

杆件AH和杆件HJ由不共线单铰H和链杆相联构成刚片I;同理可把DMJ部分看做刚片Ⅱ;再把折杆ABCD 和二元体BFC看做刚片Ⅲ。

刚片I、Ⅱ、I由三个不共线的单铰A、J、D两两相联,构成几何不变体系,链杆FJ可看做多余约束。

因而整个体系内部为几何不变,且有一个多余约束。

题15.23试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h -r=3×4—2×4-4=0(2)几何组成分析。

把曲杆ACF看做刚片I;曲杆BDE看做刚片Ⅱ,基础和二元体12、34看做刚片Ⅲ。

刚片I、Ⅱ、Ⅲ由不共线的三铰A、B、G两两相联,因而‘整个体系为几何不变,且无多余约束。

题15.24试对图示体系进行几何组成分析。

解体系的自由度为W= 3m-2h-r=3×4-2×3-5=1体系缺少足够的约束,为几何可变体系。

题15.25试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h-r=3×2-2×1-4=0(2)几何组成分析。

把ABD部分看做刚片I,BCE部分看做刚片Ⅱ,基础看做刚片I。

刚片I、Ⅱ由单铰B相联,刚片Ⅱ和Ⅲ由链杆3、4相联(即在两杆轴线的点处用一虚铰相联),刚片I和刚片Ⅲ由链杆1、2相联(即在两杆轴线的交点处用一虚铰相联),显然,这三个铰不在一条直线上,因而整个体系为几何不变,且无多余约束。

题15.26试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h-r=3×9-2×10 -7=O(2)几何组成分析。

首先在体系上依次去掉二元体EAB、CDH、IEF、GHL、112、6L7,不改变原体系的几何组成性质,所以下面只分析JBCK和基础部分即可。

把折杆JBCK看做刚片I;把基础看做刚片Ⅱ。

刚片I和刚片Ⅱ由不共点的三根链杆3、4、5相联,因而整个体系为几何不变,且无多余约束。

题15.27试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j - b-r=2×9-14 -4=O(2)几何组成分析。

首先在三角形GHE上依次增加二元体GKH、KLH,把EGKLH部分看做刚片I,同理把LMJFI部分看做刚片Ⅱ,把基础看做刚片Ⅲ,则三个刚片用不共线的三个铰G、L、J分别两两相联,因而整个体系为几何不变,且无多余约束。

题15.28试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 2j -b-r=2×13-20-6=0.(2)几何组成分析。

首先在体系上依次去掉二元体JAB、BCD、DEM、FBG、KFG、KGH、HDI、LHI不改变原体系的几何组成性质,所以下面只分析余下部分即可。

杆件JK由三个不共点的链杆1、2、3与基础相连,组成刚片I;杆件LM由三个不共点的链杆4、5和KL与刚片I相联,组成更大的刚片,但链杆6为一多余约束。

杆件IL与更大的刚片只由一个单铰相连,缺少足够的约束,因而整个体系为几何可变。

相关文档
最新文档