几何组成分析举例

合集下载

结构力学(几何组成分析)详解

结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3

Pr



A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1

.O2
ⅡⅡ

ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回

工程力学 第六章:平面杆件体系的几何组成分析

工程力学 第六章:平面杆件体系的几何组成分析


瞬变体系
工 程 力 学
无多余约束的几何 不变体系变体系

几种常用的分析途径 1、去掉二元体,将体系化简单,然后再分析。 2、如上部体系与基础用满足要求的三个约束相联可去 掉 基础,只分析上部。 3、当体系杆件数较多时,将刚片选得分散些,用链杆组 成的虚铰相连,而不用单铰相连。 4、由一基本刚片开始,逐步增加二元体,扩大刚片的范 围,将体系归结为两个刚片或三个刚片相连,再用规则判定。 5、由基础开始逐件组装 6、刚片的等效代换:在不改变刚片与周围的连结方式的 前提下,可以改变它的大小、形状及内部组成。即用一个等效 与外部连结等效)刚片代替它。
β
A P
A
β
Δ是微量
P N N
只有几何不变体系才 能作为建筑结构使用!!
§6.2刚片、自由度和约 束的概念
• 一、刚片 • 是指平面体系中几何形状不变的平面体。 • 在几何组成分析中,由于不考虑材料的应 变,所以,每根梁、每一杆件或已知的几 何不变部分均可视为刚片。 • 支承结构的地基也可以看做是一个刚片。
a
1、单链杆:仅在两处与其它物体用铰相连,不论其形 状和铰的位置如何。
一根链杆可以减少 体系一个自由度,相 工 当于一个约束。! 程 力 β 学
α

1 5 3 6 4
1、2、3、4是链杆, 5、6不是链杆。
加链杆前3个自由度
加链杆后2个自由度
2、单铰: 联结 两个 刚片的铰 加单铰前体系有六个自由度 加单铰后体系有四个自由度
三刚片以三个无穷远处虚铰相连 组成瞬变体系
工 程 力 学
4、由一基本 刚片开始,逐 步增加二元体, 扩大刚片的范 围,将体系归 结为两个刚片 或三个刚片相 连,再用规 则判定。

结构的几何组成分析示例

结构的几何组成分析示例

【例8-5】试对图8-14a 所示体系进行几何组成分析。
图8-14
解:折杆 AB 和 CD 都是以其两端的铰与其他杆件相连接的,可视为直链杆。 如图8-14b所示,若将基础视为刚片Ⅰ, T 形杆 BCE 视为刚片Ⅱ,杆 AB 、CD 和 结点 E 处的支承链杆视为连接刚片Ⅰ、Ⅱ 的约束,三链杆交于一点 O ,不满足规 则 Ⅱ,为几何可变体系。
【例8-3】对图8- 12a 所示体系进行几何组成分析。
图8-12
解:基础与体系本身用三根既不全交于一点也不全平行的链杆相连,符合规 则 Ⅱ,可不考虑基础和支座,只分析体系本身的几何不变性。
如图8-12b 所示,杆 AB 视作刚片Ⅰ,杆 CD 视作刚片Ⅱ,刚片Ⅰ、Ⅱ之间用 四根链杆相连,符合规则Ⅱ,但有一个多余约束,故该体系是几何不变体系,有 一个多余约束。
需要注意的是,若连接基础与体的支承链杆多于三根或不符合规则 Ⅱ 时, 要考虑基础及支承链杆,分析整个体系的几何不变性。
【例8-4】对图8-13a 所示体系进行几何组成分析。
图8-13
解:该体系本身与基础用四根支承链杆相连,所以必须考虑基础及支承链杆, 分析整个体系的几何不变性。
首先,可拆去二元体 D‒C‒G ,如图8-13b 所示。然后,再将基础与杆 AB 组 成的几何不变部分视为刚片 Ⅰ,将铰接三角形 EGH 视为刚片Ⅱ ,杆 FD 视为刚片 Ⅲ ,剩余链杆均视为连接刚片的约束。三个刚片之间分别用两根链杆 ( 或虚铰 ) 两两相连,符合规则 Ⅲ ,故该体系是几何不变体系,且无多余约束。
建筑力学
需要注意的是,三个基本规 则是相互融通的,同一体系有时 可按不同的规则来分析,但分析 结论必定相同。
【例8-1】试对图8-10 所示体系作几何组成分析。

02结构力学1-几何组成分析

02结构力学1-几何组成分析

§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例3:计算图示体系的计算自由度 2 1 解法一
9根杆,9个刚片
有几个单铰?
3 3
3根单链杆
2 1
W=3 ×9-(2×12+3)=0
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 铰结链杆体系:完全由两端 铰结的杆件所组成的体系
y 两个刚片一共6个自由 度 加两个单链杆之后:整 个体系有4个自由度 减少2个自由度
x
1单铰=2个单链杆
y
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 实铰 x
两个单链杆
y
y
虚铰 x
x
§2-1 基本概念
三. 约束(联系)
既不平行又不相交于一点 的三个单链杆=一个固定支 座
三个单链杆=一个固定支座?
§2-2 静定结构的组成规则
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点。
二刚片规则: 二刚片规则: 两个刚片用三根 两个刚片用一 不全平行也不交 个铰和一根不通 于同一点的链杆 过此铰的链杆相 相联,组成无多 联,组成无多余 余联系的几何不 联系的几何不变 变体系。
体系。
§2-2 静定结构的组成规则
x
1单铰=2个约束
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 y
复铰
三个刚片一共9个自由 度 加铰之后:整个体系有 5个自由度 减少4个自由度 x
复铰 等于多少个 单铰?
1连接N个刚片的复铰 =N-1个单铰
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置

平面体系几何组成分析的方法(静定的概念)(建筑力学)

平面体系几何组成分析的方法(静定的概念)(建筑力学)
当使用判定规则进行判定时,可以使用如下技巧,使问题简化: ①去二元体; ②地基可以当作特殊的刚片; ③扩大刚片法:将整个体系的几何不变部分看作刚片,并考察其与周 围部分的连接方式,逐步扩大刚片,减少杆件数目; ④刚片与链杆灵活转换:根据需要可以将链杆当作刚片使用,也可以 将刚片(包括地基)或几何不变部分当作链杆使用; ⑤巧用虚铰:链杆数目较多时,使用虚铰可以使体系简化。
例题分析
例1.分析图示体系的几何构造性。 解析:(1)计算自由度
W 4244 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 进一步判断,依次去掉二元体DFE、BDC、BEC、BCA后,整个体系只剩下 地基了,为几何不变体系。由于去掉二元体并不改变原体系的几何构造性,因此 原体系也是几何不变体系。
二元体规则是非常好用的规则,特别是去二元体,可以大大简化体系 构件数目,使判断简化,其主要有以下几个技巧:
(1)根据需要进行链杆与刚片之间的转化,巧妙使用二元体; (2)当体系比较复杂时,可以先考虑其中的一个它部分之间的连接关系, 判定整个体系的几何构造性。
例题分析
例2.分析图示体系的几何构造性。 解析:(1)计算自由度
W 72 113 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 体系没有二元体,但体系本身是有二元体的,去掉所有二元体,只剩下一个 杆件,所以体系本身几何不变,再考虑其与地基的连接方式,判定体系几何不变。
总结与技巧
示例
例1.分析图示体系的几何构造性。
解析:(1)计算自由度
W 7277 0
体系具有成为几何不变体系的最少约束数目,需进一步判断。 (2)依次去掉二元体FAB、IED、FBJ、IDC如图所示。 (3)三角形GCH看作刚片Ⅰ,地基看作特殊刚片Ⅱ。 (4)刚片Ⅰ、Ⅱ之间通过三根链杆相连,三链杆汇交

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰

结构力学之平面体系的几何组成分析

结构力学之平面体系的几何组成分析

二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ

推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A

B
例三、
C
A

分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A

B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据

体系的几何组成分析-结构力学

体系的几何组成分析-结构力学

结论:无多余约束的几何不变体系
(3)平面内三个刚片的连接
刚片Ⅱ B
铰A 刚片Ⅲ 链杆2
C
刚片Ⅰ
规律3 三个刚片用三个 铰两两相连,且三个铰 不在一直线上,则组成 无多余约束的几何不变 体系。
对象:刚片I、Ⅱ和Ⅲ 联系:铰A(Ⅱ和Ⅲ )、B ( I和Ⅱ)、C(I和Ⅲ ),三铰不共线 结论:无多余约束的几何不变体系
• 体温低于 35 ℃为体温过低: 危重患 者、 极度衰弱的患者失去产生足够热 量的能力 ,导致体温
• 低温治疗: 临床上由于病情需要,常 采用人工冬眠或物理降温作为治疗措 施
作业
、发热的类型有哪几种 、发热常用的处置方法有哪些
➢ 杆件与杆件之间的连接—结点
单铰结点 2个约束
链杆 1个约束
单刚结点 3个约束
2.2 自由度和约束
2.2 自由度和约束
教学目标:
掌握自由度的基本概念 掌握约束的定义与分类
教学内容:
自由度 约束
知识点
自由度
✓等于体系的独立运动方式。
✓等于体系运动时可以独立改
y
变的坐标数目。
B
y
A
x x
一个点在平面内有两个自由度。
工程结构的自由度等于零
y
y
x x
一个刚片在平面内有三个自由度。
解:三角形法则,得刚片Ⅰ 、Ⅱ 对象:刚片Ⅰ、Ⅱ 联系:铰A,链杆1,不共线 结论:几何不变,无多余约束
例5: 分析体系的几何组成。
B
C
A
ⅠⅡ
解:去二元体,得
对象:刚片Ⅰ、Ⅱ、Ⅲ 联系:铰A,B、C,不共线 结论:几何不变,无多余约束

例6: 分析体系的几何组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

All Rights Reserved
重庆大学土木工程学院®
【例2-9】试对图2-23a所示体系进行几何组成分析。
J I
B D
F
G
E
A
K C
H
IA
解:刚片I、II、III用三铰(铰A、B、C)两两相连, 组成几何不变体系,但有一个多余约束(杆AD)。
All Rights Reserved
由于三铰共线,故体系为瞬变。
All Rights Reserved
重庆大学土木工程学院®
【例2-11】试对图a所示体系进行几何组成分析。
(a)
(b)
1
2
3
45
6
I
II
∞(I、II)
7
8
IV (地基)
III
∞(II、 III)
∞(I、 III)
解:先将三根支杆去掉后进行分析。
dh1
dh2
刚片I、II、III用三个点在∞远的虚铰相连。
K
J
I
H
G
F
B
E
D
C
A
8 5
4
7
6
1
3
2
解:根据二元体规则,如图b所示,依次取消二元体1, 2,…,8,只剩下地基,故原体系几何不变,且无多余约 束。
当然,也可以通过在地基上依次添加二元体8,7,…, 1而形成图a原体系,答案完全相同。
All Rights Reserved
重庆大学土木工程学院®
【例2-5】试对图2-19a所示体系进行几何组成分析。
All Rights Reserved
重庆大学土木工程学院®
【例2-8】试对图a所示体系进行几何组成分析。
(a)
4
2
6
1
3
5
7
8
9
10
(b)
1
III I
2
I II
(I,III)
(II,III)
I
III II
II (I,II)
I III
III
解:如图b所示,首先,取消二元体1、2;其次,分析 所余部分,除刚片I、II之外,还有7根链杆,若选择其中一 杆视为刚片III,则三刚片之间共有6根杆,形成三个虚铰即 (I,II)、(I,III)和(II,III),组成几何不变且无多余约束的 体系。
重庆大学土木工程学院®
【例2-6】试对图示体系进行几何组成分析。
(a)
C
D
F
(b)
I
C
II
IV
DF
V
E
A
B
G
A
B
E
III(地基)
G
解:刚片I、II、III(地基)用三铰A、B、C两两相连所 组成的几何不变的新的大刚片ABC;该大刚片与刚片IV用一 铰一链杆相连,组成更大刚片ABCDE;第三,该更大刚片 与刚片V用两个铰(铰F、G)相连。
故原体系几何不变但有1个多余约束。
All Rights Reserved
重庆大学土木工程学院®
【例2-7】试对图2-21a所示体系进行几何组成分析。
(a)
A
B
C
D
E
F
G
(b) A
B II C
D
III
E
F
①②
③④
G
I(地基扩大刚片)
解:如图b所示,首先,取消二元体FEG;其次,地基 扩大刚片I与刚片II用一铰(铰B)一链杆(杆①)相连,组 成地基扩大新刚片ABC;第三,该新刚片与刚片III用三杆②、 ③、④相连,组成几何不变且无多余约束的体系。
2.叙述简明:为此,应在图上对刚片、实(虚)铰、 链杆等进行编号。
3、结论要明确:应为以下四种情况之一。
(1)几何不变且无多余约束的体系; (2)几何不变但有(几个?)多余约束的体系; (3)几何常变体系; (4) 几何瞬变体系。
All Rights Reserved
重庆大学土木工程学院®
二、示例 【例2-4】试对图2-18a所示体系作几何组成分析。
dh3
由于三对平行杆各自等长,故为常变体系。
dh4
dh5
All Rights Reserved
重庆大学土木工程学院®
(a)
1
2
3
(b)
I
A
1
2
3
C
D
E
II
B
解:刚片I、刚片II由一铰(铰C)和一杆(杆DE)相 连,组成几何不变的一个新的大刚片ABC。
该大刚片ABC与地基刚片IV之间用一铰(铰A)和一杆 (B处支杆)相连,组成几何不变且无多余约束的体系。
最后,连接二元体2、3 、1。
故原体系几何不变且无多余约束。
All Rights Reserved
重庆大学土木工程学院®
【例2-10】试对图a所示体系进行几何组成分析。
(a)
1
4
(b)

2
3
5 6
III↔I
III
II I
II
II
III(地基)
(I,II) (I,III)
I
II
(II I,III)
解:选三刚片如图b所示,三刚片之间由三个虚铰两 两相连: (I,III)与(II,III)以及∞点处的(I,II)。
相关文档
最新文档