2平面体系的几何组成分析习题解答
第二章几何组成分析习题.doc

7 .图题1- 3 (a)所示体系,几何组成分析试题一、是非判断:1.在一个平面体系上增加二元体不会改变体系的计算自由度。
( )2.若平面体系的计算自山度W= 0,则该体系为无多余约束的几何不变体系或瞬变体系,而不可能为常变体系。
( )3.平面较接杆件体系的计算自由度W^2j-b-r,式中/表不体系中的单较的个数。
( )4.若平面体系的计算自由度W<0,则该体系不可能是静定结构。
( )5 .图题l-l(a)所示体系去掉二元体AB、AC后,成为图(b)的几何可变体系,故原体图(a)系为几何可变体系。
( )6 .图题l-2(a)所示体系依次去掉二元体AB、AC及BD、BE后,成为图(b)所示体系,故原体系是无多余约束的几何不变体系。
( )题1-2图题1-3图8.图题1-4 (a)所示体系,依结点1、2、3、4的顺序去掉4个二元体后,就只剩下地基,故原体系是无多余约束的几何不变体系。
( )二、填空1.如图2-1所示体系为具有 ______________ 个多余约束的几何不变体系。
2.如图2-2所示体系为______________ 体系。
3.如图2-3所示体系为______________ 体系。
III题2-3题2-4题2-5题2-6Az——C)——R4 .如图2-4所示刚片I 、II 、III 由较力及链杆1、2、3、4连接,若较力与及链杆1共线,则所 组成体系为 _____________ 体系;若較〃与及链杆1不共线,则所组成体系为 ________________ 体系。
5 .如图2-5所示体系为 __________ 体系。
------------ 9Q O Q O题2-7图6 .如图2-6所示体系为 __________ 体系。
7 .如图2-7所示体系为 __________ 体系。
8 .如图2-8所示体系为 __________ 体系。
三〜五、试对图三〜五所示体系进行几何组成分析。
[精品]平面体系的几何组成分析
![[精品]平面体系的几何组成分析](https://img.taocdn.com/s3/m/dfa18f6dbf1e650e52ea551810a6f524ccbfcb80.png)
四、约束(联系)
1、约束:凡能减少自由度的装置。
2、一根链杆相当于一个约束(图3)。
y
o
x
(图3)
y
o
x
x
y
3、一个简单铰相当于两个约束(图4)。
y
o
x
(图4)
y
o
x
x
y
4、联结n个刚片的复铰相当于(n-1)个简单铰,减少(n-1)×2个约束(图5)。
(图5)
F
A
B
C
实饺:几何可变
虚饺:几何瞬变
2、三根链杆相互平行
实饺
虚饺
三饺共线(瞬变)
三个刚片上用不在同一直线上的三个铰两两相联结,形成无多余约束的几何不变体系。
三、三个刚片间的联结(规则三):
第四节 几何组成分析的方法、步骤和举例
一、方法 一般先考察体系的计算自由度,若W0,则体系为几何可变,不必进行 几何组成分析;若W0,则应进行几何组成分析。
三、举例
例题1
结论: 无多余约束几何不变体系
第五节 体系几何组成与静定性的关系
一、几何可变体系 一般无静力解答。
二、无多余联系的几何不变体系 静力解答唯一确定。
三、几何瞬变体系 其平衡方程或者没有有限值解答,或在特殊情况下,解答不确定。
四、具有多余联系的几何不变体系 静力解答有无穷多组解。
二、两个刚片之间的联结(规则二):
两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不全平行的三根链杆相连结 ,形成无多余约束的几何不变体系)。
特殊情况: 1、三根链杆交于一点
郑州大学远程结构力学练习与答案本科闭卷

第二章 平面体系的几何组成分析练习题:1、判断题1.1多余约束是体系中不需要的约束。
(C ) 1.2瞬变体系在很小的荷载作用下会产生很大的力,所以不能作为结构使用。
( D ) 1.3两根链杆的约束作用相当于一个单铰。
( C ) 1.4每一个无铰封闭框都有三个多余约束。
( D ) 1.5连接四个刚片的复铰相当于四个约束。
( C )1.6图示体系是由三个刚片用三个共线的铰ABC 相连,故为瞬变体系。
( C ) 1.7图示体系是由三个刚片用三个共线的铰ABC 相连,故为瞬变体系。
( C )2、单项选择题2.1将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个( D )A 2B 3C4D 62.2三刚片组成无多余约束的几何不变体系,其联结方式是( B )A 以任意的三个铰相联B 以不在一条线上三个铰相联C 以三对平行链杆相联D 以三个无穷远处的虚铰相联 2.3瞬变体系在一般荷载作用下( C )A 产生很小的力B 不产生力C 产生很大的力D 不存在静力解答2.4从一个无多余约束的几何不变体系上去除二元体后得到的新体系是( A )A 无多余约束的几何不变体系B 有多余约束的几何不变体系题1.7图题1.6图C 几何可变体系D 几何瞬变体系 2.5图示体系属于( A )A 静定结构B 超静定结构C 常变体系D 瞬变体系2.6图示体系属于(C )A 无多余约束的几何不变体系B 有多余约束的几何不变体系C有多余约束的几何可变体系D 瞬变体系 2.7不能作为建筑结构使用的是( D )A 无多余约束的几何不变体系B 有多余约束的几何不变体系C 几何不变体系D 几何可变体系 2.8一根链杆( D ) A 可减少两个自由度B 有一个自由度 C有两个自由度D 可减少一个自由度2.9图示体系是( D )A 瞬变体系B有一个自由度和一个多余约束的可变体系C 无多余约束的几何不变体系2.10图示体系是(B )A 瞬变体系B 有一个自由度和一个多余约束的可变体系C 无多余约束的几何不变体系D 有两个多余约束的几何不变体系 2.11 下列那个体系中的1点不是二元体(C )题2.5图题2.9图题2.10图答图2.10 B 把刚片Ⅱ视为链杆,然后去 除二元体A ,剩下两个刚片用一个单铰相连,有一个自由度,而刚片Ⅰ中CD 杆是多余约束。
结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰
第2章几何组成分析

6、刚片的等效代换:在不改变刚片与周围的连结方式 的前提下,可以改变它的大小、形状及内部组成。即用一个 等效(与外部连结等效)刚片代替它。
有一个多余约束的几何不变体系
Ⅰ Ⅱ Ⅰ
Ⅱ
Ⅲ
Ⅲ
两个刚片用三根平行不等长的链杆相连,几何瞬变体系
体系是无多余约束的几何不变体系
三、进一步举例
例题1
结论:
无多余约束的几何不变体系
A
A
相交在∞点
6 多余约束与必要约束 不减少体系自由度的约束称为多余约束。反之为必要约束。
▽注意:多余约束不改变体系的自由度,但将影响结构的受力与Байду номын сангаас形。
几何组成分析
二、 几何不变体系的基本组成规则
1、两个刚片之间的联结(规则一): 两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无 多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不 全平行的三根链杆相连结 ,形成无多余约束的几何不变体系)。
几何组成分析
2.4 几何组成分析举例
一、思路 1可先考察体系的计算自由度,若W0,则体系为几 何可变,不必进行几何组成分析;若W<0,则应进行几何 组成分析(辅助)。 2若体系可视为两个或三个刚片时,则直接应用三规则 分析。 3若体系不能直接视为两个或三个刚片时,可先把其中 已分析出的几何不变部分视为一个刚片或撤去“二元体”, 使原体系简化。
一、几何可变体系 一般无静力解答。
实饺
虚饺
三饺共线 (瞬变)
几何组成分析 3、一个刚片与一个结点之间的联结(规则三): 在刚片上用两根不在一条直线上的链杆联结出一个结点,形成 无多余约束的几何不变体系(或:在一个刚片上增加二元体)。
平面杆件体系的几何组成分析典型例题(附详细解题过程)

平面杆件体系的几何组成分析典型例题【例1】对如图1(a)示体系作几何组成分析。
图1【解】(1)对如图1(a)所示体系依次拆除二元体后如图1(b)所示。
(2)选取三个刚片Ⅰ、Ⅱ、Ⅲ,它们由三个虚铰O1、O2、O3两两相连,其中虚铰O1、O3的连线与形成无穷远虚铰O2的两平行链杆不平行。
(3)结论:无多余约束的几何不变体系。
【例2】对如图2(a)所示体系作几何组成分析。
图2【解】(1)根据二元体规则先将结点G固定在基础上,选扩大的基础作为刚片Ⅰ,如图2-(b)所示。
(2)选折杆AF为刚片Ⅱ,两刚片由三根链杆(DE、FG及A处支座链杆)相连,且不交于一点也不互相平行,满足两刚片规则。
(3)结论:无多余约束的几何不变体系。
【例3】对如图3(a)所示体系作几何组成分析。
图3【解】(1)对如图3(a)所示体系依次拆除二元体后如图3(b)所示。
(2)选取三个刚片Ⅰ、Ⅱ、Ⅲ,它们由三个铰O1、O2、O3两两相连,其中铰O1、O2的连线与形成无穷远虚铰O3的两平行链杆不平行。
(3)结论:无多余约束的几何不变体系。
【例4】对如图4所示体系作几何组成分析。
图4【解】对如图4(a)体系进行几何组成分析如下:(1)选取如图4(a)所示的两个刚片Ⅰ、Ⅱ,它们由三根链杆AC、EF及BD相连,且这三根链杆不交于一点也不互相平行,满足两刚片规则,因此上部体系是没有多余约束的几何不变部分。
(2)上部体系与基础间由四根支座链杆相连接。
(3)结论:有一个多余约束的几何不变体系(四根支座链杆中任一根均可看作多余约束)。
对如图4(b)体系进行几何组成分析如下:(1)先根据两刚片规则将杆123及结点7固定在基础上,再根据二元体规则依次固定结点4、5,扩大的基础刚片即刚片Ⅰ。
(2)固定结点6时,由于结点5、6、7共线,结论:几何瞬变体系。
【例5】对如图5(a)所示体系作几何组成分析。
图5【解】选取三个刚片Ⅰ、Ⅱ、Ⅲ,如图5(b)所示,它们由三个铰O1、O2、O3两两相连,其中铰O1、O2的连线与形成无穷远虚铰O3的两平行杆不平行。
结构力学第2章平面体系的几何组成分析

精品课件
例2-4-3
精品课件
分析图:
(a)
精品课件
(b)
(c)
精品课件
(d)
(e)
精品课件
说明:
1、通过本题中的两例可知,当上 部体系和大地之间的联系符合两刚 片规则时,体系几何组成分析的结 论只与上部体系的几何组成有关。 因此,当符合此条件时,可仅分析 上部体系。
精品课件
2、(a)所示体系先去掉与大地的支 座约束后,对上部体系可依次去掉 二元体213、453、563后,体系简化 成一铰接三角形,所以原体系是无 多余约束的几何不变体系。
结构力学
结构力学教研组 青岛理工大学工管系
精品课件
第二章 平面体系的几何组成分析
精品课件
§2.1 概述
本章研究平面杆系结构的基本 组成规律和合理形式。
精品课件
其目的在于:
❖ 了解和掌握结构的基本组成规律和
合理组成形式。正确区分各类体系, 判定结构;选择合理的结构形式。 ❖ 根据各类结构的几何组成,选择 正确的计算方法和简捷的解题途径。
几何不变体系
精品课件
(2)内部几何不变体系
若作为几何组成分析的结论, 内部几何不变体系指仅除大地 外的体系的整体。
精品课件
(a)
(b)
精品课件
(c)
(3)刚片
在平面问题中,刚性体化为平面 内的一个不会有变形的面,则称 这个面为刚片.刚片在其平面内, 任意两点间的距离都保持不变。
精品课件
(4)几何瞬变体系
对体系加载时,体系在瞬时内发 生微小位移,然后便成为几何不 变体系。这种体系叫作几何瞬变 体系(瞬变体系)
精品课件
(a)
精品课件
【经典】第2、3、4章习题答案 习题答案

第2章 平面体系的几何构造分析习 题2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ) (b)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)(ⅠⅢ)(ⅡⅢ)几何不变(d)W=4×3 -3×2 -5=1>0几何可变体系Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(e)(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(g)(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)第3章 静定结构习 题3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F aaa aaa4P F Q34P F 2P F(b)2020Q10/326/310(c)2m6m2m4m2m3m2m2m3m3m4m18060(d)7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)3m2m2m2mA2m 2m2m2m4kN ·m6m1k N /m2kN CB242018616MQ18(b)30303011010QM 210(c)6m10kN3m3m 40kN ·mABC D 3m3m45MQ(d)444444/32MQN(e)6m2m 2m4m4m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 平面体系的几何组成分析习题解答
习题2.3 对习题2.3图所示各体系进行几何组成分析。
(a)
(b)
由铰A 和支杆①相联组成几何不变的部分;再与刚片BC 由铰B 和支杆②相联,故原体系几何不变且无多余约束。
习
题解2.3(a)图
(2)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A 、B 、(Ⅰ,Ⅲ)两两相联,组成几何不变的部分,如习题解2.3(b)图所示。
在此部分上添加二元体C-D-E
,故原体系几何不变且无多余约束。
习
题解2.3(b)图
习题解2.3(c)图
习题解2.3(d)图
(5)如习题解2.3(e)图所示,刚片Ⅰ、Ⅱ、Ⅲ组成几何不变且无多余约束的体系,为一个大刚片;该大刚片与地基之间由平行的三根杆①、②、③相联,故原体系几何瞬变。
习题解2.3(e)图
(6)如习题解2.3(f)图所示,由三刚片规则可知,刚片Ⅰ、Ⅱ及地基组成几何不变且无多余约束的体系,设为扩大的地基。
刚片ABC与扩大的地基由杆①和铰C相联;刚片CD与扩大的地基由杆②和铰C相联。
故原体系几何不变且无多余约束。
习
题解2.3(f)图
(7)如习题解2.3(g)图所示,上部体系与地面之间只有3根
支杆相联,可以仅分析上部体系。
去掉二元体1,刚片Ⅰ、Ⅱ由铰A
和不过铰A的链杆①相联,故原体系几何不变且无多余约束。
习题解2.3(g)图
(8)只分析上部体系,如习题解2.3(h)图所示。
去掉二元体1、2,
刚片Ⅰ、Ⅱ由4根链杆①、②、③和④相联,多余一约束。
故原
体系几何不变且有一个多余约束。
习题解2.3(h)图(9)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A、B、C组成无多余约
束的几何不变部分,该部分再与地基由共点三支杆①、②、③相联,
故原体系为几何瞬变体系,如习题解2.3(i)图所示。
习题解2.3(i)图
(10)刚片Ⅰ、Ⅱ、Ⅲ由共线三铰两两相连,故体系几何瞬变,如习题解2-3(j)
图所示。
( , )
( , )
Ⅰ
Ⅰ
习题解2.3(j)图
(11)该铰接体系中,结点数j=8,链杆(含支杆)数b=15 ,则计算自由度
2281510
W j b
=-=⨯-=>
故体系几何常变。
(12)本题中,可将地基视作一根连接刚片Ⅰ和Ⅱ的链杆。
刚片Ⅰ、Ⅱ、Ⅲ由共线的三个铰两两相联,如习题解2.3(l)图所示。
故原体系几何瞬变。
Ⅰ
习题解2.3(l)图。