超声波测试混凝土的基本方法
混凝土超声波无损检测技术规范

混凝土超声波无损检测技术规范一、前言混凝土超声波无损检测技术是目前国内外广泛应用的一种非破坏性检测技术,其应用范围涉及建筑、桥梁、隧道、水利电力等领域,是对混凝土结构质量、缺陷、损伤和耐久性进行评估的重要手段。
本文将对混凝土超声波无损检测技术规范进行详细介绍。
二、技术规范1. 设备选择混凝土超声波无损检测设备应具有高精度、高灵敏度、高抗干扰能力和高分辨率等特点,同时应具备可靠性高、操作简便、数据处理快速等优点。
使用时应根据检测对象的不同情况选择不同类型的设备,以达到最佳的检测效果。
2. 检测方法在混凝土超声波无损检测中,常见的检测方法包括传统的透射法和反射法、扫描法、全波形反演法等。
不同的方法有不同的适用范围和检测效果,应根据具体情况选择合适的检测方法。
3. 检测准备在进行混凝土超声波无损检测前,应对检测对象进行清洁,去除表面的灰尘、泥沙等杂物,以保证检测的准确性。
同时,应在检测前对检测区域进行标记,以便于后续数据处理和分析。
4. 检测操作在进行混凝土超声波无损检测时,应按照设备说明书的要求进行操作,同时应注意以下事项:(1)检测探头的安装应符合设备要求,探头与被检测物体的接触面应平整,确保信号传输的稳定和准确。
(2)检测时应按照预设的扫描路线进行,确保完整地覆盖被检测区域。
(3)检测时应保持探头与被检测物体的距离不变,避免因距离变化而影响信号的传输和接收。
5. 数据处理在混凝土超声波无损检测后,应对所得的数据进行处理和分析。
常见的数据处理方法包括图像处理、数字信号处理、全波形反演等。
处理后的数据应准确、清晰、可读,并应配合其他检测数据进行综合分析,得出准确的结论。
6. 报告编制在混凝土超声波无损检测完成后,应编制检测报告。
报告应包括被检测物体的基本信息、检测方法、检测结果、分析结论以及建议措施等内容。
同时,应注意报告的准确性、简洁明了、易于理解。
三、结论混凝土超声波无损检测技术是一项非常重要的技术手段,对于保证混凝土结构的质量、缺陷、损伤和耐久性评估具有重要的作用。
混凝土超声波检测技术及其应用

混凝土超声波检测技术及其应用一、前言混凝土是现代建筑中最常用的材料之一,其质量直接关系到建筑的安全性和使用寿命。
因此,对混凝土质量的检测一直是建筑工程中不可缺少的一环。
而超声波检测技术由于其高精度、高灵敏度、无损检测等优点,在混凝土质量检测中得到了广泛的应用。
本文将详细介绍混凝土超声波检测技术及其应用。
二、混凝土超声波检测技术1. 超声波的基本原理超声波是指频率超过20kHz的声波。
它的传播速度和传播路径受到材料密度、弹性模量、泊松比等因素的影响。
在混凝土中,超声波的传播速度受到混凝土的密度、弹性模量等因素的影响。
通过对超声波传播的测量和分析,可以得到混凝土材料中的一些物理和力学性质,如密度、弹性模量、泊松比、裂缝、缺陷等信息。
2. 混凝土超声波检测设备混凝土超声波检测设备主要由发射器、接收器、超声波探头、信号处理器等组成。
发射器将电能转换为机械能,产生超声波信号并向混凝土中发射。
接收器接收到混凝土中反射回来的超声波信号,并将其转换为电信号。
超声波探头是发射器和接收器的组合体,用于将超声波信号传递到混凝土中和接收反射回来的信号。
信号处理器用于处理接收到的信号,提取混凝土的相关信息。
3. 混凝土超声波检测方法混凝土超声波检测方法主要有传统的时间域方法和频率域方法。
时间域方法是通过测量超声波信号在混凝土中传播的时间,来得到混凝土中的物理和力学性质。
频率域方法是通过分析超声波信号的频谱,来得到混凝土中的物理和力学性质。
时间域方法主要包括直达波法、反射波法和透射波法。
直达波法是指将超声波信号直接传递到混凝土的另一侧,利用时间差来测量混凝土的厚度和速度。
反射波法是指通过混凝土表面反射回来的超声波信号来测量混凝土中的物理和力学性质。
透射波法是指将超声波信号从混凝土的一侧传递到另一侧,测量信号的衰减和传播时间来推断混凝土的物理和力学性质。
三、混凝土超声波检测的应用1. 混凝土结构质量检测混凝土结构在使用过程中会受到各种因素的影响,如自然老化、恶劣环境、地震等,导致混凝土结构的质量下降。
超声波法检测混凝土缺陷作业指导书

超声波法检测混凝⼟缺陷作业指导书超声波法检测混凝⼟缺陷作业指导书⼀、测试原理和⽅法超声测缺陷的基本原理,是通过超声波(纵波)在混凝⼟中传播的不同参数反映混凝⼟的质量。
即利⽤超声波在混凝⼟中传播的声时、振幅、波形这三个声学参数综合判断其内部的缺陷情况。
声时—即超声波在混凝⼟中传播所需要的时间,如超声波在传播路径中遇有缺陷时,则要绕过缺陷,声时就会变长。
振幅—即接收信号⾸波振幅。
混凝⼟内部存在缺陷时,超声波在缺陷界⾯上声阻抗差异显著,产⽣发射、散射和吸收,使接收波振幅显著降低。
振幅变化⼤⼩可通过增益和衰减器的调整进⾏测量。
波形—即接收到的波形。
混凝⼟内部存在缺陷时,超声波在内部传播发⽣变化。
直达波、绕射波、反射波等各类波相继被接收。
由于这些波的相位不同,因此使正常波形发⽣畸变。
主要观察前⼏个周期的波形。
⼀般情况下,正常混凝⼟的前⼏个波形振幅⼤,⽆畸变,接收波的包络线呈半圆形见图11-1(a)。
有缺陷混凝⼟的前⼏个周期波形振幅低,可能发⽣波形畸变,接收波的包络线呈喇叭形,见图11-1(b)。
11-1 接受图形常⽤的测试⽅法⼤致分为以下⼏种:1平⾯测试(⽤厚度振动式换能器)(1)对测法:⼀对发射(T)和接收(R)换能器,分别置于被测结构相互平⾏的两个表⾯,且两个换能器的轴线位于同⼀直线上。
(2)斜测法:⼀对发射和接收换能器分别置于被测结构的两个表⾯,但两个换能器的轴线不在同⼀直线上。
(3)单⾯平测法:⼀对发射和接收换能器置于被测结构同⼀个表⾯上进⾏测试。
2钻孔测试(采⽤径向振动式换能器)(1)孔中对测:⼀对换能器分别置于两个对应钻孔中,位于同⼀⾼度进⾏测试。
(2)孔中斜测:⼀对换能器分别置于两个对应钻孔中,但不在同⼀⾼度⽽是在保持⼀定⾼程差的条件下进⾏测试。
(3)孔中平测:⼀对换能器置于同⼀钻孔中,以⼀定的⾼程差同步移动进⾏测试。
⼆、仪器设备1.超声波仪超声波仪应满⾜下列要求:(1)具有波形清晰、显⽰稳定的⽰波装置。
混凝土结构中的超声波检测方法

混凝土结构中的超声波检测方法引言混凝土是建筑中常用的材料之一,其具有强度高、耐久性好等特点,但在使用过程中,其表面可能会发生裂缝、损伤等问题,这些问题可能会影响混凝土结构的性能和安全性。
因此,对混凝土结构进行检测和评估显得尤为重要。
本文将介绍混凝土结构中的超声波检测方法。
一、超声波检测原理超声波是指频率高于20 kHz的机械振动波。
在混凝土中,超声波的传播速度取决于混凝土的密度和弹性模量。
当超声波遇到混凝土中的缺陷或异质性时,其传播速度和振幅会发生变化,从而可以检测到混凝土中的缺陷或损伤。
二、超声波检测设备超声波检测设备通常包括发射器、接收器和计算机等组成部分。
其中,发射器用于发射超声波信号,接收器用于接收信号并转换为电信号,计算机则用于处理和显示检测结果。
三、超声波检测方法1. 传统超声波检测方法传统超声波检测方法通常采用单元素探头进行检测。
探头发出的超声波信号在混凝土中传播,当遇到缺陷或损伤时,一部分能量会被反射回来,接收器则会接收到反射波信号。
通过分析反射波信号的时间、幅值和波形等特征,可以判断混凝土中的缺陷或损伤。
2. 相控阵超声波检测方法相控阵超声波检测方法是一种新型的检测方法,其采用多元素探头进行检测。
相控阵探头可以控制每个元素的发射时间和幅度,从而实现对检测区域内不同方向的超声波信号的发射和接收。
通过对信号进行处理和分析,可以得到混凝土中的缺陷或损伤的位置和形状等信息。
四、超声波检测应用1. 混凝土结构缺陷检测超声波检测可用于检测混凝土结构中的裂缝、空洞、腐蚀等缺陷,可以帮助工程师及时发现和修复混凝土结构中的问题,保证其性能和安全性。
2. 混凝土结构质量评估超声波检测还可以用于评估混凝土结构的质量。
通过检测混凝土结构中的声速、弹性模量等参数,可以判断混凝土的密度、强度等质量指标,进而评估混凝土结构的质量。
3. 混凝土结构损伤监测超声波检测还可以用于混凝土结构的损伤监测。
通过定期检测混凝土结构中的缺陷和损伤,可以及时发现和修复问题,提高混凝土结构的使用寿命和安全性。
使用超声波检测混凝土缺陷的方法

使用超声波检测混凝土缺陷的方法一、方法概述超声波检测是一种非破坏性检测方法,能够检测混凝土内部的缺陷,如空洞、裂缝、松散等,同时还可以测量混凝土结构中的厚度和弹性模量等参数。
本文将介绍使用超声波检测混凝土缺陷的具体方法。
二、检测设备和工具1. 超声波探头:用于向混凝土内部发射超声波信号和接收反射波信号。
2. 超声波仪器:用于控制超声波探头发射和接收信号,并将信号转换为数字信号进行处理和分析。
3. 电缆:用于连接超声波探头和仪器。
4. 计算机:用于控制超声波仪器、存储和分析超声波信号。
5. 钻孔机:用于在混凝土结构中钻孔,以便将超声波探头插入混凝土内部。
三、检测步骤1. 准备工作(1)确定检测区域:根据需要检测的混凝土结构和具体检测要求,确定检测区域。
(2)选择合适的超声波探头:根据混凝土结构的不同,选择合适的超声波探头,一般常用频率为50kHz-1MHz之间。
(3)连接超声波探头和仪器:将超声波探头与仪器用电缆连接,确保连接正常。
(4)设置超声波仪器参数:根据混凝土结构的不同和具体检测要求,设置超声波仪器的参数,如发射频率、增益、滤波等。
(5)钻孔:在检测区域的混凝土结构上钻孔,钻孔直径一般为探头直径的1.5倍,钻孔深度一般为混凝土厚度的0.3-0.5倍。
2. 检测过程(1)插入超声波探头:将超声波探头插入钻孔中,与混凝土表面保持紧密接触。
(2)发射信号:超声波仪器向混凝土结构内部发射超声波信号,信号穿过混凝土,经过反射、折射后返回探头。
(3)接收信号:超声波探头接收反射波信号,并将信号传回超声波仪器。
(4)信号处理:超声波仪器将接收到的信号进行数字信号处理和分析,如滤波、放大、FFT等。
(5)识别缺陷:根据信号处理结果,可以识别混凝土结构中的缺陷,如空洞、裂缝、松散等。
(6)记录数据:将检测过程中得到的数据记录下来,包括钻孔位置、超声波信号的强度和时间延迟等信息。
四、注意事项1. 检测前应对检测区域进行清理,以确保超声波信号能够穿透混凝土结构。
混凝土结构的超声波检测技术规程

混凝土结构的超声波检测技术规程一、前言混凝土结构在建筑工程中起到了至关重要的作用,然而由于其特殊的材料性质和施工过程,混凝土结构很容易在使用中出现损坏和龟裂等问题。
超声波检测技术作为一种非破坏性检测方法,已经广泛应用于混凝土结构的检测中。
本文将详细介绍混凝土结构超声波检测技术的规程。
二、检测设备1. 超声波探头:用于发射和接收超声波信号。
2. 控制仪器:用于控制超声波探头的发射和接收。
3. 计算机:用于数据采集和处理。
三、检测方法1. 检测位置的确定:根据建筑结构的不同部位和结构形式,确定检测位置。
2. 检测前的准备工作:将超声波探头固定在检测位置上,并根据需要进行标记。
3. 检测方法:将探头放置在混凝土结构表面,并发射超声波信号,根据信号的反射情况判断混凝土结构的质量和损伤程度。
4. 检测数据的记录:将检测数据记录在计算机中,进行数据分析和处理。
四、检测参数1. 超声波频率:根据混凝土结构的不同材质和厚度,选择合适的超声波频率。
2. 发射和接收的距离:根据检测位置和混凝土结构的特点,选择合适的发射和接收距离。
3. 检测速度:根据混凝土结构的大小和检测要求,选择合适的检测速度。
4. 检测灵敏度:根据混凝土结构的损伤程度和检测要求,选择合适的检测灵敏度。
五、检测结果的判定1. 超声波图像:根据超声波信号的反射情况,判断混凝土结构的质量和损伤程度。
2. 检测报告:将检测结果记录在检测报告中,并进行数据分析和处理。
六、检测范围1. 混凝土结构的质量检测。
2. 混凝土结构的损伤检测。
3. 混凝土结构的龟裂检测。
七、检测标准1. GB/T 50315-2010《混凝土结构工程验收规范》。
2. GB/T 50367-2006《混凝土结构非破坏性检测技术规程》。
八、检测注意事项1. 检测前应进行必要的安全措施,确保检测人员和设备的安全。
2. 检测时应注意探头的位置和角度,确保检测结果的准确性。
3. 检测过程中应注意探头与混凝土结构的接触情况,确保信号传输的畅通。
混凝土超声波检测技术规程

混凝土超声波检测技术规程混凝土超声波检测技术规程引言:混凝土是建筑和基础设施建设中最常用的材料之一。
然而,由于混凝土的复杂性和隐蔽性,对其质量进行准确评估变得至关重要。
在这方面,混凝土超声波检测技术成为了一种广泛应用的非破坏性检测方法。
本文将深入探讨混凝土超声波检测技术的规程和相关方面,并提供对该技术的观点和理解。
一、混凝土超声波检测技术概述混凝土超声波检测技术是一种基于超声波传播特性的非破坏性检测方法。
该技术通过发射超声波脉冲到混凝土中,利用超声波在材料中的传播速度和反射特性来评估混凝土内部的质量、缺陷和损伤情况。
它具有高精度、高可靠性和无损伤的特点,可以提供关于混凝土结构完整性和质量的重要信息。
二、混凝土超声波检测技术的应用范围混凝土超声波检测技术广泛应用于以下领域:1. 结构评估:通过检测混凝土结构中的裂缝、空洞、质量不均匀性等缺陷,评估结构的强度和可靠性,提供结构安全性评估和维修建议。
2. 混凝土质量控制:检测新鲜混凝土的质量特性,如坍落度、密实度等,以确保混凝土满足设计要求和施工标准。
3. 混凝土缺陷检测:发现混凝土中的内部缺陷,如空洞、裂缝、夹杂物等,以避免潜在的安全隐患和结构损伤。
4. 混凝土损伤评估:评估混凝土结构的损伤程度和类型,如冻融损伤、碳化、钢筋锈蚀等,以指导维修和保养工作。
三、混凝土超声波检测技术的实施步骤混凝土超声波检测技术的实施过程可分为以下几个步骤:1. 仪器准备:选择适当的超声波检测仪器,校准并保证其正常工作。
2. 检测方案设计:根据具体的检测目的和条件,确定检测方案,包括检测位置、传感器布置方式等。
3. 数据采集:在已确定的检测位置上,依次采集超声波数据,并记录相关参数,如传播时间、振幅等。
4. 数据分析:利用专业软件或算法,对采集到的数据进行分析和处理,提取有关混凝土质量和结构特征的信息。
5. 结果解释和评估:根据数据分析结果,对混凝土的质量、缺陷和损伤情况进行解释和评估,提供有效的建议和措施。
混凝土中使用超声波检测质量的方法

混凝土中使用超声波检测质量的方法混凝土是一种常见的建筑材料,广泛应用于各种建筑结构中。
然而,由于混凝土的性质和结构,其质量的检测和评估一直是一个挑战。
传统的质量检测方法通常需要摧毁混凝土结构,这样会对结构的完整性和耐久性造成损害。
因此,超声波检测技术逐渐成为一种非破坏性的混凝土质量检测方法。
超声波检测技术是利用超声波在材料中传播的特性来检测混凝土的质量和缺陷。
当超声波在混凝土中传播时,它们会遇到材料的各种障碍和缺陷,例如裂缝、空洞、骨料分布等。
这些障碍和缺陷会导致超声波传播的速度和信号强度发生变化,从而可以通过分析超声波信号来确定混凝土的质量和缺陷。
超声波检测混凝土质量的方法可以分为以下几个步骤:1. 准备工作:在进行超声波检测之前,需要进行一些准备工作。
首先,需要选择适当的超声波检测设备和探头,以便能够获取准确的信号。
其次,需要准确地测量混凝土结构的尺寸和形状,以便在检测期间能够确定信号的来源。
最后,需要在混凝土结构的表面涂上适当的耦合剂,以便能够传输超声波信号。
2. 超声波检测:进行超声波检测时,探头必须紧密地接触混凝土表面,以确保信号的传输。
在检测期间,超声波会在混凝土中传播,然后返回探头。
在信号返回探头时,超声波检测设备会记录信号的强度和时间。
这些信号可以用于评估混凝土的质量和缺陷。
3. 数据分析:在获得超声波信号之后,需要对数据进行分析。
数据分析可以通过计算超声波的传播速度和强度来确定混凝土的质量和缺陷。
例如,如果信号的传播速度较慢,可能意味着存在空洞或裂缝。
如果信号强度低,可能表明混凝土中存在骨料分布不均的问题。
4. 结果报告:最后,需要生成一个结果报告,以便能够评估混凝土的质量和缺陷。
结果报告应包括以下信息:混凝土结构的尺寸和形状、超声波检测的数据和分析结果、检测时使用的设备和探头、以及建议的修复措施(如果需要)。
超声波检测混凝土质量的方法具有许多优点。
首先,它是一种非破坏性的检测方法,不会对混凝土结构造成损害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波测试混凝土的基本方法声波在均匀的固体介质中传播时,特别是在金属中定向传播过程中,实际上并没有什么衰减,而在金属与空气界面上则几乎全被反射回来。
这就是利用声波来检测金属零部件均匀性和零件内是否有气孔、裂缝、铸造等缺陷的物理基础。
而混凝土超声探测亦是根据这一原理来研究混凝土的结构形态。
目前比较成功的方法有以下几种类型:(1)用超声波通过混凝土来判断混凝土内部结构的方法,叫透射法或穿透法;(2)用声波所产生的回波信号来研究混凝土内部结构及裂缝位置及波速叫反射法;(3)用声波的界面滑行波来研究岩体的下伏界面速度及界面位置的方法叫折射法;(4)用钻孔来了解混凝土内波速及结构特征随深度的变化,称为孔中测定法。
下面分别介绍各种方法工作的特点及使用条件.〔I〕透射波(直达波)法:混凝土超声波透射法,是一种简单而效果又是最好的探测方法•采用透射法发收、换能器机-电,电-机转换效率高,因而在混凝土中的穿透能力相对较强,传播距离相对较长,可以扩大探测范围。
透射波法可以获得较反射波法大几倍,较折射波法大几十倍的能量,因而波形单纯、清楚、干扰较小,初至清晰,各类波形易于辨认。
透射波法要求发射探头和接受探头之间的距离必须能够准确丈量,否则计算出来的误差值较大,反而影响了测量的精度。
当被测对象较破碎,或存在张裂缝时岩体对声波的衰减系数较大,以及做大距离测试,可采用锤击法。
这时接收仍可采用单片弯曲式换能器接收,其谐振频率以10千赫左右为宜。
因为在混凝土上加板的激发频率主频约在数千赫。
鉴于这时所测声时值较大,发射到接收的系统延时值在数微秒,可忽略,故不再计较t o的值。
〔U〕反射波(回波)法用发射、接收换能器检测混凝土质量。
超声波在混凝土中传播时,所遇到的每个波阻抗面上,都将发生反射、透射现象,在有几个波阻抗面存在时,则在每个界面上都将发生反射和透射。
这样我们在混凝土表面上可以观测到一系列依次到达的反射波如图1所示,反射波的强度不仅与入射波的强度有关外,而且决定界面的反射系数,即决定两种介质的声阻抗。
声波在介质中传播过程中,由于波前的发散作用和凝滞及阻尼等吸收作用,波内稀疏部分与压缩部分中间之热传导及辐射,以及反射波形成过程中都会使入射波的振幅随着传播的距离增加而迅速衰减,在均匀同性介质中,振幅随距离按指数规律衰减。
在各向异性介质中,振幅一方面要随距离衰减外,而且随着节理、层理、界面曲率、混凝土结构的破碎程度、裂缝的宽度和长度及与波传播的方向等因素有关,无一定规律的衰减,在计算时,这要看诸影响因素中起主导作用的是什么,抓住主要矛盾,再考虑其它因素。
混凝土不均匀或者由界面破碎等波阻抗面的不同所造成的反射波,当波阻抗面距离小于波形振动的延续面时,则往往造成两个波形振动带的干涉使之产生叠加,反射波多层薄层分辩率最好的位置是在发射探头附近,发射和接收探头距离过大,则往往使之浅层反射波振动带来严重干扰下层的反射波,这时超声波形图将是及其复杂而无法分辨的。
因此,在应用反射法时应注意以下几个问题:①接收探头应尽量靠近发射探头,因为这时波具有稳定的强度和一致的波形,这使得反射波容易追踪。
②在发射探头附近的测区内,反射波法可以分辨界面相距较近的反射波。
并且干扰最小。
③观测点距离发射探头不远时,反射波射线在方向上接近于反射面的法线。
因此上部混凝土中间分界面上折射的影响大大减少,这样就便于认识波形和提高解释的精度。
〔川〕折射法适用于表层混凝土有损伤〔W〕需要预先埋管或钻孔混凝土声波检测的实例1. 混凝土试件的超声波波速测试⑴确定换能器的频率,换能器选择的主要指标是频率,以及由频率计算出的波长入应满足小于混凝土样横向垂直声线方向尺寸D的2倍,考虑到接收信号的主频率会低于发射频率,因此要求D>(2~5)入,同时要求X>d(d为混凝土平均粒径)。
反过来确定换能器的频率f=V /入,f=(2〜5)V /D。
混凝土样品的测试,在声速可以穿透的情况下尽量选用频率高一些的换能器,因为这时会有好的指向性。
例如45kH z的纵波换能器,在声速为4000m/s的混凝土中,其波长入=0.09m,而混凝土试块的尺寸为0.15m X 0.15m, 即波长入不满足小于混凝土样横向垂直声线方向尺寸D的2倍这个条件,需要进一步提高换能器的频率。
此外,为保证换能器是良好的,有一定的电声和声电转换效率,其收发传输效率大于95%。
⑵系统的校零。
在测试之前,必须测试发射换能器、电路、接收换能器的系统延时值t 0,故每更换一次换能器需重复此项工作一次。
t 0的测试方法最简单的是对接法,即将收发换能器的辐射面间加黄油或凡士林作为偶合剂,并相互紧贴,将发射能量调到最小,读取这时的声时,即为t 0。
此外尚有标准棒法,即一个一定长度的铝棒或有机玻璃棒(试验中心现有的标准棒的时间为25.6卩s),事先在精密仪器上标定了它的声波传播时间t n 时,测试标准棒的声波传播时间t m,则t 0=t m —t n,t n值已在棒上标出,故t 0可以获取,或直接调整声波仪的旋钮,使声波穿过标准棒的时间为tn。
当然还有长短棒法,即取同一段有机玻璃棒其直径应不小于50mm,截取25、50、75、100、120mm数段,分别用仪器依次测取其声波传播时间,如为t】、t2、t3、t4、t5,即可做时距曲线,或进行一元线性回归,即可测得t 0值,如果能够做到每次的偶合状态均达到最佳,那么所测得的t 0值,基本上与对接法相一致,其相互间的误差仅在0.1卩s内,即相当于一个耦合油层的声波传波时间。
⑶测取混凝土样品尺寸,一般可采用卡尺,其精度在0.02mm可满足要求,但对加工面是否平行应加考虑,方法是采取对混凝土样的两测试面间,改换位置多次测量,以求得两被测面中心点至中心点间的距离。
⑷混凝土超声波的判读与处理:我们主要通过波的到时,以及频率、周期、振幅、相位等定性定量数据,借以研究混凝土结构和岩体的基本物理力学性质。
①详细了解并掌握声波检查仪性能,充分利用仪器的某些特殊设计,如改变脉冲的宽度和输出发射电压的大小等,② 详细了解并掌握换能器的声波指向性,适当选择并安放收发换能器的位置及倾斜角 度。
③ 根据研究目的和波形特点,适当选取收、发探头的频率。
④ 换能器的电-声及声-电转换效率与换能器的输出输入阻抗匹配情况有很大影响。
应采用磨平探测点混凝土表面或加耦合剂的办法来改善换能器与混凝土的耦合状态。
⑤ 选择最佳的观测系统。
⑥ 消除干扰波。
通过实测取得一张 完整的波形剖面图后,就要对剖面进行 震相辨认,区分出直达纵波、直达横波、 反射波、折射波及其它各种转换波。
根据波的到时及波形特点,并计算 波速和研究各类波的所携带的有用信 息。
图1为透射法实测波形图。
从图上 可以看出:由时标可分别计算发射脉冲到接收探头之间纵波的初至点及时间间 隔,从而计算波速。
波形分析及震相的识别是在工作一开始就要考虑的问题,这一工作贯穿在整个 声波测试工作的始终。
如在选用探头和探头的安装上就应考虑到突出被测震相,其次要了 解各类波的震相特点和利用各类波的对比才能加以识别。
纵波初至时间的测定应尽量增大 放大器的增益,这样找到的波形起跳点“干净”。
在增大放大器的增益时,噪声也将随之 放大,测定起跳点时,应避免噪声的干扰等产生的误差。
在有高频成分干扰 P 波初至时,最好采用高频包络线与基准线(0线)的交点作为初至时刻。
当纵波 P 的初动不明显或初 动反向时,需要根据震相特点及波速,波速比等诸因素认真研究。
同时改变探头的耦合条 件和倾斜方向,力争使各测点初动方向一致。
横波初致时间的确定:由于 S 波的初致时间较晚,基本在P 波的续至区及其它界面波的干扰区内,因此 S 波的初至的测定是比较困难 的。
根据相关经验认为可采用如下措施:把放大器的增益尽量减少,使 P 波振幅几乎小到与水平基线重合的程度,这时在波列图上只能见到 S 波的振幅,这样可以大体上确定 S 波的起点。
然后,再加大增益,细找S 波的起始点。
一般情况下在S 波大振幅前面去找周期、 振幅、相位与P 波列不同的属S 波初至的震相。
也可根据纵横波速比值及理论时距曲线法 查找初至。
⑸仪器的声时准确度检查。
空气中声速的测试取常用平面换能器一对,接于声波仪 上,开机预热30min ,在空气中将两换能器辐射面对准,在变动两辐射面彼此相隔距离的 情况下(女口 0.1m 、0.15m 、0.20m 、0.25m 、0.30m 、0.35m 、0.40m ),将接收信号尽可能放 大,测出相应于各间距的声时t l , t 2,t 3…..。
测量时应注意:换能器间距的测量误差应小 于或等于0.5%;换能器宜悬空相对,若置于地板及桌面上时,需在换能器下面垫以海绵块 或泡沫。
计算空气的声速:以换能器距离为纵坐标,声速读数为横坐标,将各组数据点绘 在直角坐标图上,各点应在一直线上。
在坐标纸上画出该直线,并算出直线斜率;即为空 气声速实测值V 1。
空气声速的标准值按公式V 2 = 331.4X 1 0.00367T (T 为测试时空气的温度)。
要求:空气声速的实测值V 1和标准值V 2的相对误差e r 不应大于土 0.5%,否则 仪器计时系统不正常。
e r =(V 1-V 2)/V 2 X 100%2混凝土缺陷检测在混凝土结构物的施工及使用过程中,往往会构成一些缺陷和损伤。
形成这些缺陷和 损伤的原因是多种多样的,一般而言,主要有 4个方面:初至相也初至点 图2(1) 施工原因,例如,振捣不足、钢筋网过密而骨料最大粒径选择不当、模板漏浆等所 造成的内部孔洞、不密实区、蜂窝及保护层不足、钢筋外露等;(2) 由于混凝土非外力作用形成的裂缝,例如,在大体积混凝土中因水泥水化热积蓄过 多,在凝固及散热过程中的不均匀收缩而造成的温度裂缝,混凝土干缩及碳化收缩所造成 的裂缝;(3) 长期在腐蚀介质或冻融作用下由表及里的层状疏松;(4) 受外力作用所产生的裂缝,例如因龄期不足即行吊装而产生的吊装裂缝等。
虽然形成缺陷和损伤的原因很多,但是缺陷和损伤的形成不外乎图 3所示的几种这些缺陷和损伤往往会严重影响结构 物的承载能力和耐久性,因此,是事故处 理、施工验收、陈旧建筑物安全性鉴定、 进行维修和补强设计的检测项目。
所谓混凝土探伤,就是以无损检测的 手段,确定混凝土内部缺陷的存在、大小、 位置和性质的一项专门技术。
超声波技术用于材料内部缺陷的探伤始于 时制成了第一台连续超声波探伤仪,它只能探测缺陷的有无,而无法确定缺陷的大小和位置。
1934年提出了用超声脉冲技术进行探伤。
在第二次世界大战中雷达技术迅速发展,采 用超声脉冲技术的相应仪器也随之日臻完善。
目前,在金属材料中已应用了超声显像、自 动报警等新技术,而且超声波全息照相技术也得到应用。