线性代数试卷及答案详解.doc
线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
(完整word版)线性代数试题及答案

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:3的一组标准正交基,=___________《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、; 5、 4; 6、 2 。
三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111431212011310113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分)从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为1122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)Tξ=--;它对应的齐次线性方程组13230x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。
完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数试卷及答案详解
. 《线性代数A》试题(卷一)试卷类别:闭卷时间:
120分钟考试科目:
线性代数测试时间:
学生编号:
姓名:
问题1234567是主考官1的总分。
选择题(每题3分,共30分)1。
假设在初等行变换之后,然后()。
(以下分别代表矩阵的秩)。
;
;
;
和之间的关系无法确定。
2.设置为方阵,然后()。
中的一行元素都为零;
两行(列)元素彼此成比例。
必须有一行和其余行的线性组合。
的任意行的线性组合。
3.假设它是顺序矩阵(),那么下面的结论一定是正确的:()。
4.以下不是一组维向量线性无关的充分必要条件,是()有一组不全是零的数。
没有不全是零的数字集合,所以等于的秩;
矩阵中的任何向量都不能用剩余向量线性表示。
5.设置订单矩阵。
如果矩阵的秩是,它必须是()。
1 .
;
;6.四阶行列式的值等于()。
;
;7.设置为四阶矩阵,伴随矩阵的行列式是()。
;
;
8.如果满足顺序矩阵和顺序单位矩阵,则();
;
;
9.集合,是两个相似的矩阵,下面的结论是不正确的()。
与…同级。
和的特征值是相同的;
与的特征矩阵相同;
的行列式与的行列式相同;
10.设置为序矩阵,则认为特征值是()。
充分和不必要的条件;
必要和不充分的条件;
这既不够也没有必要。
充分必要的条件;
2.填空(每题3分,共18分)1。
计算行列式。
2._______________________ .
3.对应于二次型的对称矩阵是。
4.假设,是欧氏空间中的一组标准正交基,在这组基下向量的坐标是。
5.如果已知矩阵的特征值是_ _ _ _ _ _ _。
6.设置所有三维列向量并记住矩
阵。
如果是,那么。
三个。
(8分)。
四个。
(10分)建立向量组,试着找出它的秩和一个最大独立组,其余向量用最大独立组线性表示。
(12点)讨论线性方程的解,当有无穷多个解时,找出解。
六个。
(14点)集合,(1)获得所有特征值和特征向量;
(2)找出正交矩阵,使其成为对角矩阵。
七个。
(8分)对于任何矩阵,证明:
(1)对称矩阵、反对称矩阵;
(2)它可以表示为对称矩阵和反对称矩阵的和。
《线性代数A》参考答案(卷一)
一、选择题(每题3分,共30分)
二、填空(每项3分,共18分)
1、256;
2 、
3 、
4 、
5、4;
6、2 .三.解决方案:
因为矩阵A的行列式不为零,所以A是可逆的。
因此,以下基本行转换方法可用于计算:
我不确定我是否能做到这一点。
向量组可以通过执行以下基本行变换来获得:
因此,由-(5个点)得到的最大线性独立群的秩=2 (8个点)和,-(10
个点)五.解:
对方程的增广矩阵执行以下基本行变换:
(1)立即系数矩阵和增广矩阵的秩都是3,则方程有唯一解。
-(5点)(2)当系数矩阵的秩为1且增广矩阵的秩为2时,则方程没有解。
-(6点)(3)当方程具有无穷多组解时,方程的增广矩阵可以变换成初等行变换,因此原始方程和下面的方程具有相同的解:以获得上述非齐次线性方程的特殊解;其对应的齐次线性方程的基本解系统包含一个元素,该元素可以作为齐次线性方程的解来获得。
它构成了齐次线性方程的基本解系。
此时,原始方程的一般解是-(12分钟)6。
解决方案:
(1)由特征多项式得到的特征值是(双特征值)。
当时,由,即:
得到了基本解系统,因此属于特征值的所有特征向量都是不全为零的任意常数。
当时,由,即:
得到了基本解系,因此属于特征值的所有特征向量都是非零的任意常数。
-非公开考试时间:
120分钟考试科目:
线性代数测试时间:
学生编号:
姓名:
问题1234567是主考官1的总分。
选择题(每题3分,共30分)1。
假设在初等行变换之后,然后()。
(以下分别代表矩阵的秩)。
;
;
;
和之间的关系无法确定。
2.设置为方阵,然后()。
中的一行元素都为零;
两行(列)元素彼此成比例。
必须有一行和其余行的线性组合。
的任意行的线性组合。
3.假设它是顺序矩阵(),那么下面的结论一定是正确的:()。
4.以下不是一组维向量线性无关的充分必要条件,是()有一组不全是零的数。
没有不全是零的数字集合,所以等于的秩;
矩阵中的任何向量都不能用剩余向量线性表示。
5.设置订单矩阵。
如果矩阵的秩是,它必须是()。
1 .
;
;6.四阶行列式的值等于()。
;
;7.设置为四阶矩阵,伴随矩阵的行列式是()。
;
;
8.如果满足顺序矩阵和顺序单位矩阵,则();
;
;
9.集合,是两个相似的矩阵,下面的结论是不正确的()。
与…同级。
和的特征值是相同的;
与的特征矩阵相同;
的行列式与的行列式相同;
10.设置为序矩阵,则认为特征值是()。
充分和不必要的条件;
必要和不充分的条件;
这既不够也没有必要。
充分必要的条件;
2.填空(每题3分,共18分)1。
计算行列式。
2._______________________ .
3.对应于二次型的对称矩阵是。
4.假设,是欧氏空间中的一组标准正交基,在这组基下向量的坐标是。
5.如果已知矩阵的特征值是_ _ _ _ _ _ _。
6.设置所有三维列向量并记住矩阵。
如果是,那么。
三个。
(8分)。
四个。
(10分)建立向量组,试着找出它的秩和一个最大独立组,其余向量用最大独立组线性表示。
(12点)讨论线性方程的解,当有无穷多个解时,找出解。
六个。
(14点)集合,(1)获得所有特征值和特征向量;
(2)找出正交矩阵,使其成为对角矩阵。
七个。
(8分)对于任何矩阵,证明:
(1)对称矩阵、反对称矩阵;
(2)它可以表示为对称矩阵和反对称矩阵的和。
《线性代数A》参考答案(卷一)
一、选择题(每题3分,共30分)
二、填空(每项3分,共18分)
1、256;
2 、
3 、
4 、
5、4;
6、2 .三.解决方案:
因为矩阵A的行列式不为零,所以A是可逆的。
因此,以下基本行转换方法可用于计算:
我不确定我是否能做到这一点。
向量组可以通过执行以下基本行变换来获得:
因此,由-(5个点)得到的最大线性独立群的秩=2 (8个点)和,-(10个点)五.解:
对方程的增广矩阵执行以下基本行变换:
(1)立即系数矩阵和增广矩阵的秩都是3,则方程有唯一解。
-(5点)(2)当系数矩阵的秩为1且增广矩阵的秩为2时,则方程没有解。
-(6点)(3)当方程具有无穷多组解时,方程的增广矩阵可以变换成初等行变换,因此原始方程和下面的方程具有相同的解:以获得上述非齐次线性方程的特殊解;其对应的齐次线性方程的基本解系统包含一个元素,该元素可以作为齐次线性方程的解来获得。
它构成了齐次线性方程的基本解系。
此时,原始方程的一般解是-(12分钟)6。
解决方案:
(1)由特征多项式得到的特征值是(双特征值)。
当时,由,即:
得到了基本解系统,因此属于特征值的所有特征向量都是不全为
零的任意常数。
当时,由,即:
得到了基本解系,因此属于特征值的所有特征向量都是非零的任意常数。
然后它被组合成:
组合:- (12点)是一组单位正交特征向量,所以它是一个正交矩阵,而且。
(14分)7。
证据:
(1)因为,它是一个对称矩阵。
同样,因为它是反对称矩阵。
(4点)(2)因为从(1)可知-(6点)是对称矩阵和反对称矩阵,所以任何矩阵都可以表示为对称矩阵和反对称矩阵的和。
(8分)单纯的教材内容不能满足学生的需求。
教育中常见的问题是,教大脑的人不使用手,不使用手的人使用大脑,所以他们什么也做不了。
教育革命的对策是手脑联盟。
因此,双手和大脑的力量都是不可思议的。
欢迎您的访问,word文档下载后可以修改和编辑。
双击以删除页眉和页脚。
谢谢!简单的教科书内容不能满足学生的需要。
教育中常见的问题是教大脑的人不使用手,不使用手的人使用大脑,所以他们什么也做不了。
教育革命的对策是手脑联盟。
因此,双手和大脑的力量都是不可思议的。
单词模型。