2018-2019数学新学案同步必修二人教A版讲义:第一章 空间几何体1.1 第1课时 Word版含答案

合集下载

数学课件 人教a版必修2 同步教学第一章空间几何体

数学课件 人教a版必修2 同步教学第一章空间几何体
栏目 导引
第一章 空间几何体
【解】 (1)①错误,棱柱的底面不一定是平行四边形; ②错误,棱柱的底面可以是三角形; ③正确,由棱柱的定义易知; ④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以 正确说法的序号是③④. 故填③④. (2)①是棱柱,并且是四棱柱,因为以长方体相对的两个面作 底面,是互相平行的,其余各面都是矩形,且四条侧棱互相 平行.符合棱柱的定义. ②截面 BCNM 右上方部分是三棱柱 BB1M­CC1N,左下方部 分是四棱柱 ABMA1­DCND1.
第一章 空间几何体
1.1 空间几何体的结构
第 1 课时 棱柱、棱锥、棱台的结构特征
第一章 空间几何体
考点
学习目标
棱柱的结构特 理解棱柱的定义,知道棱柱的结

构特征,并能识别
棱锥、棱台的 理解棱锥、棱台的定义,知道棱
结构特征 锥、棱台的结构特征,并能识别
应用几何体的 能将棱柱、棱锥、棱台的表面展
平面展开图 开成平面图形
结构特征及分类
图形及记法
(1)上下底面互相平行,且是 结 相似图形
构 (2)各侧棱延长线相交于一点
特 (或用一个平行于棱锥底面的

征 平面去截棱锥,底面与截面之

间的部分叫做棱台)
记作
由三棱锥、四棱锥、五棱
分 锥……截得的棱台分别为三
棱台 ABCD-A′B′C′D′

棱台、四棱台、五棱台……
栏目 导引
栏目 导引
第一章 空间几何体
2_边__形___围成的几 体 何体叫做多面体
图示
栏目 导引
第一章 空间几何体
类别
定义
由一个平面图形绕它所在平面内 旋转

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征预习课本P2~4,思考并完成以下问题[新知初探] 1.空间几何体2.空间几何体的分类3.棱柱、棱锥、棱台的结构特征[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台()(2)棱柱中两个互相平行的面一定是棱柱的底面()(3)棱台的底面是两个相似的正方形()(4)棱台的侧棱延长后必交于一点()答案:(1)×(2)×(3)×(4)√2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的有________(填序号).(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱;(2)棱柱的侧棱长相等,侧面都是平行四边形;(3)各侧面都是正方形的四棱柱一定是正方体.解析:(1)不正确,反例如图所示.(2)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.答案:(2)[典例]下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形[解析] 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,所以C错误;D正确,所以选C.[答案] C[活学活用]下列说法错误的是()A.多面体至少有四个面B.棱柱的两个底面是全等的多边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析:选D三棱柱的底面是三角形,其侧面一定是平行四边形,故D错误.棱锥、棱台的结构特征[典例](1)①由五个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥.②正棱锥的侧面是等边三角形.③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.[解析](1)由五个面围成的多面体还可能是三棱台、三棱柱等,故①错;三棱柱是只有两个面平行的五面体,故②错.如图,可知③④错误.(2)①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.[答案](1)A(2)0判断棱锥、棱台的2个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).[典例] 如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.[活学活用]1.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是()解析:选C将四个选项中的平面图形折叠,看哪一个可以围成正方体.2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1 B.7C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与7相对,0与快相对,所以下面是7.层级一学业水平达标1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB=B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥解析:选D 由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5698.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:129.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.如图,已知三棱台ABC-A′B′C′.(1)把它分成一个三棱柱和一个多面体,并用字母表示;(2)把它分成三个三棱锥,并用字母表示.解:(1)作B′E∥AA′交AB于点E,C′D∥AA′交AC于点D,如图,连接ED,则分成一个三棱柱AED-A′B′C′和一个多面体C′B′EBCD.(2)如图,平面AB′C′和平面AB′C能把三棱台分成三个三棱锥,分别为三棱锥B′-AA′C′,三棱锥B′-ACC′,三棱锥B′-ABC.层级二应试能力达标1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:选B根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.2.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.3.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.4. 五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.解析:将平面图形翻折,折成空间图形,可得∠ABC=60°.答案:60°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,故填①③④⑤.答案:①③④⑤7.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2.8.如图,已知长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF 把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB 1F -CC 1E 和棱柱ABFA 1-DCED 1.。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

最新人教A版必修2高中数学 第一章《立体几何》复习讲义1

最新人教A版必修2高中数学 第一章《立体几何》复习讲义1
// , // , m m ;③ m // , nC B
1 1
④ , // ,说法正确的序号是:_________________ E A 例2、如右图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; 2 D F B C
(2)求证:B1D1⊥平面CAA1C1
练习: 如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到 A1 点,且 A1 在平面BCD上的射影O恰好在CD上. (1)求证: BC A1 D ; (2)求证:平面 A1 BC 平面
A1 BD ;
(3)求三棱锥 A1 BCD 的体积
(1)线线 平行
线面平行:
P

A

O
面面平行
(2)直线与平面所成的角(简称线面角)的范围: 3.垂直关系(包括线面垂直,面面垂直)
(1)线线垂直
线面垂直
1
面面垂直
(2)二面角:二面角的平面角的范围: 二.立体几何常见题型归 纳例讲 1、概念辨析题: (1)此题型一般出现在填空题,选择题中,解题方法可采用排除法,筛选法等。 (2)对于判断线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理 和性质的前提下,利用长方体,正方体,实物等为模型来进行判断。你认为正确的命 题需要证明它,你认为错误的命题必须找出反例。 (3)相关例题:课本和报纸上出现很多这样的题型,举例说明如下: 2、证明 题:证明平行关系,垂直关系等方面的问题。 三、例题分析 例1、设m,n是两条不同的直线, , , 是三个不同的平面,给出下 列四个说法:① m , n // m n ;②

高中数学 第一章 空间几何体学案 新人教A版必修2 学案

高中数学 第一章 空间几何体学案 新人教A版必修2 学案

§1.1.1 棱柱、棱锥、棱台的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.学习过程:一、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和小,那么由这些物体抽象出来的空间图形叫做空间大几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、新课导学※探索新知探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.具体如下图所示:探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:探究3.棱柱的结构特征问题:你能归纳下列图形共同的几何特征吗? 新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism). 棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)AA1D1 C1B1DCB试试 1:你能指出探究 3 中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究 3 中的棱柱分类吗?新知 4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).试试 2: 探究 3 中有几个直棱柱?几个斜棱柱?棱柱怎么表示呢?新知 5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱1111D C B A ABCD -探究 4:棱锥的结构特征问题:探究 1 中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢? 新知 6:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥 S - ABCD .探究 5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢? 新知 7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点 .两底面间的距离叫棱台的高 .棱台可以用上、下底面的字母表示,分类类似于棱锥. 试试 3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来. 反思: 根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系? ※ 典型例题 例 由棱柱的定义你能得到棱柱下列的几何性质吗? ①侧棱都相等,侧面都是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢? 三、总结提升 ※ 学习小结 1. 多面体、旋转体的有关概念;2. 棱柱、棱锥、棱台的结构特征及简单的几S C AB D何性质.※知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥4. 正棱台:由正棱锥截得的棱台叫做正棱台※当堂检测(时量:5 分钟满分:10 分)1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成()A.棱锥B.棱柱C.平面D.长方体2. 棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则()A.A ⊆B ⊆ C ⊆ D ⊆ F ⊆ EB.A ⊆C ⊆B ⊆ F ⊆ D ⊆ EC.C ⊆ A ⊆ B ⊆ D ⊆ F ⊆ ED.它们之间不都存在包含关系4. 长方体三条棱长分别是AA' =1 AB =2,AD = 4,则从A点出发,沿长方体的表面到C′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25 和81,高为4,则截得这棱台的原棱锥的高为___________.课后作业1.一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱2.下列说法中正确的是().A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是().A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形5.下列说法正确的是().A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为l,高为2l,过圆锥的两条母线作一个截面,则截面面积的最大值为.7.若长方体的三个面的面积分别为62cm,32cm,22cm,则此长方体的对角线长为.8.在边长a为正方形ABCD 中,E、F分别为AB、BC 的中点,现在沿DE、DF 及EF 把△ADE、CDF 和△BEF 折起,使A、B、C 三点重合,重合后的点记为P .问折起后的图形是个什么几何体?它每个面的面积是多少?§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.学习过程:一、课前准备(预习教材P5~ P7,找出疑惑之处)复习:①______________________________多面体,______________ __ 叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与底面_____,其相似比等于____________.引入:上节我们讨论了多面体的结构特征,今天我们来探究旋转体的结构特征. 二、新课导学※探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?圆柱用表示新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们并把圆台用字母表示出来. 棱台与圆台统称为台体. 反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O .探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形. 当堂检测(时量:5 分钟满分:10 分)1.Rt∆ABC三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是()A.是底面半径3 的圆锥B.是底面半径为4 的圆锥C.是底面半径5 的圆锥D.是母线长为5 的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为______4. 用一个平面截半径为25cm 的球,截面面积是49π2c m cm2 ,则球心到截面的距离为多少?1.右图的几何体是由下面哪个平面图形旋转得到的().A. B.C. D. 2.下列几何体的轴截面一定是圆面的是().A. 圆柱B. 圆锥C. 球D. 圆台3.把直角三角形绕斜边旋转一周,所得的几何体是().A. 圆锥B.圆柱C. 圆台D.由两个底面贴近的圆锥组成的组合体4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是().A.0 B.6C.快D.乐5.圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,则此正方体的棱长为() A. rh r h + B. 2rh r h + C. 222rh h r + D.2rh h r + 6.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R ,则这个三棱柱的底面边长为 . 7.(07年安徽.理15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号..).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. ※能力提高 8.正四棱锥(棱锥底面是正方形,侧面都是全等等腰三角形)有一个内接正方体,它的顶点分别在正四棱锥的底面内和侧棱上. 若棱锥的底面边长为a ,高为h ,求内接正方体的棱长. 9.一个四棱台的上、下底面均为正方形,且面积分别为1S 、2S ,侧面是全等的等腰梯形,棱台的高为h ,求此棱台的侧棱长和斜高(侧面等腰梯形的高). 10.如右图,图①是正方体木块,把它截去一块,可能得到的几何体有②、③、④、⑤的木块. (1)我们知道,正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤的木块的顶点数、棱数、面数填入下表:图号 顶点数 棱数 面数① 8 12 6② ③ ④⑤ (2)观察你填出的表格,归纳出上述各种木块的顶点数V 、棱数E 、面数F 之间的关系.(3)看图⑥中正方体的切法,请验证你所得的数量关系是否正确?§1.2.1 中心投影与平行投影 §1.2.2 空间几何体的三视图 教学目标:1. 了解中心投影与平行投影的区别; 2. 能画出简单空间图形的三视图;3. 能识别三视图所表示的空间几何体;一、课前准备 (预习教材 P 11~ P 14,找出疑惑之处)复习 1:圆柱、圆锥、圆台、球分别是_______绕着 ________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的 复习 2:简单组合体构成的方式:___________和__________________二、新课导学 ※ 探索新知探究 1:中心投影和平行投影的有关概念 正视图 侧视图问题:中午在太阳的直射下,地上会有我们的影子,晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影. 其中光线叫投影线,留下物体影子的屏幕叫投影面. 光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,,否则叫斜投影思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢? 新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示. 下图是一个长方体的三视图.思考:仔细观察上图长方体和下图圆柱的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高俯视图平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位。

高中数学第一章空间几何体1.1空间几何体的结构第2课时学案新人教A版必修2(2021年整理)

高中数学第一章空间几何体1.1空间几何体的结构第2课时学案新人教A版必修2(2021年整理)

(浙江专用)2018版高中数学第一章空间几何体1.1 空间几何体的结构第2课时学案新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高中数学第一章空间几何体1.1 空间几何体的结构第2课时学案新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高中数学第一章空间几何体1.1 空间几何体的结构第2课时学案新人教A版必修2的全部内容。

1。

1 空间几何体的结构第2课时圆柱、圆锥、圆台、球及简单组合体的结构特征目标定位1。

理解圆柱、圆锥、圆台、球的结构特征。

能根据条件判断几何体的类型.2。

了解圆柱、圆锥、圆台的底面、母线、侧面、轴的意义。

3。

了解与正方体、球有关的简单组合体及其结构特征。

自主预习1.旋转体(1)圆柱①定义:以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。

②相关概念(图1)③表示法:圆柱用表示它的轴的字母表示,图中圆柱表示为圆柱O′O.(2)圆锥①定义:以直角三角形的一直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.②相关概念(图2)③表示法:圆锥用表示它的轴的字母表示,图中圆锥表示为圆锥SO。

(3)圆台①定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.②相关概念(图3)③表示法:圆台用表示轴的字母表示,图中圆台表示为圆台OO′。

(4)球①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.②相关概念(图4)③表示法:球常用表示球心的字母表示,图中的球表示为球O.2。

人教A版高中数学必修二 第一章 空间几何体 1.1.1


__公__共__边___;
由这些面所围成的多面 __A_B_C__D_E__F_-__
顶点:侧面与底面的
体叫作棱柱
A′B′C′D′E′F′ __公__共__顶__点____
有一个面是__多__边__形__,
其余各面都是有一个 棱
公共顶点的_三___角__形__, 锥
由这些面所围成的多 如图可记作:棱锥
答案: D
棱锥、棱台的结构特征 自主练透型 如图所示,几何体的正确说法的序号为________. (1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体 可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.
解析: (1)正确,因为有六个面,属于六面体的范围; (2)错误,因为侧棱的延长线不能交于一点,所以不正确; (3)正确,如果把几何体放倒就会发现是一个四棱柱; (4)(5)都正确,如图所示.
解析: (1)错误,棱柱的底面不一定是平行四边形; (2)错误,棱柱的底面可以是三角形; (3)正确,由棱柱的定义易知; (4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号 是(3)(4). 答案: (3)(4)
[归纳升华] 有关棱柱的结构特征问题的解题策略
(1)紧扣棱柱的结构特征进行有关概念辨析 ①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面 作为底面,再看是否满足其他特征. (2)多注意观察一些实物模型和图片便于反例排除.
1.下列说法正确的是( ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C.各侧面都是正方形的四棱柱一定是正方体 D.九棱柱有 9 条侧棱,9 个侧面,侧面为平行四边形

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。

新人教A版必修2高中数学第一章空间几何体1.1空间几何体的结构


1.判一判.(正确的打“√”,错误的打“×”) (1)圆柱、圆锥、圆台的底面都是圆.( ) (2)用平面去截圆锥,会得到一个圆锥和一个圆台.( ) (3)用直角三角形的一条边旋转就可得到一个圆锥.( ) 【答案】(1)√ (2)× (3)×
2.做一做.(请把正确的答案写在横线上) (1)棱锥至少由________个面围成. (2)下列几个命题: ①棱柱的底面一定是平行四边形; ②棱锥的底面一定是三角形; ③棱柱被平面分成的两部分可以都是棱柱. 其中正确的是________.(填序号) 【答案】(1)4 (2)③
相关概念 上底面:原棱锥的 _截__面_____; 下底面:原棱锥的 __底__面____; 侧面:其余各面; 侧棱:相邻侧面的 公共边; 顶点:侧面与上(下) 底面的公共顶点.
3.旋转体的结构特征
旋转体
结构特征
以_矩_形__的__一__边____所在直线
为旋转轴,其余三边旋转形
成的面所围成的旋转体叫
侧面:有公共顶点 的各个_三__角__形__面_; 侧棱:相邻侧面的
_公__共__边___; 顶点:各侧面的 __公__共__顶__点.
多面体 定 义
图形及表示
用一个平行
于_棱__锥__底__面_
的平面去截
棱 台 棱锥,底面与 截面之间的
部分叫做棱 如图可记作:
台.
棱台 ABCD-
A′B′C′D′
3.思一思:用任意一个平面去截棱锥,一定能得到棱台 吗?
【解析】不一定,只有用平行于棱锥底面的平面去截棱锥 才能得到棱台.
多面体的结构特征
【例1】 下列关于棱柱的说法: (1)所有的面都是平行四边形; (2)每一个面都不会是三角形; (3)两底面平行,并且各侧棱也平行; (4)被平面截成的两部分可以都是棱柱. 其中说法正确的序号是________.

人教A版高中数学必修2第一章空间几何体1、1空间几何体的结构教案

1.1空间几何体的结构一、设计思想立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识.二、教材分析空间几何体是新课程立体几何部分的起始课程,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用.与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革.以往立体几何先研究点、直线、平面,再研究由它们构成的几何体,新课程则从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这种安排降低了立体几何学习入门难的门槛,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理.三、学情分析学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.四、教学目标⒈知识目标:由学生对棱柱、棱锥、棱台的图片及实物进行观察、,比较、分析,使学生理解并能归纳出棱柱、棱锥、棱台的结构特征.2.能力目标:在棱柱、棱锥、棱台的概念形成的过程中,培养学生的观察、分析、抽象概括能力,几何直观能力,合情推理能力,及类比的思想方法,逐步培养探索问题的精神,善于思考的习惯.3.情感目标:通过创造情境激发学生学习数学的兴趣和热情,鼓励合作交流、互助交流,培养创新意识.五、重点难点1.教学重点:感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征.2.教学难点:如何让学生概括棱柱、棱锥、棱台结构特征.六、教学方法与手段1.教学方法:启发式教学法、对话式教学法.2.教学手段:多媒体,实物模型.七、课前准备1.学生的学习准备:课前学生预习过本节课的内容,自制柱、锥、台的几何模型教具.2.教师的教学准备:较多的物体模型,本节课的教学课件.八、教学过程1.创设情境,激趣入题(1)利用多媒体出示大量的世界经典建筑物的图片(包括章头图),引导学生领悟章头图和章引言的重要性,并明确几何学研究的内容,几何学在数学研究和数学应用中的地位和作用,本章要学习的内容,及如何去学习本章的内容.(2)给出大量的生活中常见的物体的图片,结合这种张幻灯片给出空间几何体的概念:如A B B’ C’ C DD’ A’果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.并指出:本节课主要从结构特征方面认识一些最基本的空间几何体.【设计意图】作为一章的起始课,重视编者精心打造的章头图和章引言,充分发挥它的价值,荷兰数学教育家弗莱登塔尔曾经说过;“数学是现实的,学生应从现实生活中学数学,再把学到的数学用到现实中去”.希望通过这一环节的设计,让学生有一种放眼世界的胸怀,体会到数学与生活是密不可分的,并能激起学习的兴趣和热情.2.提出问题,探索新知问题1:同学们能否将右图中16个物体进行分类?(要求从物体的结构特征方面分成两类)考虑到学生对结构和特征的概念比较模糊,教师给出汉语词典中结构与特征的描述,并结合图片中图1和图2进行解释,学生在经过提示后,较快、较好地解决了问题.在此基础上引领学生概括出共性的结论,从而得出多面体和旋转体的定义,并一起得出相关的概念.其中对于旋转体的分析,借助于多媒体,进行动画演示,以使学生对概念理解得更透彻.【设计意图】借助具体的实物图及实物,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体和旋转体的定义,培养学生的观察、分类、概括的能力.教师:刚才我们将这张图片中的物体形状较粗地进行了分类,我们知道分类越细,事物就具有更明显一致的共性,几何的研究这样,整个数学的研究也如此,接下来我们再对刚才图片中总结出的多面体进行研究,探索,分类.问题2:请同学们观察右图四个多面体,再结合你们自制的模型,发现它们有何特征呢?经过学生的观察、讨论,得出它们具有三个特征:①有两个面互相平行,②其余各面都是四边形,③每相邻两个四边形的公共边都互相平行,教师指出具有这三个特征的多面体叫做棱柱.得出定义后,师生共同研究棱柱的相关定义:棱柱的底面、侧面、侧棱、顶点,棱柱的表示,棱柱的分类.(教师板演这块内容)【设计意图】通过对实物的观察、比较、分析,进一步感知多面体的定义,通过对棱柱定义的抽象概括,结构特征的分析,掌握分类的原则,从中培养几何直观能力,分析、解决问题的能力.3.设计问题,深化概念问题1:如图,一个长方体,你能说出它的底面吗?A’C’ C D E HF D’ 教师:同一个几何体由于所选平行平面的不同,得出的结论也不同.定义中有两个面平行中“有”的含义:存在,不一定唯一.问题2:如图,长方体ABCD-A’B’C’D’中被截去一部分,其中FG ∥A’D’,剩下的几何体是什么?截去的几何体是什么?你能说出它们的名称吗?一部分学生回答不是棱柱,但在另一部分学生的提示下,得出了正确答案:分别是五棱柱和三棱柱教师:判定一个几何体是否为棱柱的思路:选定一组平行平面后,按定义考查其他条件.若条件满足,可下肯定结论;若不满足,不要急于否定结论,可再选另一组平行平面,按定义再次验证. 总之,观察问题一定要周到、仔细、全面.问题3:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?此题较难,学生不易想到,在他们思索一会儿,举不出反例的情况下,教师给出右图的反例,让学生讨论.【设计意图】考虑到学生的基础较好,设计了三个问题让学生深入理解棱柱的概念,在培养合情推理能力的同时,适当进行思辨论证.4.类比学法,合作交流在对棱柱的定义有了较为深刻的认识后,教师提供图片和实物,将棱锥、棱台的结构特征这部分的内容放手给学生自行完成,让学生类比棱柱结构特征的研究,通过合作学习,自主探索出棱锥和棱台的结构名称、分类标准、及表示方法,培养学学生自主学习、合作交流的能力.经过一定时间的观察、分析、讨论、交流,学生作探讨后的汇报,教师及时点评,得出棱锥和棱台的结构名称、分类标准、及表示方法,并将内容进行板演. C 1B 1A 1C A之后教师给出以下两名人对类比的描述,强调类比思想的重要性.开普勒说:“我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密.”波利亚曾指出:“类比是一个伟人的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”【设计意图】通过学生对图片和实物的观察、分析、比较,类比棱柱的联系与区别,得出棱锥和棱台的结构特征,培养学生自主学习能力,独立思考的习惯,通过比较学习,便于知识的建构.借助名人名言,适当渗透人文主义精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构和有关计算.知识点一空间几何体的定义、分类及相关概念思考构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类?答案构成空间几何体的基本元素是:点、线、面.常见几何体可以分为多面体和旋转体.梳理知识点二棱柱的结构特征知识点三棱锥的结构特征知识点四棱台的结构特征及棱柱、棱锥、棱台之间的关系1.棱台的结构特征2.棱柱、棱锥、棱台之间的关系1.棱柱的底面互相平行.(√)2.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.(×)3.若一个平行六面体的两个对角面都是矩形,则这个平行六面体一定是直平行六面体.(√)4.棱柱的各个侧面都是平行四边形.(√)5.棱柱的两个底面是全等的多边形.(√)类型一棱柱、棱锥、棱台的结构特征命题角度1棱柱的结构特征例1下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行.其中正确说法的序号是________.考点棱柱的结构特征题点棱柱的结构特征的应用答案(3)解析(1)错,底面可以不是平行四边形;(2)错,底面可以是三角形;(3)正确,由棱柱的定义可知.反思与感悟棱柱结构特征的辨析方法(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.跟踪训练1下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.棱柱的侧棱总与底面垂直D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形考点棱柱的结构特征题点棱柱的概念答案 D解析选项A,B都不正确,反例如图所示,C错误,棱柱的侧棱可能与底面垂直,也可能不垂直.根据棱柱的定义知D正确.命题角度2棱锥、棱台的结构特征例2(1)下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个考点棱台的结构特征题点棱台的概念的应用答案 A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.(2)下列说法中,正确的是()①棱锥的各个侧面都是三角形;②四面体的任何一个面都可以作为棱锥的底面;③棱锥的侧棱平行.A.①B.①②C.②D.③考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故②正确;棱锥的侧棱交于一点不平行,故③错.反思与感悟判断棱锥、棱台的方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法跟踪训练2下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.考点棱锥的结构特征题点棱锥的结构特征的应用答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示的四棱锥被平面截成的两部分都是棱锥.类型二多面体的识别和判断例3如图所示,长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.考点空间几何体题点空间几何体结构判断解(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面,是互相平行的,其余各面都是矩形,且四条侧棱互相平行,符合棱柱的定义.(2)截面BCNM右上方部分是三棱柱BB1M-CC1N,左下方部分是四棱柱ABMA1-DCND1. 引申探究把本例3的几何体换成如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1. 反思与感悟解答识别和判断多面体的题目的关键是正确掌握棱柱的几何特征,在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置.跟踪训练3如图所示,关于该几何体的正确说法有________.(填序号)①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.起点空间几何体题点空间几何体结构判断答案①③④⑤解析①正确,因为有六个面,属于六面体的范畴;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,若把几何体放倒就会发现是一个四棱柱;④⑤都正确,如图所示.类型三多面体的平面展开图例4在长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.考点空间几何体的平面展开图题点多面体的平面展开图解沿长方体的一条棱剪开,使A和C1在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:D1剪开,使点A,B,C1,D1在一个平面内,可求得AC1=(1)若将C42+(5+3)2=80=4 5.(2)若将AD剪开,使点A,D,C1,B1在一个平面内,可求得AC1=32+(5+4)2=90=310.(3)若将CC1剪开,使点A,A1,C,C1在一个平面内,可求得AC1=(4+3)2+52=74. 相比较可得蚂蚁爬行的最短路线长为74.反思与感悟(1)多面体侧面上两点间的最短距离问题常常要归纳为求平面上两点间的最短距离问题,常见的解法是先把多面体侧面展开成平面图形,再用平面几何的知识来求解.(2)解答展开与折叠问题,要结合多面体的定义和结构特征,发挥空间想象能力,必要时可制作平面展开图进行实践.跟踪训练4如图是三个几何体的侧面展开图,请问各是什么几何体?考点空间几何体的平面展开图题点多面体的平面展开图解①为五棱柱;②为五棱锥;③为三棱台.1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个考点空间几何体题点空间几何体结构判断答案 D解析根据棱柱的定义进行判定知,这4个图都满足.2.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台考点空间几何体题点空间几何体结构判断答案 B解析结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.3.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形考点棱柱的结构特征题点棱柱的结构特征的应用答案 A解析 棱柱的两底面互相平行,故A 正确;棱柱的侧面也可能有平行的面(如正方体),故B 错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C 错;由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面可以是平行四边形,也可以是其他多边形,故D 错.4.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)( )考点 空间几何体的平面展开图 题点 多面体的平面展开图 答案 A解析 两个相同的图案一定不能相邻,故B ,C ,D 错误,只有A 正确.5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________ cm. 考点 棱柱的结构特征 题点 与棱柱有关的运算 答案 12解析 因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12(cm).1.棱柱、棱锥定义的关注点(1)棱柱的定义有以下两个要点,缺一不可: ①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行. (2)棱锥的定义有以下两个要点,缺一不可: ①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.一、选择题1.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱考点空间几何体题点空间几何体结构判断答案 A解析∵n棱柱共有3n条棱,n棱锥共有2n条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A.2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错考点空间几何体题点空间几何体结构判断答案 B解析由棱锥的结构特征可得.3.下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形考点棱柱的结构特征题点棱柱的结构特征的应用答案 C解析显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C 错误;D正确,故选C.4.下面图形中是正方体展开图的是()考点空间几何体的平面展开图题点多面体的平面展开图答案 A解析由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由题图知剩余的部分是四棱锥A′-BCC′B′.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2 B.1∶4C.2∶1 D.4∶1考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.7.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定考点棱柱的结构特征题点棱柱的结构特征的应用答案 A解析根据图可判断为底面是梯形或三角形的棱柱.8.如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)考点空间几何体的平面展开图题点多面体的平面展开图答案 B解析(1)图还原后,①⑤对面,②④对面,③⑥对面;(2)图还原后,①④对面,②⑤对面,③⑥对面;(3)图还原后,①④对面,②⑤对面,③⑥对面;(4)图还原后,①⑥对面,②⑤对面,③④对面;综上,可得还原成正方体后,其中两个完全一样的是(2)(3).9.在五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15 C.12 D.10考点棱柱的结构特征题点与棱柱有关的运算答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).10.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成的三棱锥的个数是() A.1 B.2 C.3 D.0考点棱锥的结构特征题点与棱锥有关的运算答案 C解析如图,分割为A1-ABC,B-A1CC1,C1-A1B1B,3个棱锥.二、填空题11.如图,能推断这个几何体可能是三棱台的是________.(填序号)①A1B1=2,AB=3,B1C1=3,BC=4;②A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3;③A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4;④A1B1=AB,B1C1=BC,C1A1=CA.考点棱台的结构特征题点棱台的概念的应用答案③解析 因为三棱台的上下底面相似,所以该几何体如果是三棱台,则△A 1B 1C 1∽△ABC , 所以A 1B 1AB =B 1C 1BC =A 1C 1AC.故选③.12.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.考点 棱柱的结构特征 题点 与棱柱有关的运算 答案6解析 设长方体长、宽、高为x ,y ,z , 则yz =2,xz =3,yx =6, 三式相乘得x 2y 2z 2=6,即xyz =6, 解得x =3,y =2,z =1, 所以x 2+y 2+z 2=3+2+1= 6.三、解答题13.试从正方体ABCD -A 1B 1C 1D 1的八个顶点中任取若干个点,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥; (2)四个面都是等边三角形的三棱锥; (3)三棱柱.考点 空间几何体 题点 空间几何体结构应用解 (1)如图所示,三棱锥A 1-AB 1D 1(答案不唯一).(2)如图所示,三棱锥B 1-ACD 1(答案不唯一).(3)如图所示,三棱柱A 1B 1D 1-ABD (答案不唯一).四、探究与拓展14.如图,已知正三棱锥P -ABC 的侧棱长为2,底面边长为2,Q 是侧棱P A 的中点,一条折线从A 点出发,绕侧面一周到Q 点,则这条折线长度的最小值为________.考点 空间几何体的平面展开图 题点 多面体的平面展开图 答案322解析 沿着棱P A 把三棱锥展开成平面图形,所求的折线长度的最小值就是线段AQ 的长度,因为点Q 是P A ′的中点,所以在展开图中,AQ =322,故答案为322.15.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.考点 棱锥的结构特征 题点 棱锥的结构特征的应用解 如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线三角形的边折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.。

相关文档
最新文档