2018-2019湖州市中考必备数学考前押题密卷模拟试卷1-4(共4套)附详细试题答案
浙江省湖州市2018年中考数学冲刺模拟卷(3)及参考答案

A . 9 B . 10 C . 11 D . 12 10. 如图,A,B两点在反比例函数y= 的图象上,C,D两点在反比例函数y= 轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是( )
第一次采购数量的两倍.
(1) 试问去年每吨大蒜的平均价格是多少元? (2) 该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加 工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工
蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
20. 如图,AB是⊙O的直径,C是 的中点,CE⊥AB于E,BD交CE于点F,
(1)求证:CF=BF; (2)若CD=12,AC=16,求⊙O的半径和CE的长。
21. 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某 校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根
23. 如图①,△ABC的角平分线BD、CE相交于点P. (1)如果∠A=70°,求∠BPC的度数; (2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)
;
①
②
③
④
在(2)的条件下,将直线MN绕点P旋转.
2019年湖州市中考数学模拟试卷含答案解析

浙江省湖州市2019年中考数学模拟试卷(解析版)一.选择题1.﹣5的相反数是()A. B. C. ﹣5 D. 52.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a63.若函数y=kx的图象经过点(﹣1,2),则k的值是()A. ﹣2B. 2C. ﹣D.4.如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A. 150°B. 130°C. 100°D. 50°5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.6.如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A. 16B. 8C. 4D. 27.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于()A. 20°B. 30°C. 50°D. 60°8.一个不透明布袋中有红球10个,白球2个,黑球x个,每个球除颜色外都相同,从中任取一个球,取得的球是红球的概率是,则x的值为()A. 5B. 4C. 3D. 29.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B. 2 C. 4 ﹣4 D.10.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P、点Q同时从点B出发,点P以2cm/s的速度沿B→A→C 运动,终点为C,点Q以1cm/s的速度沿B→C运动,当点P到达终点时两个点同时停止运动,设点P,Q 出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+ t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t= 秒.其中正确的是()A. ①②④B. ②③④C. ①③④D. ①②③二.填空题11.分解因式:x2﹣16=________12.不等式组的解集是________.13.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.14.已知一组数据a1,a2,a3,a4的平均数是2019,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是________.15.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h的值为________.16.如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则=________.三.解答题17.计算:24÷(﹣2)3﹣3.18.解方程:= .19.如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求的值.20.3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若tanC= ,⊙O的半径为2,求DE的长.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.24.如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】相反数【解析】【解答】﹣5的相反数是5,故答案为:D.【分析】只有符号不同的两个数互为相反数.2.【答案】C【考点】幂的乘方与积的乘方【解析】【解答】(﹣a3)2=a6.故答案为:C.【分析】先判断结果的符号,然后再依据幂的乘方法则进行计算即可.3.【答案】A【考点】正比例函数的图象和性质【解析】【解答】把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故答案为:A.【分析】将点(-1,2)代入函数的解析式可得到关于k的方程,从而可求得k的值.4.【答案】B【考点】平行线的性质【解析】【解答】如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故答案为:B.【分析】先依据平行线的性质求得∠1的同位角的度数,然后依据邻补角的定义求解即可.5.【答案】B【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,A不符合题意;B、是中心对称图形,B符合题意;C、不是中心对称图形,C不符合题意;D、不是中心对称图形,D不符合题意;故答案为:B.【分析】将一个图形绕着某个点旋转180°,旋转后能够完全重合,则给图形为中心对称图形.6.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故答案为:D.【分析】依据反比例函数k的几何意义可得到△AOB的面积=|k|求解即可.7.【答案】B【考点】切线的性质【解析】【解答】∵AB为圆O的切线,∴OA⊥AB,∴∠OAB=90°,又∠BAC=30°,∴∠OAC=90°﹣30°=60°又∵OA=OC,∴△OAC为等边三角形,∴∠AOB=60°,则∠B=90°﹣60°=30°.故答案为:B.【分析】首先依据切线的性质可得到∠OAB=90°,接下来,可证明△OAC为等边三角形,最后,依据直角三角形两锐角互余求解即可.8.【答案】C【考点】概率公式【解析】【解答】根据题意得:= ,解得:x=3,则x的值为3;故答案为:C.【分析】根据题意可求得球的总数为10+2+x,然后依据概率公式列方程求解即可.9.【答案】D【考点】等腰三角形的性质,相似三角形的性质【解析】【解答】∵△ACD是以AC为底的等腰三角形,∴AD=CD,∵△BCD与△BAC相似,∴= ,设CD=x,BD=y,∴= = ,∴,解得:x=2y,∴y= ,∴x= ,∴CD= ,故答案为:D.【分析】依据等腰三角形的定义可得到AD=CD,然后再依据相似三角形对应边成比例得到,设CD=x,BD=y,然后可得到y与x之间的函数关系式.10.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】由图2可得到t=4时,y= 48 5 ,∴AB=2×4=8cm,∵∠A=90°,BC=10cm,∴AC=6cm,故①正确;②当P在AC上时,如图3,过P作PD⊥BC于D,此时:=7,∴4≤t≤7,由题意得:AB+AP=2t,BQ=t,∴PC=14﹣2t,sin∠C= ,∴= ,∴PD= ,∴y=S△BPQ= BQ•PD= t =﹣;故②正确;③当P与A重合时,PQ最大,如图4,此时t=4,∴BQ=4,过Q作GH⊥AB于H,sin∠,∴,∴QH= ,同理:BH= ,∴AH=8﹣= ,∴PQ= = = ;∴线段PQ的长度的最大值为;故③不正确;④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:PC=14﹣2t,QC=10﹣t,i)当△CPQ∽△CBA,如图5,则,∴,解得t=﹣8不合题意.ii)当△PQC∽△BAC时,如图5,∴,∴,t= ;∴若△PQC与△ABC相似,则t= 秒,故④正确;其中正确的有:①②④.故答案为:A.【分析】①由图2可知:t=4时,点P到达点A,故此可得到AB的长,然后依据勾股定理可求得AC的长,从而可对①作出判断;当P在AC上时,过P作PD⊥BC于D,先求得PC的长(用含t的式子表示),然后利用锐角三角函数的定义可求得PD的长,最后,依据三角形的面积公式进行解答即可;③过Q作GH ⊥AB于H,先依据锐角三教函数的定义得到QH的长,同理可得到BH的长,最后,依据勾股定理可求得PQ的长,④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:当△CPQ∽△CBA,当△PQC∽△BAC时,然后依据相似三角形的对应边成比例的性质求解即可.二.<b >填空题</b>11.【答案】(x+4)(x﹣4)【考点】平方差公式【解析】【解答】解:x2﹣16=(x+4)(x﹣4).【分析】依据平方差公式进行分解即可.12.【答案】﹣2<x≤1【考点】解一元一次不等式组【解析】【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式2x+4>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.【分析】先分别求得两个不等式的解集,然后再依据同大取大、同小取小,小大大小中间找出,大大小小找不着确定出不等式组的解集即可.13.【答案】2【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:如图.Rt△ABC中,tanA= ,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2 (负值舍去).即此时小球距离地面的高度为2 米.【分析】依据坡度的定义可得到tanA=,设BC=x,则AC=2x,然后依据勾股定理可列出关于x的方程,从而可求得x的值,于是可得到BC的长.14.【答案】2019【考点】算术平均数【解析】【解答】解:由题意(a1+a2+a3+a4)=2019,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数= = =2019,故答案为2019.【分析】先依据均数的定义求得a1+a2+a3+a4的值,然后再求得a1+3,a2﹣2,a3﹣2,a4+5的值,最后依据平均数公式求解即可.15.【答案】﹣1或5【考点】二次函数的最值,二次函数图象上点的坐标特征【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【分析】依据二次函数的性质可知若h<1≤x≤3,x=1时,y取得最小值5;若1≤x≤3<h,当x=3时,y取得最小值5,然后依据题意列方程求解即可.16.【答案】【考点】平行四边形的性质,矩形的性质,正方形的判定,相似三角形的判定与性质【解析】【解答】解:∵矩形ABCD中,AB=3,BC=2,点F是BC的中点,∴BF=1,AD=2,又∵BE=2,∴AE=BF=1,DE= =FG,又∵∠A=∠EBF=90°,∴△ADE≌△BEF,∴∠ADE=∠BEF,DE=EF,又∵∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=90°,∴四边形DEFG是正方形,∴∠EFG=90°,DG=DE= ,如图,过B作BH⊥EF于H,∵Rt△ABF中,EF= = ,∴BH= = ,∴Rt△BFH中,HF= = ,∵BH∥FG,∴△BHM∽△GFM,∴= = = ,∴FM= ×FH= ,∴EM=EF﹣FM= ﹣= ,∵EB∥DN,EM∥DG,∴∠EBM=∠DNG,∠EMB=∠DGN,∴△EBM∽△DNG,∴= = = .故答案为:.【分析】首先证明△ADE≌△BEF,依据全等三角形的性质可得到DE=EF,然后再证明四边形DEFG是正方形,则DG=DE= ,过B作BH⊥EF于H,依据勾股定理可得到EF的长,然后利用面积法可求得BH的长,接下来,再证明△BHM∽△GFM,依据相似三角形对应边成比例可求得FM的长,最后,再证明△EBM∽△DNG,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.【考点】有理数的混合运算【解析】【分析】先算乘方,然后再计算除法,最后,再计算减法即可.18.【答案】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,接下来,求得整式方程的解,最后,再进行检验即可.19.【答案】(1)证明:∵点D,E,F分别为BC,AB,AC边的中点,∴DE和DF为△ABC的中位线,∴DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,∴△BED≌△DFC(2)解:DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,四边形AEDF为平行四边形,∴△BED∽△DFC,DF=AE=2,DE=AF,∴= = ,∴= ,∴= .【考点】全等三角形的判定与性质,平行线分线段成比例【解析】【分析】(1)依据三角形的中位线定理可得到DE∥AC,DF∥AB,然后依据平行线的性质可证明∠BDE=∠C,∠B=∠CDF,最后,再依据SAS证明△BED≌△DFC即可;(2)首先证明△BED∽△DFC,然后依据相似三角形的性质求解即可.20.【答案】(1)解:12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=42÷120=35%.60分的作品所占的百分比=6÷120=5%;(2)解:1200×(30%+10%)=1200×40%=480(份)答:该校学生比赛成绩达到90分以上(含90分)的作品有480份.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到成绩为100分的频数以及所占的百分比,然后依据总数=频数÷百分比可求得总件数,然后再依据条形统计图可得到80分的频数,最后,再依据各部分所占的百分比即可;(2)先求得得分达到90分的百分比,最后,依据频数=总数×百分比求解即可.21.【答案】(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线(2)解:∵tanC= ,∴∠C=30°,又∵OE=2,∴OC=4,AC=6,在Rt△OCE中,tanC= ,∴CE=2 ,在Rt△ACD中,cosC= ,CD=3∴DE=CD﹣CE=3 ﹣2 = .【考点】角平分线的性质,切线的判定与性质,解直角三角形【解析】【分析】(1)连接OE.依据等腰三角形的性质和角平分线的定义可得到∠OEA=∠DAE,从而可证明OE∥AD,然后依据平行线的性质可证∠OEC=90°;(2)先依据特殊锐角三角函数值可求得∠C=30°,然后可求得AC=6,依据特殊锐角三教函数值可求得CE 和CD的长,最后依据DE=CD﹣CE求解即可.22.【答案】(1)解:设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元)【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)0≤x≤20时,y是x的正比例函数,设y=kx,将点(20,160)代入计算即可,当20≤x 时,y是x的一次函数将把(20,160),(40,288)代入y=kx+b求解即可;(2)依据B种苗的数量不超过35棵,但不少于A种苗的数量列出关于x的不等式组可求得x的取值范围,然后依据总费用W与x之间函数关系式,最后依据一次函数的性质求解即可.23.【答案】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD(2)解:EB=AB+BD;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD,∴EB=AB+BD(3)解:BE=3DB﹣3AB.理由:作DF∥BC交CA的延长线于F,如图3所示,则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,∵△ABC是等腰三角形,∴∠ABC=∠ACB,∴∠ADF=∠AFD=∠ABC,∵∠DEC=∠DCE,∴DE=DC,∠FDC+∠DEC=180°,∵∠DEC+∠DEB=180°,∴∠FDC=∠DEB,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,DB=CF,∵CF=AC+AF=AB+AF,∴DB=AB+AF,过点A作AG⊥DF于G,∵AF=AD,∴DF=2FG,在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣∠BAC=30°,∴FG= AF,∴EB=DF=2FG= AF,∴AF= EB∴DB=AB+ BE,即:BE=3DB﹣3AB.【考点】全等三角形的判定与性质【解析】【分析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS证明△DBE ≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.24.【答案】(1)解:把B(2,0)代入y=ax2+ x+1,可得4a+1+1=0,解得a=﹣,∴抛物线解析式为y=﹣x2+ x+1,令y=0,可得﹣x2+ x+1=0,解得x=﹣1或x=2,∴A点坐标为(﹣1,0)(2)解:若y=﹣x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PB与y轴交于点A′,由于点P在直线y=﹣x上,可知∠POA=∠POA′=45°,在△APO和△A′PO中,∴△APO≌△A′PO(ASA),∴AO=A′O=1,∴A′(0,1),设直线BP解析式为y=kx+b,把B(2,0)、A′(0,1)两点坐标代入可得,解得,∴直线BP解析式为y=﹣x+1,联立,解得,∴P点坐标为(﹣2,2);若P点在x轴下方时,如图2,∠BPO≠∠APO,即此时没有满足条件的P点,综上可知P点坐标为(﹣2,2)(3)解:存在,如图3,作CH⊥PB于点H,∵直线PB的解析式为y=﹣x+1,∴F(0,1),tan∠BFO= = =2,∵CD∥y轴,∴∠BFO=∠CDF,tan∠CDF=tan∠BFO= =2,∴CH=2DH,设DH=t,则CH=2t,CD= t,∵△CDE是以CD为腰的等腰三角形,∴分两种情况:①若CD=DE时,则S△CDE= DE•CH= t•2t= ,②若CD=CE时,则ED=2DH=2t,∴S△CDE= DE•CH= •2t•2t=2t2,∵2t2<t2,∴当CD=DE时△CDE的面积比CD=CE 时大,设C (x,﹣x2+ x+1),则D(x,﹣x+1),∵C在直线PB的上方,∴CD= =(﹣x2+ x+1)﹣(﹣x+1)=﹣=﹣,当x=1时,CD 有最大值为,即t= ,t= ,∴S △CDE = = × = ,存在以CD为腰的等腰△CDE的面积有最大值,这个最大值是.【考点】二次函数的应用【解析】【分析】(1)将点B坐标代入到抛物线的解析式可求得a的值,令y=0,得到关于x的方程,然后解关于x的一元二次方程即可;(2)当点P在x轴上方时,连接BP交y轴于点A′,然后证明△APO≌△A′PO,依据全等三角形的性质可得到AO=A′O=1,从而可求得A′坐标,然后利用待定系数法可求得直线BP的解析式,联立直线y=-x,可求得P点坐标;当点P在x轴下方时,画图可知:∠BPO≠∠APO,即此时没有满足条件的P点;(3)过C作CH⊥DE于点H,由直线BP的解析式可求得点F的坐标,结合条件可求得tan∠BFO和tan∠CDF,可分别用DH表示出CH和CD的长,分CD=DE和CD=CE两种情况,分别用t表示出△CDE的面积,再设出点C的坐标,利用二次函数的性质可求得△CDE的面积的最大值.。
精品浙江省湖州市2018-2019年精品中考数学模拟试卷(含答案)

浙江省湖州市2019届中考数学模拟试卷(解析版)一.选择题1.﹣5的相反数是()A. B. C. ﹣5 D. 52.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a63.若函数y=kx的图象经过点(﹣1,2),则k的值是()A. ﹣2B. 2C. ﹣D.4.如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A. 150°B. 130°C. 100°D. 50°5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.6.如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A. 16B. 8C. 4D. 27.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于()A. 20°B. 30°C. 50°D. 60°8.一个不透明布袋中有红球10个,白球2个,黑球x个,每个球除颜色外都相同,从中任取一个球,取得的球是红球的概率是,则x的值为()A. 5B. 4C. 3D. 29.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC 为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B. 2 C. 4 ﹣4 D.10.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P、点Q同时从点B出发,点P以2cm/s的速度沿B→A→C 运动,终点为C,点Q以1cm/s的速度沿B→C运动,当点P到达终点时两个点同时停止运动,设点P,Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+ t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t= 秒.其中正确的是()A. ①②④B. ②③④C. ①③④D. ①②③二.填空题11.分解因式:x2﹣16=________12.不等式组的解集是________.13.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.14.已知一组数据a1,a2,a3,a4的平均数是2018,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是________.15.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为________.16.如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则=________.三.解答题17.计算:24÷(﹣2)3﹣3.18.解方程:= .19.如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求的值.20.3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若tanC= ,⊙O的半径为2,求DE的长.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E 在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.24.如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】相反数【解析】【解答】﹣5的相反数是5,故答案为:D.【分析】只有符号不同的两个数互为相反数.2.【答案】C【考点】幂的乘方与积的乘方【解析】【解答】(﹣a3)2=a6.故答案为:C.【分析】先判断结果的符号,然后再依据幂的乘方法则进行计算即可.3.【答案】A【考点】正比例函数的图象和性质【解析】【解答】把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故答案为:A.【分析】将点(-1,2)代入函数的解析式可得到关于k的方程,从而可求得k的值.4.【答案】B【考点】平行线的性质【解析】【解答】如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故答案为:B.【分析】先依据平行线的性质求得∠1的同位角的度数,然后依据邻补角的定义求解即可.5.【答案】B【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,A不符合题意;B、是中心对称图形,B符合题意;C、不是中心对称图形,C不符合题意;D、不是中心对称图形,D不符合题意;故答案为:B.【分析】将一个图形绕着某个点旋转180°,旋转后能够完全重合,则给图形为中心对称图形.6.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故答案为:D.【分析】依据反比例函数k的几何意义可得到△AOB的面积=|k|求解即可.7.【答案】B【考点】切线的性质【解析】【解答】∵AB为圆O的切线,∴OA⊥AB,∴∠OAB=90°,又∠BAC=30°,∴∠OAC=90°﹣30°=60°又∵OA=OC,∴△OAC为等边三角形,∴∠AOB=60°,则∠B=90°﹣60°=30°.故答案为:B.【分析】首先依据切线的性质可得到∠OAB=90°,接下来,可证明△OAC为等边三角形,最后,依据直角三角形两锐角互余求解即可.8.【答案】C【考点】概率公式【解析】【解答】根据题意得:= ,解得:x=3,则x的值为3;故答案为:C.【分析】根据题意可求得球的总数为10+2+x,然后依据概率公式列方程求解即可.9.【答案】D【考点】等腰三角形的性质,相似三角形的性质【解析】【解答】∵△ACD是以AC为底的等腰三角形,∴AD=CD,∵△BCD与△BAC相似,∴= ,设CD=x,BD=y,∴= = ,∴,解得:x=2y,∴y= ,∴x= ,∴CD= ,故答案为:D.【分析】依据等腰三角形的定义可得到AD=CD,然后再依据相似三角形对应边成比例得到,设CD=x,BD=y,然后可得到y与x之间的函数关系式.10.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】由图2可得到t=4时,y= 48 5 ,∴AB=2×4=8cm,∵∠A=90°,BC=10cm,∴AC=6cm,故①正确;②当P在AC上时,如图3,过P作PD⊥BC于D,此时:=7,∴4≤t≤7,由题意得:AB+AP=2t,BQ=t,∴PC=14﹣2t,sin∠C= ,∴= ,∴PD= ,∴y=S△BPQ= BQ•PD= t =﹣;故②正确;③当P与A重合时,PQ最大,如图4,此时t=4,∴BQ=4,过Q作GH⊥AB于H,sin∠,∴,∴QH= ,同理:BH= ,∴AH=8﹣= ,∴PQ= = = ;∴线段PQ的长度的最大值为;故③不正确;④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:PC=14﹣2t,QC=10﹣t,i)当△CPQ∽△CBA,如图5,则,∴,解得t=﹣8不合题意.ii)当△PQC∽△BAC时,如图5,∴,∴,t= ;∴若△PQC与△ABC相似,则t= 秒,故④正确;其中正确的有:①②④.故答案为:A.【分析】①由图2可知:t=4时,点P到达点A,故此可得到AB的长,然后依据勾股定理可求得AC的长,从而可对①作出判断;当P在AC上时,过P作PD⊥BC于D,先求得PC的长(用含t的式子表示),然后利用锐角三角函数的定义可求得PD的长,最后,依据三角形的面积公式进行解答即可;③过Q作GH⊥AB于H,先依据锐角三教函数的定义得到QH的长,同理可得到BH的长,最后,依据勾股定理可求得PQ的长,④若△PQC 与△ABC相似,点P只有在线段AC上,分两种情况:当△CPQ∽△CBA,当△PQC∽△BAC时,然后依据相似三角形的对应边成比例的性质求解即可.二.<b >填空题</b>11.【答案】(x+4)(x﹣4)【考点】平方差公式【解析】【解答】解:x2﹣16=(x+4)(x﹣4).【分析】依据平方差公式进行分解即可.12.【答案】﹣2<x≤1【考点】解一元一次不等式组【解析】【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式2x+4>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.【分析】先分别求得两个不等式的解集,然后再依据同大取大、同小取小,小大大小中间找出,大大小小找不着确定出不等式组的解集即可.13.【答案】2【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:如图.Rt△ABC中,tanA= ,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2 (负值舍去).即此时小球距离地面的高度为2 米.【分析】依据坡度的定义可得到tanA=,设BC=x,则AC=2x,然后依据勾股定理可列出关于x的方程,从而可求得x的值,于是可得到BC的长.14.【答案】2018【考点】算术平均数【解析】【解答】解:由题意(a1+a2+a3+a4)=2018,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数= = =2018,故答案为2018.【分析】先依据均数的定义求得a1+a2+a3+a4的值,然后再求得a1+3,a2﹣2,a3﹣2,a4+5的值,最后依据平均数公式求解即可.15.【答案】﹣1或5【考点】二次函数的最值,二次函数图象上点的坐标特征【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【分析】依据二次函数的性质可知若h<1≤x≤3,x=1时,y取得最小值5;若1≤x≤3<h,当x=3时,y取得最小值5,然后依据题意列方程求解即可.16.【答案】【考点】平行四边形的性质,矩形的性质,正方形的判定,相似三角形的判定与性质【解析】【解答】解:∵矩形ABCD中,AB=3,BC=2,点F是BC的中点,∴BF=1,AD=2,又∵BE=2,∴AE=BF=1,DE= =FG,又∵∠A=∠EBF=90°,∴△ADE≌△BEF,∴∠ADE=∠BEF,DE=EF,又∵∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=90°,∴四边形DEFG是正方形,∴∠EFG=90°,DG=DE= ,如图,过B作BH⊥EF于H,∵Rt△ABF中,EF= = ,∴BH= = ,∴Rt△BFH中,HF= = ,∵BH∥FG,∴△BHM∽△GFM,∴= = = ,∴FM= ×FH= ,∴EM=EF﹣FM= ﹣= ,∵EB∥DN,EM∥DG,∴∠EBM=∠DNG,∠EMB=∠DGN,∴△EBM∽△DNG,∴= = = .故答案为:.【分析】首先证明△ADE≌△BEF,依据全等三角形的性质可得到DE=EF,然后再证明四边形DEFG是正方形,则DG=DE= ,过B作BH⊥EF于H,依据勾股定理可得到EF的长,然后利用面积法可求得BH的长,接下来,再证明△BHM∽△GFM,依据相似三角形对应边成比例可求得FM的长,最后,再证明△EBM∽△DNG,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.【考点】有理数的混合运算【解析】【分析】先算乘方,然后再计算除法,最后,再计算减法即可.18.【答案】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,接下来,求得整式方程的解,最后,再进行检验即可.19.【答案】(1)证明:∵点D,E,F分别为BC,AB,AC边的中点,∴DE和DF为△ABC的中位线,∴DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,∴△BED≌△DFC(2)解:DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,四边形AEDF为平行四边形,∴△BED∽△DFC,DF=AE=2,DE=AF,∴= = ,∴= ,∴= .【考点】全等三角形的判定与性质,平行线分线段成比例【解析】【分析】(1)依据三角形的中位线定理可得到DE∥AC,DF∥AB,然后依据平行线的性质可证明∠BDE=∠C,∠B=∠CDF,最后,再依据SAS证明△BED≌△DFC即可;(2)首先证明△BED∽△DFC,然后依据相似三角形的性质求解即可.20.【答案】(1)解:12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=42÷120=35%.60分的作品所占的百分比=6÷120=5%;(2)解:1200×(30%+10%)=1200×40%=480(份)答:该校学生比赛成绩达到90分以上(含90分)的作品有480份.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到成绩为100分的频数以及所占的百分比,然后依据总数=频数÷百分比可求得总件数,然后再依据条形统计图可得到80分的频数,最后,再依据各部分所占的百分比即可;(2)先求得得分达到90分的百分比,最后,依据频数=总数×百分比求解即可.21.【答案】(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线(2)解:∵tanC= ,∴∠C=30°,又∵OE=2,∴OC=4,AC=6,在Rt△OCE中,tanC= ,∴CE=2 ,在Rt△ACD中,cosC= ,CD=3∴DE=CD﹣CE=3 ﹣2 = .【考点】角平分线的性质,切线的判定与性质,解直角三角形【解析】【分析】(1)连接OE.依据等腰三角形的性质和角平分线的定义可得到∠OEA=∠DAE,从而可证明OE∥AD,然后依据平行线的性质可证∠OEC=90°;(2)先依据特殊锐角三角函数值可求得∠C=30°,然后可求得AC=6,依据特殊锐角三教函数值可求得CE和CD 的长,最后依据DE=CD﹣CE求解即可.22.【答案】(1)解:设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元)【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)0≤x≤20时,y是x的正比例函数,设y=kx,将点(20,160)代入计算即可,当20≤x时,y是x的一次函数将把(20,160),(40,288)代入y=kx+b求解即可;(2)依据B种苗的数量不超过35棵,但不少于A种苗的数量列出关于x的不等式组可求得x的取值范围,然后依据总费用W与x之间函数关系式,最后依据一次函数的性质求解即可.23.【答案】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD(2)解:EB=AB+BD;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD,∴EB=AB+BD(3)解:BE=3DB﹣3AB.理由:作DF∥BC交CA的延长线于F,如图3所示,则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,∵△ABC是等腰三角形,∴∠ABC=∠ACB,∴∠ADF=∠AFD=∠ABC,∵∠DEC=∠DCE,∴DE=DC,∠FDC+∠DEC=180°,∵∠DEC+∠DEB=180°,∴∠FDC=∠DEB,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,DB=CF,∵CF=AC+AF=AB+AF,∴DB=AB+AF,过点A作AG⊥DF于G,∵AF=AD,∴DF=2FG,在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣∠BAC=30°,∴FG= AF,∴EB=DF=2FG= AF,∴AF= EB∴DB=AB+ BE,即:BE=3DB﹣3AB.【考点】全等三角形的判定与性质【解析】【分析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.24.【答案】(1)解:把B(2,0)代入y=ax2+ x+1,可得4a+1+1=0,解得a=﹣,∴抛物线解析式为y=﹣x2+ x+1,令y=0,可得﹣x2+ x+1=0,解得x=﹣1或x=2,∴A点坐标为(﹣1,0)(2)解:若y=﹣x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PB与y轴交于点A′,由于点P在直线y=﹣x上,可知∠POA=∠POA′=45°,在△APO和△A′PO中,∴△APO≌△A′PO(ASA),∴AO=A′O=1,∴A′(0,1),设直线BP解析式为y=kx+b,把B(2,0)、A′(0,1)两点坐标代入可得,解得,∴直线BP解析式为y=﹣x+1,联立,解得,∴P点坐标为(﹣2,2);若P点在x轴下方时,如图2,∠BPO≠∠APO,即此时没有满足条件的P点,综上可知P点坐标为(﹣2,2)(3)解:存在,如图3,作CH⊥PB于点H,∵直线PB的解析式为y=﹣x+1,∴F(0,1),tan∠BFO= = =2,∵CD∥y轴,∴∠BFO=∠CDF,tan∠CDF=tan∠BFO= =2,∴CH=2DH,设DH=t,则CH=2t,CD= t,∵△CDE是以CD为腰的等腰三角形,∴分两种情况:①若CD=DE时,则S△CDE= DE•CH= t•2t= ,②若CD=CE时,则ED=2DH=2t,∴S△CDE= DE•CH= •2t•2t=2t2,∵2t2<t2,∴当CD=DE时△CDE的面积比CD=CE时大,设C(x,﹣x2+ x+1),则D(x,﹣x+1),∵C在直线PB的上方,∴CD= =(﹣x2+ x+1)﹣(﹣x+1)=﹣=﹣,当x=1时,CD有最大值为,即t= ,t= ,∴S△CDE= = × = ,存在以CD为腰的等腰△CDE的面积有最大值,这个最大值是.【考点】二次函数的应用【解析】【分析】(1)将点B坐标代入到抛物线的解析式可求得a的值,令y=0,得到关于x的方程,然后解关于x的一元二次方程即可;(2)当点P在x轴上方时,连接BP交y轴于点A′,然后证明△APO≌△A′PO,依据全等三角形的性质可得到AO=A′O=1,从而可求得A′坐标,然后利用待定系数法可求得直线BP的解析式,联立直线y=-x,可求得P 点坐标;当点P在x轴下方时,画图可知:∠BPO≠∠APO,即此时没有满足条件的P点;(3)过C作CH⊥DE于点H,由直线BP的解析式可求得点F的坐标,结合条件可求得tan∠BFO和tan∠CDF,可分别用DH表示出CH和CD的长,分CD=DE和CD=CE两种情况,分别用t表示出△CDE的面积,再设出点C 的坐标,利用二次函数的性质可求得△CDE的面积的最大值.。
浙江省湖州市2018年中考数学冲刺模拟卷(1)及参考答案

A . 12π B . 24π C . π D . 15π 9. 如图,直角三角形ABC的两直角边BC=12,AC=16,则△ABC的斜边AB上的高CD的长是( )。
A . 20 B . 10 C . 9.6 D . 8 10. 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴 于点A1 , 作正方形A1B1C1C,延长C1B1交x轴于点A2 , 作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正 方形的面积为( )
A . 5 ( )2010 B . 5 ( )2010 C . 5 ( )2012 D . 5 ( )4022 二、填空题
11. 分解因式:x2﹣5x=________ . 12. 要使分式 有意义,那么x应满足的条件是________ . 13. 如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________. 14. 等腰三角形一腰长为5,一边上的高为3,则底边长为________. 15. 如图,PA、PB是⊙O的切线,切点分别是A、B,若∠APB=60°,PA=3.则⊙O的半径是________ 。
浙江省湖州市2018年中考数学冲刺模拟卷(1)
一、选择题
1. 下列各数中是无理数的是( )
A. B. C. D. 2. 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比( )
A . 向右平移了3个单位 B . 向左平移了3个单位 C . 向上平移了3个单位 D . 向下平移了3个单位 3. 在Rt△ABห้องสมุดไป่ตู้中,∠C=90°,AB=5,BC=3,则cosA的值是( )
(1)求点A,B,F的坐标;
精品浙江省湖州市九校联合2018-2019年精品中考数学模拟试卷(4月份)(含答案)

2019届浙江省湖州市九校联合中考数学模拟试卷(4月份)一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=( )A .2B .﹣2C .±2D .2.下列计算正确的是( )A .(a 3)2=a 5B .a 6÷a 3=a 2C .(ab )2=a 2b 2D .(a+b )2=a 2+b 23.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为( )A .4.73×108B .4.73×109C .4.73×1010D .4.73×10114.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于( )A .B .C .D .5.不等式组的最小整数解是( ) A .1 B .2 C .3 D .46.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A .130°B .140°C .150°D .160°7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )A .B .C .D .A .47,49B .48,49C .47.5,49D .48,509.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x= .12.若二次根式有意义,则x的取值范围是.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.14如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是.(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为.三、解答题(本大题有8小题,共66分)17.(6分)计算:|﹣2|﹣(1+)0+﹣cos30°.18.(6分)如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF= .证明:19.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)20.(8分)李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.22.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,m=20+xm=10+(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?23.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE ∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠A CB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(12分)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?2019届浙江省湖州市九校联合中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.【点评】本题主要考查了绝对值的定义,掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2【考点】47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【分析】根据幂的乘方,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.【解答】解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()A.4.73×108B.4.73×109C.4.73×1010D.4.73×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4730000000用科学记数法表示为:4.73×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】由勾股定理求得AC=5,再根据余弦函数的定义可得答案.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴AC===5,∴cosA==,故选:D.【点评】本题主要考查锐角三角函数的定义和勾股定理,熟练掌握勾股定理和余弦函数的定义是解题的关键.5.不等式组的最小整数解是()A.1 B.2 C.3 D.4【考点】CC:一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式的解集,求出整数解即可.【解答】解:,由①得:x≥1,由②得:x>2,∴不等式组的解集为x>2,则不等式组的最小整数解是3.故选C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°【考点】JA:平行线的性质.【分析】根据平行线的性质可得∠GEB=∠1=60°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=60°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=30°,∴∠2=180°﹣∠FEB=150°.故选C.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是,故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,50【考点】W5:众数;W4:中位数.【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.【解答】解:第8个数是48,所以中位数为48,49出现的次数最多,出现了5次,所以众数为49.故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3【考点】G6:反比例函数图象上点的坐标特征;KQ:勾股定理.【分析】先设点B坐标,再由等腰直角三角形的性质得出OA=AC,AB=AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函数的解析式,然后联立方程,解方程即可求得P的横坐标.【解答】解:设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,∴反比例函数y=,∵△OAC是等腰直角三角形,∴直线OA的解析式为y=x,解得或,∴P(3,3),故选C.【点评】本题考查的是等腰三角形的性质和待定系数法求反比例函数的解析式,反比例函数图象上点点坐标特征,解答时,注意因式分解的运用.二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.若二次根式有意义,则x的取值范围是x≤.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质(被开方数大于等于0)列出关于x的不等式,然后解不等式即可.【解答】解:根据二次根式有意义,分式有意义得:1﹣2x≥0,解得:x≤.故答案是:x≤.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20 .【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;K6:三角形三边关系.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为π﹣9,.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】连接OB,OA,根据圆周角定理得出∠AOD的度数,再根据弦AB⊥CD,得到OA,OE的长,然后根据图形的面积公式即可得到结论.【解答】解:连接OA,OB,∵∠C=22.5°,∴∠A OD=45°,∵AB⊥CD,∴∠AOB=90°,∴OE=AB=3,OA=OB=AB=3,∴S阴影=S扇形﹣S△AOB=﹣6×3=π﹣9,故答案为:π﹣9.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.【考点】L8:菱形的性质.【分析】由在边长为2的菱形ABCD中,∠AB C=120°,易得△ABD、△CBD都是边长为2的正三角形,继而证得△BDE≌△BCF(SAS),继而证得△BEF是正三角形,继而可得当BE⊥AD,即E为AD 的中点时,线段EF长最小.【解答】解:∵四边形ABCD是边长为2的菱形,∠ABC=120°,∴△ABD、△CBD都是边长为2的正三角形,∵AE+CF=2,∴CF=2﹣AE=AD﹣AE=DE,又∵BD=BC=2,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最小值为.故答案为:.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△BDE≌△BCF是解此题的关键.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是0<t<3或t=4 .(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为(,)或(﹣5,﹣32).【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)把函数化为顶点式y=a(x﹣h)2+k的形式,向下平移使抛物线与x轴只有一个交点,即把解析式中的k变成0即可.(2)取AC的中点M,过M作MN⊥AC交OC于N,连接AN则AN=CN,∠ACO=∠CAN,通过△MCN∽△OCA,求得CN的值,进而求得NO的值,从而得出tan∠NAO==;当P在BC的上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E,通过证明△BDE∽△CBO,进而求得tan∠BCP1=tan∠NAO=,从而确定D点的坐标,把D点代入直线CP1的解析式为y=k1x+3,求得P1点的坐标;当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1,延长DB交直线CP2于E,则点B是DE的中点,求得E点坐标,代入直线CP2的解析式为y=k2x+3,即可求得P2的坐标.【解答】解:(1)由题意,抛物线只能沿y轴向下平移,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴设平移后的抛物线的解析式为y=﹣(x﹣1)2+4﹣t(t>0),当原点O落在平移后的抛物线上时,把(0,0)代入得:0=﹣(0﹣1)2+4﹣t,解得t=3;当平移后的抛物线的顶点落在x轴上时,x=1,y=0即0=﹣(1﹣1)2+4﹣t,解得t=4,∵平移后的抛物线与线段OB有且只有一个交点∴0<t<3或t=4,故答案为:0<t<3或t=4;(2)当y=0时,﹣x2+2x+3=0,解得:x=﹣1或x=3,即A(﹣1,0)、B(3,0),取AC的中点M,过M作MN⊥AC交OC于N,连接AN,则AN=CN,∴∠ACO=∠CAN∵∠BCP=∠BAC﹣∠ACO,∴∠BCP=∠BAC﹣∠CAN=∠NAO∵∠ACO=∠NCM,∠AOC=∠CMN=90°,∴△MCN∽△OCA,∴=,∴CN====,∴NO=CO﹣CN=3﹣=,∴tan∠NAO==;当点P在BC上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E ∵∠OCB=∠DBE,∠BOC=∠BED=90°,∴△BDE∽△CBO,∴===tan∠BCP1=tan∠NAO=,∴BE=CO=4,DE=BO=4,OE=3+4=7∴D(7,4)设直线CP1的解析式为y=k1x+3,把(7,4)代入4=7k1+3,∴k1=,∴y=x+3令﹣x2+2x+3=x+3,解得x1=0(舍去),x2=∴P1(,),当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1延长DB交直线CP2于E,则点B是DE的中点∴解得,∴E(﹣1,﹣4)设直线CP2的解析式为y=k2x+3,把(﹣1,﹣4)代入﹣4=﹣k2+3,∴k2=7,∴y=7x+3令﹣x2+2x+3=7x+3,解得x1=0(舍去),x2=﹣5∴P2(﹣5,﹣32)综上所述,抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,P点坐标为(,)或(﹣5,﹣32),故答案为:(,)或(﹣5,﹣32).【点评】此题是二次函数的综合题,主要考查了相似三角形的判定和性质,对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.三、解答题(本大题有8小题,共66分)17.计算:|﹣2|﹣(1+)0+﹣cos30°.【考点】78:二次根式的加减法;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先分别计算绝对值、零次幂、二次根式和特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2﹣1+2﹣×,=2﹣1+2﹣,=.【点评】此题主要考查了实数的运算,关键是熟练掌握绝对值、零次幂、二次根式和特殊角的三角函数.18.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF= CD或AB .证明:【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB=CD,AB∥CD,又由E是AD的中点,易证得△AEF ≌△DEC,继而证得结论.【解答】解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)【考点】T8:解直角三角形的应用.【分析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.【解答】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈37(cm).答:AB的长度为37cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有 3 名,D类男生有 1 名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数;(2)用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)根据题意得:3÷15%=20(名),答:李老师一共调查了20名同学;故答案为:20;(2)C类女生:20×25%﹣2=3(名),D类男生有20﹣3﹣10﹣5﹣1=1(人),如图所示;故答案为:3,1;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是=.【点评】此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.【考点】MC:切线的性质;MN:弧长的计算.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到=,解方程即可得到结论;(3)利用三角函数求得∠DCE 的度数,根据△AEC ∽△CED ,求得∠A 的度数,则∠DIB 即可求得,然后在直角△ABD 中求得BD ,从而求得半径,然后利用弧长公式求解.【解答】(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO ,∵OA=OD ,∴∠ADO=∠A ,∴∠BDC=∠A ;(2)∵CE ⊥AE ,∴∠E=∠ADB=90°,∴DB ∥EC ,∴∠DCE=∠BDC ,∵∠BDC=∠A ,∴∠A=∠DCE ,∵∠E=∠E ,∴△AEC ∽△CED ,∴=, ∴EC 2=DE•AE,∴(2)2=2(2+AD ),∴AD=4.(3)∵直角△CDE 中,tan ∠DCE===,∴∠DCE=30°,又∵△AEC ∽△CED ,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tanA=4×=,∴△OBD 是等边三角形,则OD=BD=,则弧BD 的长是=.【点评】本题考查了切线的性质、相似三角形的判定与性质以及特殊角的三角函数值,正确证明△AEC∽△CED是关键.22.(10分)(2018•石家庄二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正m=20+xm=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)分两种情形分别代入解方程即可.(2)分两种情形写出所获利润y(元)关于x(天)的函数关系式即可.(3)分两种情形根据函数的性质解决问题即可.【解答】解:(1)分两种情况①当1≤x≤20时,将m=25代入m=20+x,解得x=10②当21≤x≤30时,25=10+,解得x=28经检验x=28是方程的解∴x=28答:第10天或第28天时该商品为25元/件.(2)分两种情况①当1≤x≤20时,y=(m﹣10)n=(20+x﹣10)(50﹣x)=﹣x2+15x+500,②当21≤x≤30时,y=(10+﹣10)(50﹣x)=综上所述:(3)①当1≤x≤20时由y=﹣x2+15x+500=﹣(x﹣15)2+,∵a=﹣<0,∴当x=15时,y最大值=,②当21≤x≤30时由y=﹣420,可知y随x的增大而减小∴当x=21时,y最大值=﹣420=580元∵∴第15天时获得利润最大,最大利润为612.5元.【点评】本题考查二次函数的应用、反比例函数的性质等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.23.(10分)(2018•湖州模拟)如图1,在Rt△ABC中,∠A CB=90°,AC=BC,在斜边AB上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D 在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【考点】SO:相似形综合题.【分析】(1)①先利用平行线分线段成比例定理得,,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+n2,而DE=AE=p,即可得出结论;【解答】解:(1)①∵DE∥BC,∴,由旋转知,∠EAC=∠DAB,∴△ABD∽△ACE,②在Rt△ABC中,AC=BC,∴AB=AC,由①知,△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,∵△ABD∽△ACE,∴=,∴AD=AE,BD=CE,∵BD=,∴CE=,在Rt△CDE中,CD=1,CE=,根据勾股定理得,DE=2,在Rt△ADE中,AD=AE,∴AD=DE=2,(2)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=k,∵AD=3,BD=2,∴AE=kAD=3k,CE=kBD=2k,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,在Rt△CDE中,DE2=CD2+CE2=1+4k2,在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,∴1+4k2=9﹣9k2,∴k=﹣(舍)或k=;(3)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=∵AD=p,BD=n,∴AE=AD=p,CE=BD=n,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,在Rt △CDE 中,DE 2=CD 2+CE 2=m 2+n 2,∵DE=AE=p ,∴p 2=m 2+n 2, ∴9p 2=25m 2+9n 2.【点评】此题是相似三角形综合题,主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,直角三角形的判定,解本题的关键是得出∠DCE=90°和利用两边对应成比例夹角相等来判断两三角形相似的方法应用,还用到类比的方法解决问题.24.(12分)(2018•湖州模拟)如图,在平面内直角坐标系中,直线y=2x+4分别交x 轴,y 轴于点A ,C ,点D (m ,2)在直线AC 上,点B 在x 轴正半轴上,且OB=3OC ,点E 是y 轴上任意一点,记点E 为(0,n ).(1)求点D 的坐标及直线BC 的解析式;(2)连结DE ,将线段DE 绕点D 按顺时针旋转90°得线段DG ,作正方形DEFG ,是否存在n 的值,使正方形的顶点F 落在△ABC 的边上?若存在,求出所有满足条件的n 的值;若不存在,说明理由.(3)作点E 关于AC 的对称点E′,当n 为何值时,AE′分别与AC ,BC ,AB 垂直?【考点】FI :一次函数综合题.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,当点F 在BC 上时,作FH ⊥y 轴于H ,作DM ⊥y 轴于M .由△EDM ≌△FEH ,推出DM=EH=1,EM=FH=n ﹣2,推出F (n ﹣2,n ﹣1),把F 点坐标代入y=﹣x+4,即可解决问题;②如图2中,当点F 在AB 上时,作DH ⊥OC 于H .由△DHE ≌△EOF ,可得DH=EO=1,即可解决问题;(3)分三种情形①如图3中,当AE′⊥AC 时,②如图4中,当AE′⊥BC 时,延长AE′交BC 于G ,③如图5中,当AE′⊥AB 时,分别求解即可;【解答】解:(1)由题意A (﹣2,0),C (0,4),把D (m ,2)代入y=2x+4解得m=﹣1,∴D (﹣1,2),∵OB=3OC ,OC=4,∴OB=12,∴B (12,0),设直线BC 的解析式为y=kx+b 则有,解得,∴直线BC的解析式为y=﹣x+4.(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,∴DM=EH=1,EM=FH=n﹣2,∴F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,得到n﹣1=﹣(n﹣2)+4,∴n=.②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,∴n=1,综上所述,满足条件的n的值为或1.(3)①如图3中,当AE′⊥AC时,∵直线AC的解析式为y=2x+4,∴直线AE′的解析式为y=﹣x﹣1,∴E(0,﹣1),∴n=﹣1.②如图4中,当AE′⊥BC时,延长AE′交BC于G,易知,CE=CE′=4﹣n,AE=,由△BOC∽△BGA,∴=,∴=,∴BG=,∴CG=,由△CGE′∽△AOE,∴=,∴=,解得n=或6(舍弃).③如图5中,当AE′⊥AB时,易证AE=CE,设AE=CE=x,在Rt△AEO中,∵AE2=OE2+OA2,∴x2=(4﹣x)2+22,∴x=,∴AE=CE=,∴OE=,∴n=,综上所述,当AE′分别与AC,BC,AB垂直时,n的值分别为﹣1或或.【点评】本题考查一次函数综合题、待定系数法、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题.属于中考压轴题.。
2019年浙江省湖州市中考数学一模名校押题试卷附解析

2019年浙江省湖州市中考数学一模名校押题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A .82米B .163米C .52米D .70米 2.等边三角形的外接圆的面积是内切圆面积的( )A .2倍B .3倍C .4倍D .5倍3.甲、乙、丙、丁4人进行乒乓球比赛,每两人均比一场,无平局. 结果甲胜丁,且甲、乙、丙三入胜的场教相同,估计丁与乙进行比赛,丁获胜的概率为( ) A .OB .13C .12D .14.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =2x 的图像上的三个点,0>y 1>y 2>y 3,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3 B .x 3>x 1>x 2 C .x 1>x 2>x 3 D .x 1>x 3>x 2 5.两个相似三角形的面积比为 4:9,那么这两个三角形对应边的比为( ) A .4:9B .l6:81C .2:3D .8:96.反比例函数与二次函数在同一平面直角坐标系中的大致图象 如图所示,它们的解析式可能分别是( ) A .y =k x ,y =kx 2-x B .y =kx ,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-kx,y =-kx 2-x 7. ) AC8.23,确定组距为4,某小组的频数为42,则组数和A .6,3 B .6,0.3 C .6,0.5 D .5.5,0.2 9.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( ) A . 60分B . 70分C .75分D . 80分10.张甲票,4张乙票,总计用了112 ) A .甲票1010元∕张 分数C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张11.下列判断中错误..的有( ) ①每一个正数都有两个立方根 ②零的平方根等于零的算术平方根 ③没有平方根的数也没有立方根 ④有理数中绝对值最小的数是零 A .1 个B .2 个C .3 个D .4 个二、填空题12.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 . 13.如图,已知一坡面的坡度1:3i =,则坡角α为 .14.如图所示,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点 P 与易拉罐刚好接触,则此时水杯中的水深为 ㎝.15.如图,已知△ABC 与△DEF 是位似图形,且OB :OE =3:5,那么:ABC DEF s s ∆∆= .16.已知⊙O 的半径为 6cm ,弦 AB=6 cm ,则弦 AB 所对的圆心角的度数为 度. 17.有一个三角形两边长为4,5,要使该三角形为直角三角形,则第三边长为 . 18.两直线3y x =-、5y x =-+与y 轴围成的三角形的面积是 .19.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.20. 如图,直线 AB ∥CD ,BD ⊥AB 于点 B ,若直线 AB 与 CD 之伺的距离为0.9 cm ,则BD= .21.从标有1,3,4,6,8的五张卡片中随机抽取两张,和为奇数的概率是 . 22.若n mx x ++2是一个完全平方式,则n m 、的关系是 .23.某商品的进货价每件2元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价后再让利40元销售,仍可获利10%(相对于进价),则x= 元.24.一块苗圃地,种有 n 行树苗,每行的株数比行数的p 倍少kh ,这块地共有树苗 株;当 n= 32,p=3,k=18 时,这块地共有 株树苗.25.绝对值小于4的所有负整数的和是 ,积是 .三、解答题26.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00. 乙生产零件的尺寸:10.00,9.97,10.03,10.00. (1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?27.如图,已知∠ABC 、∠ADC 都是直角,BC=DC .说明:DE=BE .28.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°,求∠BAE 和∠BAD 的度数.29.小彬解方程21152x x a-++=时,方程左边1 没有乘以 10,由此求得方程的解为 x=4. 试求 a的值,并正确地求出方程的解.30.文明于世的埃及字塔、形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,破喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m.请估计该金字塔的高度(精确到1 m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.A5.C6.B7.B8.B9.C10.A11.B二、填空题 12. 6113. 30 14.615.9:2516.6017.318.1619.(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.20.0.9 cm21.5322. 042=-n m 23.70024.n(np-k);249625.-6,-6三、解答题 26.(1)10.00x =甲mm ,10.00x =乙mm ;(2)200002S =甲.mm 2 ,2000045S =乙.mm 2,甲做得较好27.先说明Rt △ADC ≌Rt △ABC ,再说明△DCE ≌△BCE28.设∠BAE 和∠BAD 的度数分别为x 、y . 根据题意,得48290y x y x -=⎧⎨+=⎩,解得1462x y =⎧⎨=⎩,所以∠BAE 和∠BAD 的度数分别为 14°和62°.29.1a =-,13x =30.设该金字塔的高度为 x (m).由题意得230x =,1)x =,142x ≈ 答:该金字塔高度约为 142 m .。
浙教版2018-2019学年度九年级数学中考模拟试卷含答案

浙教版2018-2019学年度九年级数学中考模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H2.如图,下列图形从正面看是三角形的是()A.B.C.D.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→156.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的内角的度数为.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H【分析】根据倒数的定义即可判断;【解答】解:的倒数是,∴在G和H之间,故选:D.【点评】本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n【分析】各项计算得到结果,即可做出判断.【解答】解:A、(﹣2x)2•x=4x2•x=4x3,本选项错误;B、﹣x5•(﹣x)3=x8,本选项正确;C、x2•x3=x5,本选项错误;D、(x+y)2•(x+y)n=(x+y)2+n,本选项错误.故选:B.【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定【分析】把a,b中的一个当作未知数,就可得到一个方程,解方程即可求解.【解答】解:两边同乘以a,得到:a2+(﹣2b)a﹣2=0,解这个关于a的方程得到:a=2b,或a=﹣,∵a+≠0,∴a≠﹣,故选:C.【点评】把其中的一个字母当作未知数,转化为方程问题是解决关键.5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→15【分析】直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.【解答】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A. B. C. D.【分析】本题是规律性题型,基本方法是,将一个分数分为两个分数的差,因为所求式子,每一个分母的两个因数相差2,一个分数分为两个分数时,需要乘以.【解答】解:由上式可知+++…+=(1﹣)=.故选A.【点评】此题属规律性题目,解答此题时要注意观察所给式子的特点,总结出规律再求解.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④【分析】如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b),利用图象法即可解决问题.【解答】解:如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b)观察图象可知,x1≠x2,故①正确设抛物线的对称轴为x=h,x2=h+m,x1=h﹣m,b=h+n,a=h﹣n,m>n,∴x1•x2=h2﹣m2,ab=h2﹣n2,∵m>n,∴x1•x2<ab,故②正确,∵=,∴x1+x2=a+b,故③错误,∴x12+2x1x2+x22=a2+2ab+b2,∵2x1x2<2ab,∴x12+x22>a2+b2,观察图象可知若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,故④正确.故选:B.【点评】本题考查抛物线与x轴的交点,一元二次方程的根与系数的关系等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.【分析】由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是一次函数还是二次函数)就能选出答案.【解答】解:已知∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴=,即=,解得:EH=x,所以y=•x•x=x2,∵x y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x 2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选:A.【点评】本题主要考查了一次函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为 2.54×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为2π.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .【分析】先证四边形ABEF是平行四边形得BE=AF,由=2知=、=,设S△ECG=a,根据△ECG∽△FAG知S△FAG=4a,根据△ECG∽△BCA知S△BCA=9a、S四边形ABEG=S△BCA﹣S△ECG=8a,继而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD、BC∥AD,且AD=BC,∵EF∥CD,∴四边形ABEF是平行四边形,∴BE=AF,∵=2,∴=、=,设S△ECG=a由BC∥AD知△ECG∽△FAG,则=()2,即=,则S△FAG=4a;由EF∥AB知△ECG∽△BCA,则=()2,即=,则S△BCA=9a,∴S四边形ABEG=S△BCA﹣S△ECG=8a,则==,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握平行四边形的判定与性质及相似三角形的判定与性质.14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)【分析】要求所用行车时间最短,就要计算好行驶的路线,可以设在公路上行驶x千米,根据题意,找出可以运用勾股定理的直角三角形,运用勾股定理求解.【解答】解:如图所示,公路上行驶的路线是AD,草地上行驶的路线是DB,设AD的路程为x千米,由已知条件AB=10千米,BC=5千米,BC⊥AC,知AC==15千米.则CD=AC﹣AD=(15﹣x)千米,BD==km,设走的行驶时间为y,则y=+.整理为关于x的一元二次方程得3x2+(160y﹣120)x﹣6400y2+1200=0.因为x必定存在,所以△≥0.即(160y﹣120)2﹣4×3×(1200﹣6400y2)≥0.化简得102400y2﹣38400y≥0.解得y≥,即消防车在出发后最快经过小时可到达居民点B.故答案为:.【点评】本题考查的是在直角三角形中勾股定理的运用,画出图形构建直角三角形是关键,根据一元二次不等式的求解,可以计算出解的最小值,以便求出最短路程.15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的内角的度数为.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以A n为顶点的底角的度数.【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为;17.5°,.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.【分析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解答】解:原式=3﹣+1﹣+=2+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.【分析】先判断出∠ACD+∠BCD=90°,再判断出∠A+∠ACD=90°,进而得出∠A=∠BCD,再用三角形的外角即可得出结论.【解答】证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD为AB边上的高,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠CFE=∠BCD+∠CBE=∠A+∠ABE,∵∠CEF=∠A+∠ABE,∴∠CEF=∠CFE,∴CE=CF.【点评】此题主要考查了等腰三角形的判定,直角三角形的性质,三角形的高的意义,三角形的外角的性质,判断出∠A=∠BCD是解本题的关键.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.【分析】(1)作AB的垂直平分线得到AB的中点O,然后以O为圆心,OA为半径作圆交BC于D;(2)先利用圆周角定理得到∠ADB=∠CAB,则可判断△CAD∽△CBA,然后利用相似比得到CA:CB=CD:CA,再根据比例的性质即可得到结论.【解答】(1)解:如图,(2)证明:连接AD,如图,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠CAB,∵∠C=∠C,∴△CAD∽△CBA,∴CA:CB=CD:CA,∴AC2=CD•CB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.利用相似比是解决(2)小题的关键.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.【分析】(1)由于点B在圆上,要说明BC是⊙O的切线,证明OB⊥BC即可;(2)要证明△ABF∽△BED,有一个同弧上的圆周角∠BAF与∠BDE,可通过证明∠ABF=∠BED来实现,利用圆内接四边形的对角互补计算∠BED的度数,利用平行线的性质计算∠ABF的度数即可.(3)由(2)的△ABF∽△BED,可得,要求AF需求出AB、BD、BE.由于AD是直径,∠BAD=45°,AD=4,可求得AB、BD的长.连接OE,可利用垂径定理求出BE的长,计算出AF2即可.【解答】解:(1)证明:连接OB,∵四边形ABCD是平形四边形,∠BAD=45°,∴∠ABC=135°∵OA=OB,∴∠BAD=∠ABO=45°,∴∠OBC=∠ABC﹣∠ABO=135°﹣45°=90°,∴OB⊥BC,又∵点B在圆上∴BC是⊙O的切线;(2)证明:∵ABED是⊙O的圆内接四边形,∴∠BED+∠BAD=180°,∴∠BED=180°﹣45°=135°=∠ABC又∵∠BAF=∠BDE∴△ABF∽△BED(3)解:连接OE交BD于点G.∵AD是⊙O的直径,∴∠ABD=90°∵∠BAD=45°,AD=4,∴AB=BD=2∵AF平分∠BAD交⊙O于点E,∴∠BAF=∠FAD,∴∠EBD=∠EDB,∴BE=ED,又因为OE是半径∴OE⊥BD,BG=GD=∵∠BAD=45°=∠BDA∴OG=GB=.∴GE=OE﹣OG=2﹣在Rt△BEG中,BE2=BG2+GE2=2+(2﹣)2=8﹣4由(2)知,△ABF∽△BED∴∴AF==∴AF 2===16+8【点评】本题主要考查了切线的判定、相似三角形的判定和性质、勾股定理及圆周角等知识,综合性较强.解决(3)利用垂径定理是关键.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.【分析】(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值;(2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值;(3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向.【解答】解:(1)∵抛物线的对称轴经过点A,∴A点为抛物线的顶点,∴y的最小值为﹣3,∵P点和O点对称,∴t=﹣6;(2)分别将(﹣4,0)和(﹣3,﹣3)代入y=ax2+bx,得:,解得,∴抛物线开口方向向上;(3)将A(﹣3,﹣3)和点P(t,0)代入y=ax2+bx,,由①得,b=3a+1③,把③代入②,得at2+t(3a+1)=0,∵t≠0,∴at+3a+1=0,∴a=﹣.∵抛物线开口向下,∴a<0,∴﹣<0,∴t+3>0,∴t>﹣3.故t的值可以是﹣1(答案不唯一).(注:写出t>﹣3且t≠0或其中任意一个数均给分)【点评】此题主要考查了抛物线的对称性及开口方向的问题,对于二次函数的图象和性质要很熟悉.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=180,s2=120330﹣180﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【分析】(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.【分析】(1)将b=2a+c整理为4a﹣2b+c=0即可判断其经过的点的坐标;(2)根据题目提供的条件求得其顶点的纵坐标,进一步整理即可得到答案;(3)将(0,y1)和(1,y2)分别代入函数的解析式,利用y1•y2>0、2a+3b+6c=0,即可确定纵坐标的取值范围.【解答】(1)解:由b=2a+c,可得4a﹣2b+c=0,∵当x=﹣2时,y=4a﹣2b+c=0,∴函数图象一定经过点(﹣2,0);(2)证明:此时抛物线解析式为y=ax2+bx,图象是开口向下的抛物线,a<0.∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)解:由2a+3b+6c=0,可得6c=﹣(2a+3b),由题意,y1•y2=c•(a+b+c)>0,即6c•(6a+6b+6c)>0,∴﹣(2a+3b)•(4a+3b)>0,(2a+3b)•(4a+3b)<0,两边同除以9a2,∵9a2>0,∴<0,∴或∴,∴,即为所求.【点评】本题考查了二次函数的性质及抛物线与x轴的交点,另外还考查了二次函数图象上的点的特征,是一道比较复杂的二次函数综合题.。
浙江省湖州市中考数学真题试题(含解析)

2018~2019学年湖州中考数学真题一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.数2的倒数是 A. -2 B. 2C. 21-D.21【答案】D【解析】因为互为倒数的两个数之积为1,所以2的倒数是12,故选D.2.据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为 A.238×103B.23.8×104C.2.38×105D.0.238×106【答案】C【解析】238000=2.38×105,故选C. 3.计算aa a 11+-,正确的结果是 A.1B.21C. aD.a 1【答案】A 【解析】a a a 11+-=111==+-aaa a ,故选A.4.已知∠α=60°32’,则∠α的余角是 A.29°28’B.29°68’C.119°28’D.119°68’【答案】A【解析】解:∠α的余角为90°-60°32′=29°28′,故选:A .5.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是 A. 60πcm 2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】圆锥的侧面积=21×13×2×π×5=65πcm 2.6.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是 A.101B.109C.51D.54【答案】C【解析】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是210= 15. 故选C.7.如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是(第7题图) A.60°B. 70°C.72°D.144°【答案】C【解析】∵五边形ABCDE 为正五边形,∴∠ABC =∠C =15(5−2)×180°=108°,∵CD =CB ,∴∠CBD =12(180°−108°)=36°,∴∠ABD =∠ABC -∠CBD =72°, 故选:C .8.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是(第8题图)A.24B.30C. 36D. 42【答案】B【解析】如图,过点D 作DE ⊥AB 于E ,由BD 平分∠ABC 可知,DC =DE ,BC =BE ,∴四边形ABCD 的面积BC ∙CD -12(BE -AB )∙DE =36-6=30. 故选B.9.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(第9题图)A.22B.5C.253D.10【答案】D【解答】如下图,EF 为剪痕,过点F 作FG ⊥EM 于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点, ∴AF =CN ,BF =DN .易证△PME ≌PDN ,∴EM =DN , 而AF =MG ,∴EG =EM +MG =DN +AF =DN +CN =DC =1.在Rt △FGE 中,EF =10132222=+=+EG FG . 故选:D.10.已知a ,b 是非零实数,b a >,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是A. B. C. D.【答案】D【解析】解答本题可采用赋值法. 取a=2,b=1,可知A选项是可能的;取a=2,b=-1,可知B选项是可能的;取a=-2,b=-1,可知C选项是可能的,那么根据排除法,可知D选项是不可能的.故选D.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x2-9=_____________.【答案】(x+3)(x-3)【解析】根据平方差公式,有x2-9=(x+3)(x-3).12.已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是__________.【答案】30°【解析】根据圆周角定理:是一条弧所对圆周角等于它所对圆心角的一半,可知它所对的圆心角的度数是30°.13.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是________分.【答案】9.1【解析】该班的平均得分= 5×8+8×9+7×105+8+7= 9.1.14.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α. 若AO =85cm ,BO =DO =65cm .问:当α=74°,较长支撑杆的端点A 离地面的高度h 约为________cm .(参考数据:sin 37≈0.6,cos 3≈0.8,sin 53≈0.8,cos 53≈0.6.)图1 图2【答案】12015.如图,已知在平面直角坐标系xoy 中,直线121-=x y 分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()0,01>>=x k x ky ,()022<=x xk y 的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是_________.【答案】2【解答】如下图,过点D 作DF ⊥y 轴于F .由反比例函数比例系数的几何意义,可得S △COE=12k ,S △DOF =k.∵S △DOB =S △COE =12k ,∴S △DBF =S △DOF -S △DOB =12k=S △DOB ,∴OB=FB.易证△DBF ≌ABO ,从而DF =AO =2,即D 的横坐标为-2,而D 在直线AC 上, ∴D (-2, -2),∴k =12∙(-2)∙(-2)=2.16.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.图1图2【答案】4 5【解析】如图3,连结CE 交MN 于O .观察图1、图2可知,EN =MN =4,CM =8,∠ENM =∠CMN =90°.图3∴△EON ∽△COM , ∴EN CN = ON OM = 12, ∴ON =13MN =43,OM =23MN =83.在Rt △ENO 中,OE =ON 2+EN 2=4103,同理可求得OG =8103, ∴GF =22(OE +OG )=2,即“拼搏兔”所在正方形EFGH 的边长是4 5.三、解答题(本题有8小题共66分) 17.(本小题6分)计算:()82123⨯+-. 【答案】8【解答】原式=-8+4=-4.18.(本小题6分)化简:(a +b )2-b (2a +b ).【答案】a 2【解答】原式=a 2+2ab +b 2-2ab -b 2=a 2.19.(本小题6分)已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A (2,m )和点B (3,n ),试比较m 与n 的大小,并说明理由.【答案】略【解答】(1) b2-4ac=(-4)2-8c=16-8c.由题意,得b2-4ac>0,∴16-8c>0∴c的取值范围是c<2.(2) m<n. 理由如下:∵抛物线的对称轴为直线x=1,又∵a=2>0,∴当x≥1时,y随x的增大而增大.∵2<3,∴m<n.20.(本小题8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表某校抽查的学生文章阅读的篇数情况统计图文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.【答案】略【解答】(1) 被抽查的学生人数是16÷16%=100(人),m=100-20-28-16-12=24(人).(2) 中位数是5(篇),众数是4(篇).(3) ∵被抽查的100人中,文章阅读篇数为4篇的人数是28人, ∴800×28100=224(人),∴估计该校学生在这一周内文章阅读的篇数为4篇的人数是224人.21.(本小题8分)如图,已知在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连结DF ,EF ,BF.(1)求证:四边形BEFD 是平行四边形;(2)若∠AFB =90°,AB =6,求四边形BEFD 的周长.(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点, ∴DF ∥BC ,FE ∥AB ,∴四边形BEFD 是平行四边形.(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3.∴四边形BEFD 是菱形.∵DB =3,∴四边形BEFD 的周长为12.22.(本小题10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B -C -D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)图1图2【答案】略【解答】(1)由题意,得:甲步行的速度是2400÷30=80(米/分),∴乙出发时甲离开小区的路程是80×10=800(米).(2)设直线OA的解析式为: y=kx(k≠0),∵直线OA过点A(30,2400),∴30k=2400,解得k=80,∴直线OA的解析式为:y=80x.∴当x=18时,y=80×18=1440,∴乙骑自行车的速度是1440÷(18-10)=180(米/分).∵乙骑自行车的时间为25-10=15(分),∴乙骑自行车的路程为180×15=2700(米).当x=25时,甲走过的路程是y=80x=80×25=2000(米),∴乙到达还车点时,甲、乙两人之间的距离是2700-2000=700(米).(3)图象如图所示:23.(本小题10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动2为半径画圆.点,以Q为圆心,2①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图2【答案】略【解答】(1)如图1,连结BP,过点P作PH⊥OB于点H,图3则BH =OH .∵AO =BO =3,∴∠ABO =45°,BH =12OB =2, ∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322,从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q,使得△QMN是等腰直角三角形,∵直线l1经过点A(-3,0),B(0,3),∴l的函数解析式为y=x+3.记直线l2与l1的交点为F,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q 在线段CF 的延长线上时,同理可得m =3+2,Q 的坐标为(3+2,6+32). ∴存在这样的点Q 1(3-2,6-32)和Q 2(3+2,6+32),使得△QMN 是等腰直角三角形.24.(本小题12分)如图1,已知在平面直角坐标系xoy 中,四边形OABC 是矩形点A ,C 分别在x 轴和y 轴的正半轴上,连结AC ,OA =3,tan ∠OAC =∠3,D 是BC 的中点.(1)求C 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM =OC ,点P 是线段OM 上的一个动点,经过P ,D ,B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.图1图2【答案】略【解答】(1)解:∵A =3,t an ∠OAC =OC OA =33, ∴OC = 3.∵四边形OABC 是矩形,∴BC =A 0=3.∵D 是BC 的中点,∴CD =12BC =32,∴点D 的坐标为(32,3). (2) ①∵t an ∠OAC =33, ∴∠OAC =30°,∴∠ACB =∠OAC =30°.设将△DBF 翻折后,点B 落在AC 上的B ’处, 则DB ’=DB =DC ,∠BDF =∠BD ’F , ∴∠DB ’C =∠ACB =30°,∴∠BDB =60°,∴∠BDF =∠B ’DF =30°.∵∠B =90°,∴BF =BD ∙t an 30=32. ∵AB =3,∴AF =BF =32, ∵∠BFD =∠AFE ,∠B =∠FAE =90°, ∴△BFD ≌△AFE .∴AE =BD =32. ∴OE =OA +AE =92,∴点E 的坐标为(92,0). ②36.。