第13章 量 子 论 简 介
第13章 散射

4 k2
l 0
2
2l 1e i l sin l Yl 0 ( )
据Ylm ( )的正交归一性
4 2 ( 2l 1)sin 2 l k l 0
(16)
式(14)、(15)和(16)分别给出了散射振幅、微分散射截
3
1 散射的经典力学描述 散射截面
先看两个基本概念:
弹性散射(碰撞):一粒子与另一粒子碰撞的过程中,只 有动能的交换,粒子内部状态并无改变; 非弹性散射:碰撞过程中,粒子内部状态发生改变。 本课程我们只讨论弹性散射。 从经典力学来看,在散射过程中,每个入射粒子都以 一个确定的碰撞参数(impact parameter) b射向靶子。由 于靶子的作用,入射粒子的轨道发生偏转,沿某一方 向 ( , ) 出射,然而在散射实验中,人们并不对每个粒 子的轨道感兴趣,而是研究入射粒子束经过散射后沿 不同方向出射的分布。
20
面及总散射截面用各分波的相移δl 来表示的普遍公式。
原则上讲,若相互作用V(r)已知,则可求解l分波的径向方 程(5)。并让Rl 满足条件(8)式。从而计算出相移δl .
在实验中,把相移 l (l 0,1,2,) 作为参数,用(15)去 拟合所观测的角分布曲线 ( ) (用最小二乘法),即相 移分析。这样得出的相移是研究相互作用不可缺少的 资料。 讨论: 1)由(14)得
i eikz (4)
7
它是动量的本征态
( p z k , p x p y 0)
入射粒子能量为 E 2 k 2 / 2
入射流密度为
2013届高考物理核心要点突破系列课件:第13章 第八节《电容器的电容》(人教版选修3-1)

四、利用电场线定性理解Q不变时平行板电容
器极板间场强的变化
1.保持Q、d不变,减小正对面积S(如图13- 8-3)
图13-8-3
由于正对面积减小,电荷分布变密集,电场线 变密,E 变大. 证明:Q、d 不变,S 减小,致使 C 减小,由公 Q U 式 U=C,知 U 增大,E= d 也增大. 2.保持 Q、S 不变,只改变板间距离 d(如图 13 -8-4)
所带电荷量Q、电容C、两板间
电势差U、电容器两极板间场强E的变化情况
是( )
A.Q变小,C不变,U不变,E变小
B.Q变小,C变小,U不变,E不变 C.Q不变,C变小,U变大,E不变 D.Q不变,C变小,U变小,E变小
解析: C.电容器充电后再断开 S, 选 其所带电荷 εS 量不变,由 C∝ 可知,d 增大时,C 变小.又 d Q 因 U= ,所以 U 变大.对于场强 E,由于 E= C U Q Q 4πkdQ U 4πkdQ U=C= εS = εS , 所以 E= d = εSd = d, 4πkd 4πkQ .由以上分析可知, 间距 d 增大, 不变化. E εS
个公式以及匀强电场的规律解决与电容器相关
的两类问题.
基础知识梳理
第 八 节 电 容 器 的 电 容
核心要点突破 课堂互动讲练 随堂达标自测 课时活页训练
基础知识梳理
一、电容器
思考 (1)电容器带电量越多,电容越大吗? (2)电容器的额定电压与击穿电压相等吗?
绝缘 很近 1.电容器:两个彼此_____又相距_____的导体
U减小,静电计的张角变小,选项B正确.
极板间插入玻璃板,介电常数ε增大,从而电
容C增大,U减小,选项C正确.
当A板放走部分电荷,极板的带电荷量Q减小,
2宏观经济学第13章

的加权平均数。距现在越近,权数越大。
YP Yt (1 )Yt 1
c YP ()Yt [ (1 )]Yt 1
永久收入的意义: 从短期来看收入变量可能会发生较
大的变化,但从长远来看,收入变量是稳定的。
33
讨论:
消费的主要影响因素是收入。当期消费不仅与当期收入有 关,还取决于永久的收入、收入期望; 消费者受消费习惯的支配; 一次性的暂时收入变化、税收变化引起的消费变化不大, 其边际消费倾向很小;
s MPS y
ds MPS dy
s c 平均储蓄倾向(APS): APS 1 y y
线性储蓄函数: s y c (1 ) y
23
储蓄曲线及消费与收入平衡点
s
APS < MPS B 储蓄曲线
(MPS递增)
O
消费支出与 收入相等
y
24
三、消费函数与储蓄函数的关系
三、投资等于储蓄
在均衡条件下,计划支出等于计划消费加 计划投资;同时,生产创造的收入等于计划消费
加计划储蓄。
经济均衡的条件: E = y
也可以表示为:
i=s
注意:均衡条件不同于国民收入核算中发
生的实际投资等于实际储蓄。
14
§13-2 凯恩斯的消费理论
思路:均衡产出是指与总需求相一致的产出。
分析均衡产出的决定,就需要分析总需求的各个组
永久性收入、永久性税收变动的边际消费倾向很大;
人口结构、社会保障制度、税收制度等因素对“消费—收 入”关系影响较大。
34
影响消费的其他因素
利率
返回
当利率提高时,有两方面的效果:(1) 增加储蓄,增加将来的消费(替代效应);(2) 认为将来的利息收入增加,增加当前的消费 (收入效应)。
第13章 第1讲 原子结构与性质

光谱分析 核外电子的概率
一原子轨道
占不同的轨道 特规则
高三总复习 · RJ · 化学
2个电子
自旋方向
能量相同的轨道
泡利原理
第十三章
分
洪
第 1讲
自旋方向
能量最低原理
进入导航
系列丛书
二、 1.8 5 4 3 2 ns2np1~ns2np6
8
18
18 减少
32 金属
2
3
14
15
30
2
6
增多
2.ⅠA ~ⅡA ⅠB~ⅡB 越大
进பைடு நூலகம்导航
第十三章
第 1讲
系列丛书
高三总复习 · RJ · 化学
进入导航
第十三章
第 1讲
系列丛书
考纲解读
1.了解原子核外电子的能级分布,能用电子排布式
表示常见元素 (1 ~ 36 号 ) 原子核外电子的排布,了解原子
核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某 些性质。 3.了解原子核外电子在一定条件下会发生跃迁,了
非金属元素数目 __
随着周期序号的递增,金属元素数目逐渐 __________,非金属元素数目逐渐________。
高三总复习 · RJ · 化学
进入导航
第十三章
第 1讲
系列丛书
2.各区元素性质及原子外围电子排布的特点
分区 元素分布及特点 外围电子排布
s区 p区 ________ ________
进入导航
高三总复习 · RJ · 化学
第十三章
第 1讲
系列丛书
高三总复习 · RJ · 化学
进入导航
第十三章
第13章 跨时横截面

表 13.1 中估计的模型假定每个解释变量(特别是 受教育程度)的影响都保持不变。这一点正确与否 尚不清楚;计算机习题 C13.1 要求你阐释这个问题。
表13.1 妇女生育的决定因素
最后,所估计方程的误差项中或许存在着异方差性。 可利用第 8 章的方法来处理这个问题。但这里有一 个有意思的区别:误差方差即使不随着 educ、age、 black 而变,还可能随时间而变。然而,异方差-稳 健标准误及其检验统计量仍是确当的。通过将 OLS 残差的平方对表 13.1 中的所有自变量(包括年度 虚拟变量)回归,就能得到布罗施-帕甘检验。
就面板数据的计量经济分析而言,我们不能假定不同 时点的观测是独立分布的。例如,影响着某人 1990 年工资收入的那些无法观测因素仍将影响该人在 1991 年的工资;影响着某城市 1985 年犯罪率的无法观测 因素仍将影响该城市 1990 年的犯罪率。因此,还须 研究出可用以分析面板数据的特殊模型和方法。
还可通过一个年度虚拟变量和某些主要解释变量 之间的交互作用来考察这些变量的影响在某个特 定时期是否发生了变化。下例便分析了教育回报 和性别差异(歧视)在 1978-1985 年间是否发生 了变化。
例 13.2 教育回报和工资中性别差异的变化 将 1978 年(基年)和 1985 年的横截面数据相混合, 得到 log(wage)的一个方程(其中 wage 为小时工 资)是
多受教育的妇女有较少的小孩,并且估计值是非常 显著的。在其他条件不变的情况下,100 名受大学 教育的妇女和 100 名仅受高中教育的妇女相比,要 少生育小孩约 51 个:0. 128×4=0. 512。年龄对生育 有抑制作用。(二次式的转折点在 age= 46 处。到 了这个年龄,大多数妇女已停止生育小孩。)
高鸿业第13章_简单国民收入决定理论

其中最重要的是居民个人或家庭的收入
水平。因此,宏观经济学假定消费与人们
的收入水平存在着稳定的函数关系。
2019/11/26
9
消费函数公式
以c代表消费,以y代表收入: c = c(y) (满足条件dc / dy > 0)
如果是简单的线性函数,则为: c = a + by(1 > b > 0)
APC 1.01 1.00 0.99 0.97 0.94 0.92 0.89
32
用图描述消费函数和储蓄函数的关系
2019/11/26
33
四、居民消费函数与社会消费函数
一般来说,社会消费函数并非是居民消费函数的简单加总, 但是基本相似。除了存在很多限制条件:
2019/11/26
19
二、储蓄
1、储蓄:一个国家或地区一定时期内居民个人或家庭 收入中未用于消费的部分。
2、储蓄函数:指储蓄与决定储蓄的各种因素之间的依 存关系。
影响储蓄的因素很多,如收入水平、财富分配状况、 消费习惯、社会保障体系的结构、利率水平等等,但 其中最重要的无疑是居民个人或家庭的收入水平。
29
三、消费函数和储蓄函数的关系
1、对收入来说,储蓄函数与消费函数为互补函数, 即:y = c + s,
2、如果在该式两边同除Y有 y/y = c/y + s/y,
即: APC + APS = 1
或1 - APC = APS,1 - APS = APC
2019/11/26
30
MPS与MPC
数、乘数、两部门经济中的均衡产出决定模型、三部 门经济中的均衡产出决定模型和四部门经济中的均衡 产出决定模型。
2019/11/26
第13章---简单国民收入决定理论习题

第十三章简单国民收入决定理论一、名词解释1、储蓄2、储蓄-投资恒等式3、边际消费倾向4、边际消费倾向递减5、平均消费倾向6、消费函数7、投资乘数8、政府支出乘数9、税收乘数10、平衡预算乘数11、对外贸易乘数12、节俭的悖论二、判断题1、自主消费是总需求的组成部分。
2、边际消费倾向和边际储蓄倾向之和等于1。
3、边际消费倾向越大,投资乘数越小。
4、投资增加导致总支出曲线向上移动,总需求曲线向右移动。
5、由于存在进口,将导致投资乘数和政府开支乘数降低。
6、凯恩斯宏观经济学认为,在短期,实际产出是由总需求决定的。
7、在价格固定不变的条件下,总需求曲线就是总支出曲线。
8、在简单国民收入决定模型中,总支出水平决定了均衡的国民收入。
该均衡国民收入正式社会满意的产出水平。
9、简单国民收入决定模型表明,只要增加总支出计划的水平,就能增加均衡国民收入水平。
10、总支出曲线表示总支出与国民收入之间的关系。
三、选择题(一)单项选择1、根据消费函数,引起消费增加的因素是()。
A.价格水平下降B.国民收入增加C.储蓄增加D.利率提高2、总支出曲线的斜率取决于()。
A.边际消费倾向B.平均消费倾向C.自主消费水平D.自主投资水平3、在下列选项中,投资乘数最大的是()。
A.边际消费倾向为0.6B.边际储蓄倾向为0.1C.边际消费倾向为0.4D.边际储蓄倾向为0.34、假定某国经济目前的均衡收入是5500亿元,如果政府需要将均衡收入提高到6000亿元,在边际消费倾向为0.9的情况下,政府购买支出应增加()。
A. 10亿元B. 20亿元C. 50亿元D. 100亿元5、自主消费增加对总支出曲线的影响是()。
A.向下移动,曲线变缓B.向下移动,斜率不变C.向上移动,曲线变陡D.向上移动,斜率不变6、当以下()发生时,经济将衰退。
A.乘数因边际消费倾向降低而变小B.自主支出增加C.乘数因边际消费倾向增加而变大D.自主支出减少7、乘数发挥作用的前提条件是()。
第十三章-同步电机的基本原理PPT课件

E a滞后 a9于 0 0 E a滞后 I9于 0 0
E a 可写成负电抗压降的形式:
Ea jIxa
x a 是对应电枢反应磁通的电抗,
称为电枢反应电抗。
x a 是一相的电抗值,在物理
意义上它综合反应了三相对称电流
产生的电枢反应磁场 B对a 于一相的
影响。
x a 的计算推导如下: 247页
Fa
1.35N1Kdp1 p
是线性叠加的关系。
F
可见:在饱和时:F E0E0 不饱和时: F E0E0
不考虑饱和时磁动势叠加、磁通叠加
转子磁极磁场 I f Ff 1 0 E0
电枢系统电流 I Fa
F
a Ea
E
合成气隙磁动势: F E
1、负载时不考虑饱和磁动势叠加
合成气隙磁动势: F Ff Fa
磁通叠加:
0a
2、电动势叠加
注意:电路中还存在同步电抗
xC
R
E 0
I
00 900 RL
1)三相对称电阻负载
00 900 F Ff1
F
F f 1
电枢反应为去磁
E 0
Fa
I
2)三相对称纯电容性负载;
xC
R
E 0
I
x xc x
2)三相对称纯电容性负载;
E 0
x xc
F
F f 1 Fa I
900
Fa 为直轴助磁磁动势
能从电流、电动势、磁动势等时间矢量间 的相位关系,直接求得电枢磁动势和励磁磁 动势等空间矢量间的相位关系。
由此可见,时—空矢量图是分析交流电机 的一个重要工具,必须很好地掌握。
例题:在下列情况下电枢反应是助磁还是去磁?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章 量 子 论 简 介13.1基本要求1. 了解黑体辐射的实验规律。
理解光电效应和康普顿效应的实验规律以及爱因斯坦的光子理论对这两个效应的解释。
2.理解德布罗意的物质波假设及其正确性的实验证实。
理解实物粒子的波粒二象性。
3.理解描述物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)间的关系。
4.理解氢原子光谱的实验规律及玻尔的氢原子理论。
5.理解波函数及其统计解释。
理解一维坐标动量不确定关系。
了解一维定态薛定谔方程。
6.理解一维无限深势阱中粒子的波函数及其能级公式。
了解隧道效应。
13.2基本概念 1 黑体 2黑体辐射3 单色辐出度 ()dM M T dTλλ=(13-1) 4辐出度 ⎰∞=0)()(λλd T M T M (13-2) 5普朗克能量子假设 E h ν= (13-3) 6截止频率 (红限) 0W h ν= (13-4) 7康普顿波长 0c hm cλ= (13-5) 8光的波粒二象性,hE h p νλ==(13-6)9波尔半径2012πh r meε=(13-7)10能级412222018n E me E h n n ε=-⋅= (13-8)11德布罗意物质波 12波函数 2()0(,)iEt px hx t e π--ψ=ψ (13-9)13隧道效应 13.3基本规律1斯特藩——玻耳兹曼定律40()()M T M T d T λλσ∞==⎰ (13-10)2维恩位移定律m T b λ= (13-11)3光电效应方程212h mv W ν=+ (13-12) 4康普顿效应方程20002(1cos )sin 2h h m c m c θλλλθ∆=-=-= (13-13) 5氢原子的玻尔理论 (1)定态假设(2)频率假设 i f h E E ν=- (13-14)(3)轨道角动量量子化假设 2hL mvr n π== (13-15)6海森堡不确定关系 x x p h ∆∆≥ (13-16)7定态薛定谔方程 0)()(8)(2222=-+x E E hmdx x d p ψπψ (13-17) 13.4学习指导 1重点解析(1) 普朗克能量子假设普朗克为了解决黑体辐射理论解释与实验结果不一致的问题,大胆提出了两条与经典物理概念完全不同的新假设:黑体空腔内电子的振动可视为一维谐振子,这些谐振子辐射电磁波,并与周围的电磁场交换能量。
空腔内谐振子吸收或发射能量不能连续变化,只能是基本能量h εν=的整数倍。
nh εν= 1,2,3,n =,式中346.62610h J s -=⨯⋅,称为普朗克常数。
普朗克的能量子概念揭示了微观世界的本质,普朗克常数也成为区分微观世界与宏观世界的特征量。
(2)爱因斯坦光量子假设 光电效应方程为了解决光电效应实验规律与经典物理理论的矛盾,1905年爱因斯坦在普朗克能量子概念的基础上,对光的本性提出新的理论,即光子理论。
光在空间传播时,具有粒子性,光束可以看成是由微粒构成的粒子流,这些粒子称为光量子,以后就称为光子。
频率ν的光子具有的能量为 h εν=。
爱因斯坦的光量子概念是普朗克能量子概念的推广和延伸,光在发射、吸收和传播的整个过程都具有量子化。
根据爱因斯坦光子理论对光电效应的解释:当频率为ν的光束照射到金属表面上,光子的能量被单个电子吸收,使电子的能量增加h ν,如果入射光的频率ν足够高,可以使电子获取足够的能量从金属表面逸出,其能量的一部分用于脱离金属表面时所需的逸出功W ,另一部分则成为电子离开金属表面后的最大初动能。
根据能量守恒定律,光电效应的爱因斯坦方程为 212h mv W ν=+。
(3)康普顿效应1922年康普顿受爱因斯坦光子理论成功解释光电效应的启发,提出按照光子理论,频率为0ν的x 射线可看成是由一些能量为00h εν=的光子组成的,假设光子与受原子束缚较弱的电子或自由电子发生的碰撞可视为完全弹性碰撞。
由此对康普顿效应的定性解释为入射光子与散射物质中的电子发生弹性碰撞,存在以下两种情况。
(1) 当能量为0ε(0h ν)的入射光子与散射物质中束缚微弱的电子弹性碰撞时,将一部分能量传给电子,所以,散射光子能量减少,散射光频率ν小于入射光频率0ν,散射光的波长λ大于入射光波长0λ。
(2)光子与原子中束缚很紧的电子发生碰撞,近似与整个原子发生弹性碰撞时,能量不会显著减小,所以散射光束中出现与入射光波长相同的射线。
根据能量守恒定律和动量守恒定律得到波长的变化量20002(1cos )sin 2h h m c m c θλλλθ∆=-=-= (13-18) 式中0λ为入射光波长,λ为散射光的波长。
上式给出了散射光波长的变化量λ∆与散射角θ之间的函数关系。
当0θ=时,波长不变;θ增加时,λ∆也随之增加。
(4)氢原子的玻尔理论玻尔提出解释氢原子结构的三条假设:①定态假设 电子在原子中,可以在一些特定的圆轨道上运动而不辐射电磁波,这时原子处于稳定状态(简称定态),并具有一定的能量,能量只能取不连续的值123,,,E E E 。
②频率假设 当原子从高能量的定态跃迁到低能量的定态,亦即电子从高能量i E 的轨道跃迁到低能量f E 的轨道上时,要发射频率为ν的光子,且i f h E E ν=- (13-19) 式(13-19)称为频率条件。
③轨道角动量量子化假设 电子以速度v 在半径为r 的圆周上绕核运动时,只有电子的角动量L 等于2hπ的整数倍的那些轨道才是稳定的,即2hL mvr n π== (13-20)1,2,3,n =称为主量子数。
式(13-20)称为量子化条件。
玻尔提出的三条假设解决了氢原子结构的三个问题,假设(1)解决了氢原子结构的稳定性问题,只有假定电子在特定轨道上运动时不辐射能量,才能保证氢原子的稳定;假设(3)给出了电子绕原子核运动轨道的限制性条件,只有电子绕原子核运动的角动量满足2hL mvr n π==量子化条件才是许可的;这是波尔在普朗克能量量子化基础上的进一步发展,提出了角动量量子化;假设(2)解释了氢原子光谱和发光机制,是对普朗克假设的引申。
电子以原子核为中心作圆周运动的轨道半径222012πn h r n r n me ε==和能级412222018n E me E h n nε=-⋅=(1,2,3,)n =以及氢原子光谱的波长423220111(),8i f f ime n n c h c n n νσλε===->。
可见利用玻尔理论可以对氢原子结构和光谱作出很好的解释,但是玻尔氢原子理论仍然存在一定的缺陷。
(5)德布罗意物质波 波函数1924年法国物理学家德布罗意在光的波粒二象性的启发下,根据自然界的对称性思想,提出实物粒子,如电子、质子、中子等应该具有波动性。
德布罗意假设实物粒子具有波动性,一个实物粒子的能量为E 、动量大小为P ,跟它们对应的波的频率ν和波长λ的关系为2E mc h ν==,P mv h λ== (13-21)这种波称为德布罗意波,或物质波用ψ表示概率波的波函数,则2()0(,)iEt px hx t eπ--ψ=ψ。
根据波恩对德布罗意物质波的统计解释,对微观粒子来说,粒子分布多的地方,德布罗意波的强度大,而粒子在空间分布的数目与粒子在该处出现的概率成正比。
因此某时刻出现在空间某处附近体积元dV 中的粒子的概率,与2dV ψ成正比。
由于ψ是复数,2*ψ=ψψ,*ψ是ψ的共轭复数。
2ψ为粒子出现在某点附近单位体积元中的概率,称为概率密度。
微观粒子某时刻在整个空间出现的概率应为1,即21dV ψ=⎰ (13-22) 式(13-22)称为波函数的归一化条件。
(6)薛定谔方程在势场中一维运动粒子的定态薛定谔方程0)()(8)(2222=-+x E E hmdx x d p ψπψ (13-23) 式(13-23)中()x ψ只是x 的函数,与时间无关。
在应用薛定谔方程解决具体问题时,要着重理清解题思路,理解边界条件的含义和使用归一化条件。
2难点释疑本章作为量子物理的基础,难点在于正确理解和掌握在微观领域经典物理的概念和方法已不再适用,必须建立全新的理论—量子理论,并初步掌握运用量子理论处理微观物体运动的基本思想。
解决这个难点的关键是要从整体上把握和认识量子理论提出的历史背景和形成的整个过程,理解量子理论的提出是人们认识微观物体运动的规律的必然要求。
微观物体运动的现象用经典理论得不到解释,物理学家不得不突破传统的理论框架,以假说的形式提出新的观点,对实验现象作出圆满地解释,从而建立新的理论即量子理论。
13.5习题解答 1 选择题13.1 当照射光的波长从400nm 变到300nm 时,对同—金属在光电效应实验中测得的遏止电压将( )(A) 减小0.56V (B) 增大0.165V (C) 减小0.34V (D) 增大1.035V (普朗克常量346.6310h J s -=⨯⋅,基本电荷191.60210e C -=⨯)解:根据光电效应方程212h mv W ν=+,由于照射光的波长变短,频率增大,则电子获得的初动能增加,因此遏止电压将增大。
利用光电效应方程得2221212111()()22h mv mv e U U νν-=-=-, 将c λν=代入21348199911()6.631031011() 1.0351.6103001040010hc U e V λλ----∆=-⨯⨯⨯=-=⨯⨯⨯ 计算得(D)。
13.2 光电效应和康普顿效应都包含有电子和光子的相互作用过程。
对此有以下几种理解,正确的是( )(A) 两种效应中,电子和光子组成的系统都服从动量守恒定律和能量守恒定律 (B) 两种效应都相当于电子和光子的弹性碰撞过程 (C) 两种效应都属于电子吸收光子的过程(D) 光电效应是电子吸收光子的过程,而康普顿效应相当于光子和电子的弹性碰撞过程 解:光电效应是电子吸收光子的过程,电子和光子组成的系统动量不守恒;而康普顿效应则是光子和电子的弹性碰撞过程,服从动量守恒定律和能量守恒定律,故选(D)。
13.3 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子的能量E 与反冲电子动能k E 之比kEE 为( )(A) 5 (B) 4 (C) 3 (D) 2解:设入射光波长为1λ,散射光波长2λ,则211.2λλ=。
根据能量子假设cE h h νλ==,散射光光子的能量2hcE λ=,康普顿效应的能量守恒,反冲电子动能12k E h h νν=-,21211.25111()1 1.2k hcEE hc λλλ===-- 计算得(A )。
13.4 关于不确定关系x x p h ∆∆≥,有以下几种理解, 其中正确的是( ) (A) 粒子的动量不能准确确定(B) 粒子的坐标不能准确确定(C) 粒子的动量和坐标不能同时准确确定(D) 不确定关系仅适用于电子和光子等微观粒子,不适用于宏观粒子解:不确定关系x x p h ∆∆≥表明微观粒子的动量和坐标不能同时准确确定,选项(A )、(B )、(C )都没有强调是针对微观粒子,故选(D )。