13章量子物理复习
高考物理大一轮复习 第13章 动量守恒定律 波粒二象性 原子结构与原子核 第1节 动量守恒定律及其应

(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.
3.方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量. (2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿 过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞 针和橡皮泥. (3)实验:接通电源,让小车A运动,小车B静止,两车碰撞 时撞针插入橡皮泥中,把两小车连接成一体运动.
2.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验 (1)测质量:用天平测出两小球的质量m1、m2. (2)安装:把两个等大小球用等长悬线悬挂起来. (3)实验:一个小球静止,拉起另一个小球,放下时它们相 碰. (4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对 应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小 球的速度.
Ⅰ 恒定律的应用
(2)动量守恒定律结合动量定理及能量 Ⅰ 守恒来解决碰撞、打击、反冲等问题
Ⅰ
(3)光电效应现象、实验规律和光电效 应方程,光的波粒二象性及德布罗意
Ⅰ 波.
Ⅰ (4)核式结构、玻尔理论、能级公式、 原子跃迁条件,半衰期、质能方程的
Ⅰ 应用、计算和核反应方程的书写等.
Ⅰ
第1节 动量守恒定律及其应用
要求
复习定位
Ⅱ
Ⅰ
1.本章在高考命题中有选择也有计算形 式,选择题以波粒二象性及原子结构
和原子核为主,而计算题的考查重点
仍以典型的碰撞、相互作用模型或生
活实例为背景,考查动量守恒定律的 Ⅰ 应用.动量定理作为新增Ⅱ级考点应
Ⅰ 引起重视.
Ⅰ
2.本章的复习应注意以下几方面 (1)动量及动量变化量的理解,动量守
3.动量定理 (1)内容:物体所受 合力 的冲量等于物体 动量的变化量 . (2)表达式: F合·t=Δp=p′-p . (3)矢量性:动量变化量方向与 合力 的方向相同,可以在某 一方向上用动量定理.
(完整版)南华物理练习第13章答案

第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。
2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。
3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。
以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。
4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0eU hcλ≥。
二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。
2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。
3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。
大学物理量子物理复习资料

121量子物理基础基本内容一.量子假说和光的量子性1. 普朗克量子假说频率为ν的带电谐振子只能处于能量为一最小能量ε的整数倍的状态,ε=h ν,h 称为普朗克常数。
在辐射或吸收能量时振子从这些状态之一跃迁到其它状态。
2. 光电效应、光子假说(1)光电效应:光照射到金属表面,立刻有电子称为光子逸出金属的现象。
(2)爱因斯坦光子假说光是粒子流,这种粒子称为光子,光子运动速度为c ,对频率为ν的单色光的光子能量h εν=,光的能流密度S 决定于单位时间通过单位面积的光子数N ,即S Nh ν=。
(3)光电子的产生和爱因斯坦光电效应方程光照射到金属表面,一个光子被金属中的电子吸收,电子获得光子全部能量,一部分用以克服金属逸出功而离开金属表面形成光电子,因此爱因斯坦光电效应方程: 212h mv W ν=+ 式中212mv 是光电子的最大初动能,W 是金属逸出功,W eU =,U 是该金属的逸出电位。
单位时间产生的光电子数应随能流密度S 的增加而增加,光电子最大初动122 能与入射单色光的频率成线性关系,即212mv h W ν=-,当入射频率00e U hνν<=(红限频率)时不发生光电效应。
(4)光电效应实验——鉴定爱因斯坦理论的正确性测定饱和光电流强度I α随入射光强度的变化。
结论:入射光频率不变时I α与入射光强成正比。
测定遏止电势差U α与入射单色光强度、频率的关系。
结论:U α与入射光强度无关,与入射光频率呈线性关系。
爱因斯坦光电效应方程是正确的。
3. 康普顿效应(1)伦琴射线经物质散射,散射伦琴射线中既有与入射伦琴射线波长0λ相同的成分也有比入射伦琴射线波长0λ大的成分,这种现象称为康普顿效应。
其中散射波长λ比入射波长0λ大的散射称康普顿散射。
(2)康普顿散射的规律波长增长量(∆λ=λ-0λ)随散射角的增大而增大,与散射物质种类无关;康普顿散射的强度随散射物质原子量的增加而减少。
(3)康普顿散射产生的原因康普顿散射是X 射线光子与物质中的原子、“自由”电子碰撞而改变动量合能量的结果。
程守洙《普通物理学》(第5版)辅导系列-课后习题-第13章 早期量子论和量子力学基础【圣才出品】

第13章 早期量子论和量子力学基础13-1 估测星球表面温度的方法之一是:将星球看成黑体,测量它的辐射峰值波长λm ,利用维恩位移定律便可估计其表面温度。
如果测得北极星和天狼星的λm 分别为0.35 μm 和0.29 μm,试计算它们的表面温度。
解:根据维恩位移定律,可知与黑体辐射本领极大值相对应的波长与绝对温度T 的乘积为一常数。
则北极星表面温度:天狼星表面温度:。
13-2 在加热黑体过程中,其单色辐出度的峰值波长是由0.69 μm 变化到0.50μm,求总辐出度改变为原来的多少倍?解:设加热前后黑体的温度分别为T 1、T 2,其单色辐出度的峰值波长分别为、,则根据维恩位移定律,可得黑体温度之比为:根据斯特藩-玻尔兹曼定律,可得总辐出度之比为:因此,总辐出度变为原来的3.63倍。
13-3 假设太阳表面温度为5 800 K ,太阳半径为6.96×108 m 。
如果认为太阳的辐射是稳定的,求太阳在1年内由于辐射,它的质量减小了多少?解:由斯特藩一玻尔兹曼定律,太阳通过其表面辐射出的总功率为:太阳在一年内辐射出的总能量为。
由狭义相对论质能关系,可得太阳在一年内的质量亏损:*13-4 黑体的温度T 1=6000 K ,问λ1=0.35 μm 和λ2=0.70 μm 的单色辐出度之比等于多少?当温度上升到T 2=7000 K 时,λ1的单色辐出度增加到原来的多少倍?解:(1)利用普朗克单色辐出度公式:可得时,和的单色辐出度之比:而因此,单色辐出度之比:。
(2)当黑体温度上升到时,的单色辐出度:与温度为T 1时,黑体的单色辐出度的比值:解得:代入上式可得:。
*13-5 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6 000 K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R S =6.96×105 km ,太阳到地球的距离r =1.496×108 km )。
量子物理基础第13章 01量子化假说

钨丝和太阳的单色辐出度曲线
太阳 M (T )(108 W/(m2 Hz))
钨丝 M (T )(109 W/(m2 Hz))
太阳
12 (5800K)
10
可见 光区
8
6 钨丝 (5800K)
4
2
/1014 Hz
0 2 4 6 8 10 12
4. 单色吸收(反射)比
物体在温度T,吸收(或反射)频率范围在ν—ν+dν内电 磁波能量与相应频率入射电磁波能量之比,称为单色吸收 比(或单色反射比)。
对于不透明物体: 1
实验表明: 辐射能力越强的物体,其吸收能力也越强。 5. 黑体
能完全吸收照射到它上面的各种频率的电磁辐 射的物体,即α(ν)=1,称为绝对黑体 。
13.1 黑体辐射 普朗克量子化假说 13.2 光的波粒二象性 13.3 量子力学引论 13.4 薛定谔方程 13.5 氢原子理论 13.6 电子的自旋 原子的壳层结构
§13.1 黑体辐射 普朗克量子化假说 一、黑体 黑体辐射
1. 热辐射 不同温度下物体能发出不同的电磁波,这种能量按
频率的分布随温度而不同的电磁辐射叫做热辐射。
索尔维是一个很像诺贝尔的人,本身既是科学家又是 家底雄厚的实业家,万贯家财都捐给科学事业。诺贝尔是 设立了以自己名字命名的科学奖金,索尔维则是提供了召 开世界最高水平学术会议的经费。——这就是索尔维会议 的来历。
普朗克
爱因斯坦
康普顿
德布罗意
海森堡
玻恩
玻尔
薛定谔
狄拉克
约里奥—居里夫妇
第十三章 量子物理学基础
瑞利-金斯公式
M
(T
)
物理第十三章复习资料

物理第十三章复习资料物理第十三章复习资料物理学作为一门自然科学,研究的是物质和能量之间的相互关系。
而在物理学的学习过程中,第十三章是一个非常重要的章节,涉及到电磁波和光的性质。
本文将为大家提供一些关于物理第十三章的复习资料,帮助大家更好地理解和掌握这一章节的内容。
一、电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的波动现象。
它是一种横波,能够在真空和介质中传播。
电磁波的频率和波长之间存在着一定的关系,即c=λν,其中c是光速,λ是波长,ν是频率。
电磁波的频率范围很广,从无线电波、微波、红外线、可见光、紫外线、X射线到γ射线,波长从数百米到10^-12米不等。
二、电磁波的特性和性质1. 反射和折射:电磁波在介质边界上遇到时,会发生反射和折射现象。
反射是指电磁波在介质边界上遇到时,一部分波束返回原来的介质中;折射是指电磁波从一种介质传播到另一种介质时改变传播方向。
2. 干涉和衍射:电磁波在遇到障碍物时,会发生干涉和衍射现象。
干涉是指两束或多束电磁波相遇时,互相叠加形成干涉图样;衍射是指电磁波在通过小孔或绕过障碍物时发生弯曲和扩散。
3. 偏振:电磁波可以是偏振的,即电场矢量只在一个特定的方向上振动。
常见的偏振方式有线偏振和圆偏振。
三、光的本质和光的传播速度光既可以被看作是一种波动现象,也可以被看作是一种粒子现象。
这种二象性是光的本质。
根据光的波动性质,我们可以解释光的干涉、衍射和偏振现象;而根据光的粒子性质,我们可以解释光的能量量子化和光电效应等现象。
光的传播速度是一个常数,即光速c。
在真空中,光速的数值约为3.00×10^8m/s。
光在介质中传播时,会因为介质的折射率而改变传播速度。
四、光的反射和折射定律光在介质边界上发生反射和折射时,遵循反射定律和折射定律。
反射定律:入射光线、反射光线和法线所在的平面上的入射角等于反射角。
折射定律:入射光线、折射光线和法线所在的平面上的入射角的正弦值与折射角的正弦值成正比。
大学物理第13章 量子物理

5
在短波区, 很小 普朗克公式 →维恩公式
,T
2hc
2
,T
2 hc 2
1 ehc / kT 1
5
5
e
x
hc ,
e
hc kT
x 1
hc 1 kT
普朗克公式 →瑞利-金斯公式
( , T )
实验
维恩公式 T=1646k
,T c1 e
5 c2 / T
其中c1,c2 为常量。
高频段与实验符合很好,低频段明显偏离实 验曲线。
瑞利— 金斯公式
( , T )
实验 瑞利-琼斯
1900年6月,瑞利按经 典的能量均分定理, 把空腔中简谐振子平 均能量取与温度成正 比的连续值,得到一 个黑体辐射公式
能量子概念的提出标志了量子力学的诞生,普 朗克为此获得1918年诺贝尔物理学奖。
2. 黑体辐射的两个定律: 斯特藩 — 玻耳兹曼定律
M (T ) T 4
5.67 10 w/m K —— 斯特藩 — 玻耳兹曼常量
2 4 8
1879年斯特藩从实验上总结而得 1884年玻耳兹曼从理论上证明
要求自学光电效应的实验规律和经典波动理 论的困难。
实验规律 (特点): ① 光强 I 对饱和光电流 im的影响: 在 一定时, m I 。 i
② 频率的影响:
截止电压 U c K U 0 与 光强I 无关;
U0 。 存在红限频率 0 K
③ 光电转换时间极短 <10-9s 。 2、波动理论的困难:不能解释以上②、 ③
1 1 R 2 2 n 1 1 n 2, 3,4, n 4,5,6,
第13章 量子物理基础《大学物理(下册)》教学课件

13.1 热辐射 普朗克的能量子假说
图13-2
13.1 热辐射 普朗克的能量子假说
1. 斯特藩-玻尔兹曼定律
在图13-2中,每一条曲线都反映了一定温度下,黑体的单色
辐出度MBλ(T)随波长λ的分布情况.每一条单色辐出度曲线与横坐 标轴所夹部分的面积都等于该温度下黑体的总辐出度,即
W(T)=∫∞0MBλ(T)dλ
13.1 热辐射 普朗克的能量子假说
在1870年开始的普法战争中,普鲁士(后来的德国) 打败了法国,得到了50亿法郎的巨额战争赔款,并接收了 法国割让的两个富含铁矿的大省——阿尔萨斯和洛林.普 鲁士为了更好地利用这笔巨款和这两省的钢铁资源,使自 己成为工业强国,大力发展高温炼钢技术与热辐射测温技 术,从而促进了对黑体辐射问题的研究,也打开了通往量 子理论的大门,使物理学进入了一个新的革命时期.
13.1 热辐射 普朗克的能量子假说
单色辐出度的单位为瓦/米3,符号W/m3.物 体的单色辐出度是温度T及所选定的波长λ的函数. 在一定的温度下,Mλ(T)随辐射波长λ的变化而 变化,当物体的温度升高时,Mλ(T 大.另外,当物体的材料和表面情况(如粗糙程度) 不同时,Mλ(T)的大小也不相同.单色辐出度反 映了在不同温度下的辐射能按波长分布的情况.
13.1 热辐射 普朗克的能量子假说
13.1.2 黑体热辐射的实验定律和经典理论的困难
对黑体热辐射的研究是热辐射中最重要的课题.实 验表明,黑体的单色辐出度MBλ(T)仅与温度T和波长 λ有关,与黑体的材料和表面的情况无关.图13-2是在 不同温度下实测的黑体单色辐出度MBλ(T)随波长λ和 温度T变化的曲线图.根据这些实验曲线,可以得出下述 有关黑体辐射的两条普遍定律.
13.1 热辐射 普朗克的能量子假说
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δ E43 ,由第三层轨道跃迁到第二层轨道辐射的能量为 Δ E32
A. 43 32 C.
43
√
B.
43 32
32
D. 不能确定
10.微观粒子不遵守牛顿运动定律,而遵守不确定关系,其原 因是: (A)微观粒子具有波粒二象性; (B)测量仪器精度不够; (C) 微观粒子质量太小; (D)微观粒子线度太小。
√
4. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红限波长是540nm,那么入射光的波长是:
h 6.626 1034 J s
1eV 1.6 1019 J
(C) 435nm.
c 3 10 m s
8
1
(A) 535nm. (B) 500nm.
√
第13章 量子物理基础 复习题
1.对绝对黑体的以下描述: (1)不辐射可见光的物体; (2)能吸 收任何光线的物体; (3)不能反射可见光的物体; (4)能辐射任何 光线的物体. 正确的是 。 (2);(4)
√
2.对光电效应的下列说法,正确的是 . (1)用单色光照射时,光电子的动能不变; (2)只有照射光的波长大于红限波长时才产生光电子; (3)光电子的数目与照射光的强度成正比; (4)光电子的动能与照射光的强度成正比。
3.关于光电效应有下列说法,不正确的是 。 (A)任何波长的可见光照射到任何金属表面都能产生光电效应; (B)对同一金属,如有光电子产生,则入射光的频率不同, 光电子 的最大初动能也不同; (C)对同一金属只有入射光的波长小于截止波长时, 才能产生光电 效应. (D)对同一金属,若入射光频率不变而强度增加一倍, 则饱和光电 流也增加一倍.
15.物质波的波函数要服从归一化;条件, 波函数必须具备的三
单值;连续;有界. 个标准条件是————, ————,———— .
16. 普朗克为什么要提出的量子假设?他的基本思想是什么? 答:是为了解释黑体辐射的实验规律,他的基本思想是电 磁辐射能量的量子化。
17. 光电效应与康普顿效应都说明了光的粒子性,但二者在光 子与电子的作用过程中遵循的物理规律有何异同?
(D) 355nm.
√
5.证明光具有粒子性的是 A.光电效应; B.光的干涉; C.光的衍射; D.光的偏振.
√
6.康普顿效应的主要特点是: (A) 散射光的波长均比入射光短,且随散射角增大而减少,但 与散射体的性质无关; (B) 散射光的波长均与入射光相同,与散射角、散射体的性质无 关; (C)散射光中有些波长比入射光波长长,且随散射角增大而增大, 有些与入射光波长相同,这都与散射体的性质有关. (D) 散射光中有些波长比入射光波长长,且随散射角增大而增 大, 有些与入射光波长相同,这都与散射体的性质无关;
√
11.质量为m,动能为Ek的质子的德布罗意波长为
c 的电子的物质波的波长 2h . 12.速度 v m0 c 2
h 。 2mP Ek
√ √
(不考虑相对论效应) 13.关于不确定关系xPx ≥h有以下几种理解: (1)粒子的动量不可能确定,但坐标可以被确定; (2)粒子的坐标不可能确定,但动量可以被确定; (3)粒子的动量和坐标不可能同时准确确定; (4)不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是 。 14.波函数的平方表示空间某一点附近 (1) 粒子波的波长;(2) 出 现粒子的概率;(3) 粒子波的动量; (4) 出现粒子的数目。 表述正确的是(2) 。
7. 若电子与光子的动量相同,则它们的 ( A )波长相同; (B.) 动能相同; (C) 频率相同; (D) 动 质量相同。
√
8. 若电子与光子的能量相同,则它们的 ( A )波长相同; (B.) 动能相同; (C) 频子由第四层轨道跃迁到第三层轨道辐射的能量为
习题
13-1,13-2,13-3,13-4, 13-5,13-6,13-7,13-11,13-12
答:光电效应是电子吸收光子能量而产生的,光子与电子的作 用过程中只遵守能量守恒定律;康普顿效应是电子与光子发生 弹性碰撞的结果,光子与电子的作用过程中既遵守能量守恒定 律又遵守动量守恒定律。
18. 不确定关系反映了微观粒子具有波粒二象性,为何说与实 验技术或仪器精度无关? 答:不确定关系是微观粒子具有波粒二象性的必然结果,是微 观粒子的固有属性之一,是一个客观规律,可由统计规律给以 诠释.
19. 描述经典粒子运动的物理量的基本特征是什么?经典粒子 运动所遵守的规律是什么?描述微观粒子运动的物理量的基 本特征是什么?微观粒子运动所遵守的规律是什么? 答:描述经典粒子运动的物理量的基本特征是连续变化;经典 粒子运动所遵守的规律是牛顿定律.描述微观粒子运动的物 理量的基本特征是量子化.微观粒子运动所遵守的规律是薛 定鄂方程. 20. 波函数的统计意义是什么? 答:在空间某处波函数的二次方与粒子在该处出现的几率 成正比。