第十三章早期量子论和量子力学基础

合集下载

高三物理学史《早期量子论和量子力学的准备》课件

高三物理学史《早期量子论和量子力学的准备》课件
温度为T时,单位时间内从物体表面单位面积上所辐射出 来的,波长在λ附近,单位波长间隔内的电磁波能量。
1)辐射出射度 (辐出度) --- M
2) 单色辐射出射度(单色辐出度) (光谱辐射出射度) M
dM
M d
单位:W/(m2.Hz)
式中 dM 是频率在 ν ν +dν 范围内单位时间从物体表面单位
2. 光子与石墨中和原子核束缚很紧的内层电子 的碰撞,应看做是光子和整个原子的碰撞。
∵ m原子 m光子
∴ 弹性碰撞中,入射光子几乎不损失能量, 这时散射光子波长不变。
物理意义
光子假设的正确性,狭义相对论力学的正确性 . 微观粒子也遵守能量守恒和动量守恒定律.
29
氢原子光谱 玻尔的氢原子理论
一、氢原子光谱规律
4861.3Å 蓝
4340.5Å 紫
氢原子光谱经验规律(1885~1908年)
巴尔末公式


B
n2 n2
4
(n 3, 4,5, )
里德堡 波数 1 R( 1 1 )

22 n2
式中R:里德堡常数 R 4 1.096776107 m1 B
32
氢光谱的其他线系:
33
能量 h
质量 动量
E
P


mc2
mc
m
h

h
c2

光具有波粒二象性
一些情况下 突出显示波动性,如光的干涉和衍射
一些情况下 突出显示粒子性,如光电效应等
基本关系式 粒子性:能量 波动性:波长
动量P 频率
h
p h

22
四、光电效应的应用

第十三章 6,7不确定度 波函数

第十三章 6,7不确定度 波函数
两个物理量乘积,若单位是
( J s) ,则有类似的不确定度关系,如:
b. 对于微观粒子的能量E及它在能态上停留的平均 时间 t 之间也有类似的不确定度关系:
E t h
c. 不确定度关系式说明用经典物理学量—动量、坐 标来描写微观粒子行为时将会受到一定的限制, 因为 微观粒子不可能同时具有确定的动量及位置
i 2 ( t x )

e iz cos z i sin z
取实部
考虑沿x方向传播的自由粒子波
利用波粒二象性关系式: E h,
自由粒子的波函数: ( x, t ) 0e
i
( E , P)
h P
2 ( Et px ) h
二、 波函数及其统计意义
波函数: 用来描述与微观粒子相联系的物质波 的函数,称为波函数。 用 表示波函数.
11
例:作一微运动的粒子被束缚在0<x<a的范围内.已知其
波函数为 : Ψ
( x) Asin(x a)
求:(1)常数 A; (2)粒子在0到 a/2区域出现的概率; (3)粒子在何处出现的概率最大? 解:(1)由归一化条件得:
0 A sin (x a) dx 1
a 2 2
A
a 2
(2)粒子的概率密度为:
3
x 方向电子坐标范围为缝宽: x
x方向 p x的范围为:
0 ≤ px ≤ p sin
Δpx = p sin (1) Δ x
x
屏 幕
由衍射知识 一级极小满足: 即:
a sin k
(2)
x sin =
pxx x h p
由式(1)和(2)得到:
定义:

量子力学基础

量子力学基础

量子力学基础量子力学是20世纪物理学的一大突破,它不仅揭示了微观世界的奇妙现象,还对我们对世界的认知方式产生了颠覆性的影响。

在这篇文章中,我们将探讨量子力学的基本概念、原理和应用,并探讨一些关于量子力学的哲学和思考。

量子力学最早的基础可以追溯到1900年,当时德国物理学家马克斯·普朗克提出了能量的量子化概念。

他发现,能量不是连续的,而是以分立的单位存在,即能量量子。

这个想法颠覆了经典物理学中连续和无限的观念,揭示了微观世界的离散性质。

1905年,阿尔伯特·爱因斯坦进一步推动了量子力学的发展,他提出了光的粒子性。

根据他的理论,光被看作是由一系列离散的粒子组成的,这些粒子被称为光子。

这个概念对光的行为做出了解释,也为后来量子力学的发展奠定了基础。

量子力学的核心是波粒二象性。

根据量子力学,微观粒子既可以表现出粒子性,也可以表现出波动性。

这就是说,微观粒子既可以像粒子一样独立存在,也可以像波一样传播和干涉。

这种双重性质在经典物理学中是难以理解的,但在量子力学中却是普遍存在的。

著名的双缝干涉实验就是一个很好的例子。

在这个实验中,一束光通过两个狭缝后形成干涉图案。

如果光被看作是粒子,那么预期结果应该是两个狭缝后出现两个亮斑。

然而,实验结果却展示出了干涉条纹。

只有将光看作是波动性的才能解释这个结果。

这种波粒二象性的存在挑战了我们对物质的传统认知,并使量子力学成为一门充满挑战的科学。

量子力学还有一个重要的概念是不确定性原理,由奥地利物理学家维尔纳·海森堡提出。

不确定性原理认为,我们无法同时准确测量一个粒子的位置和动量。

如果我们尝试使用更准确的测量工具来测量粒子的位置,那么对粒子动量的测量就会变得不确定,反之亦然。

这种无法完全确定一个粒子状态的现象被称为测不准原理。

量子力学的发展产生了许多令人惊叹的应用。

其中最著名的是量子计算和量子通信。

量子计算利用了量子叠加和纠缠的特性,在某些问题上可以迅速解决,远远超过了传统计算机的能力。

(完整版)南华物理练习第13章答案

(完整版)南华物理练习第13章答案

第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。

2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。

3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。

以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。

4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0eU hcλ≥。

二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。

2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。

3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。

第十三章早期量子论和量子力学基础2

第十三章早期量子论和量子力学基础2
分辨率:~10 nm
鲁斯卡:电子物理领域的基础研究工作,设计出世界 上第一台电子显微镜,1986年诺贝尔物理学奖。
三、微观粒子的波粒二象性
少女? 老妇?
两种图象不会 同时出现在你 的视觉中。
例2 试估算热中子的得布罗意波长 (中子的质量 mn=1.67×10-27㎏)。 解:热中子是指在室温下(T=300K)与周围处于热
(2)弱电子束入射 电子几乎是一个一个地通过双缝,衍射图样不是电子相互作用
的结果。
底片上出现一个一个的点子显示出电子具有粒子性。开始时 底片上的点子无规分布,随着电子增多,逐渐形成衍射图样,衍 射图样来源于“一个电子”具有的波动性。
一个电子重复许多次相同实验表现出的统计结果。
(3)概率波的干涉结果。
实物粒子的能量 E 和动量 p 与它相应的波动频率 和波长λ
的关系与光子一样
E mc2
p mv
h
h
这种和实物粒子相联系的波通常称为德布罗意波, 或叫物质波。
具有静止质量m0的实物粒子以速度v 运动,则和该粒子相联系 的平面单色波的波长为:
h h h
p mv m0v
1
v2 c2
德布罗意公式
例3 氢原子中的电子的轨道运动速度为106m/s,求电 子速度的不确定度。
—— 玻尔轨道角动量量子化条件
二、德布罗意波的实验验证
1 、戴维孙—革末的电子衍射实验
德布罗意波是1924年提出的,1927年 便得到了验证。戴维孙—革末看到电子 的德布罗意波波长与 X 射线的波长相近, 因此想到可用与 X 射线衍射相同的方法 验证。
I 2d sin k
U
电流出现了周期性变化
➢ 实验结果的解释
按德布罗意假设,电子加速后的波长满足

第十三章 早期量子论和量子力学基础

第十三章 早期量子论和量子力学基础

14
练习13-19.在氢原子中,处于 3d 量子态的电子的四个 量子数 (n, l , m l , ms ) 可能的取值为:
(A)
(3,1,1,
( 2,1,2,
1 )(B) (1,0,1, 1 ) 2 2
(C)
1 ) 2
(D) (3,2,0,
1 ) 2

1 2
练习13-20.在主量子数 n 3 ,自旋磁量子数 中,能够填充的最多电子数是 。

2
dV 1
。填:相同
光电效应——光的粒子性 康普顿散射——光的粒子性 戴维孙-革末实验——电子波动性 施特恩-格拉赫实验——电子自旋
(8)势阱
2 概率图的峰值个数 n: 概率最大的个数,位置 (9)填充电子遵守两个原理 泡利(Pauli)不相容原理, 能量最小化原理。 3
势阱宽 a 与物质波波长 :a n

代入数据得:
E 2.56 eV
上式用氢原子能量表示:
13.6 13.6 Em E2 ( 2 ) ( 2 ) 2.56 m 2
2
13.6 eV
m2 16.2
m 4 Em 0.85 eV
基 态
7
练习13-23 基态的氢原子被外来单色光激发后,仅观察 到三条可见光谱线。求(1)外来光的波长;(2) 被观察到的三条谱线的波长。
(a x a)
那么粒子在 x 5a 6 处出现的概率密度为:
(A) 1 (2a )

(B) 1 a
(C) 1
2a
(D) 1 a
11
例 试确定处于基态氦原子中电子的量子数。 解:氦原子有两个电子。 据能量最小原理,两电子处于1s态,即n=1,则:

程守洙《普通物理学》(第5版)辅导系列-课后习题-第13章 早期量子论和量子力学基础【圣才出品】

第13章 早期量子论和量子力学基础13-1 估测星球表面温度的方法之一是:将星球看成黑体,测量它的辐射峰值波长λm ,利用维恩位移定律便可估计其表面温度。

如果测得北极星和天狼星的λm 分别为0.35 μm 和0.29 μm,试计算它们的表面温度。

解:根据维恩位移定律,可知与黑体辐射本领极大值相对应的波长与绝对温度T 的乘积为一常数。

则北极星表面温度:天狼星表面温度:。

13-2 在加热黑体过程中,其单色辐出度的峰值波长是由0.69 μm 变化到0.50μm,求总辐出度改变为原来的多少倍?解:设加热前后黑体的温度分别为T 1、T 2,其单色辐出度的峰值波长分别为、,则根据维恩位移定律,可得黑体温度之比为:根据斯特藩-玻尔兹曼定律,可得总辐出度之比为:因此,总辐出度变为原来的3.63倍。

13-3 假设太阳表面温度为5 800 K ,太阳半径为6.96×108 m 。

如果认为太阳的辐射是稳定的,求太阳在1年内由于辐射,它的质量减小了多少?解:由斯特藩一玻尔兹曼定律,太阳通过其表面辐射出的总功率为:太阳在一年内辐射出的总能量为。

由狭义相对论质能关系,可得太阳在一年内的质量亏损:*13-4 黑体的温度T 1=6000 K ,问λ1=0.35 μm 和λ2=0.70 μm 的单色辐出度之比等于多少?当温度上升到T 2=7000 K 时,λ1的单色辐出度增加到原来的多少倍?解:(1)利用普朗克单色辐出度公式:可得时,和的单色辐出度之比:而因此,单色辐出度之比:。

(2)当黑体温度上升到时,的单色辐出度:与温度为T 1时,黑体的单色辐出度的比值:解得:代入上式可得:。

*13-5 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6 000 K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R S =6.96×105 km ,太阳到地球的距离r =1.496×108 km )。

量子力学简史

量子力学的建立与发展历程具有重要历史意义,可以归纳为以下四个阶段:
早期量子论阶段:在这一阶段,科学家们开始发现原子并非固体不可压缩的小球体,而是具有空间结构。

19世纪末,一系列实验和观察表明原子具有离散能级,并且能发生辐射和吸收。

这些发现为后来的量子力学奠定了基础。

旧量子论阶段:在这一阶段,科学家们开始用量子化概念来解释原子结构和原子光谱的规律性。

这些努力为后来的量子力学框架的形成提供了启示和参考。

量子力学的建立阶段:这一阶段开始于20世纪初,科学家们提出了许多重要的量子力学原理,如波粒二象性、不确定性原理、哈密顿表述和薛定谔方程等。

这些原理为量子力学的发展奠定了坚实的基础。

量子力学的发展与完善阶段:在这一阶段,科学家们不断探索和研究量子力学的各种应用,包括半导体物理、超导现象、核物理、粒子物理等。

这些应用不断推动着量子力学的发展和完善。

总之,量子力学的发展历程是一个充满挑战与突破的历史过程。

科学家们通过不懈的努力和深入的研究,逐步建立起一套完整的量子力学理论体系,为现代物理学的发展奠定了坚实的基础。

量子物理基础第13章 01量子化假说


钨丝和太阳的单色辐出度曲线
太阳 M (T )(108 W/(m2 Hz))
钨丝 M (T )(109 W/(m2 Hz))
太阳
12 (5800K)
10
可见 光区
8
6 钨丝 (5800K)
4
2
/1014 Hz
0 2 4 6 8 10 12
4. 单色吸收(反射)比
物体在温度T,吸收(或反射)频率范围在ν—ν+dν内电 磁波能量与相应频率入射电磁波能量之比,称为单色吸收 比(或单色反射比)。
对于不透明物体: 1
实验表明: 辐射能力越强的物体,其吸收能力也越强。 5. 黑体
能完全吸收照射到它上面的各种频率的电磁辐 射的物体,即α(ν)=1,称为绝对黑体 。
13.1 黑体辐射 普朗克量子化假说 13.2 光的波粒二象性 13.3 量子力学引论 13.4 薛定谔方程 13.5 氢原子理论 13.6 电子的自旋 原子的壳层结构
§13.1 黑体辐射 普朗克量子化假说 一、黑体 黑体辐射
1. 热辐射 不同温度下物体能发出不同的电磁波,这种能量按
频率的分布随温度而不同的电磁辐射叫做热辐射。
索尔维是一个很像诺贝尔的人,本身既是科学家又是 家底雄厚的实业家,万贯家财都捐给科学事业。诺贝尔是 设立了以自己名字命名的科学奖金,索尔维则是提供了召 开世界最高水平学术会议的经费。——这就是索尔维会议 的来历。
普朗克
爱因斯坦
康普顿
德布罗意
海森堡
玻恩
玻尔
薛定谔
狄拉克
约里奥—居里夫妇
第十三章 量子物理学基础
瑞利-金斯公式
M
(T
)

早期量子论

实例:白天远看楼房窗口,显得黑暗, 实例:白天远看楼房窗口,显得黑暗, 且窗口越小越暗(似空腔)。炼钢炉孔也可视为黑体(但红色) )。炼钢炉孔也可视为黑体 且窗口越小越暗(似空腔)。炼钢炉孔也可视为黑体(但红色)
实验上用绕有电热丝的空 腔开小孔实现黑体 加热空腔, 加热空腔,小孔辐射能 从孔外可探测辐射, 量,从孔外可探测辐射,测 量辐射规律
− λ + d λ内辐射能量 dM 与波长间隔 d λ 之比
或,单位表面积单位波长间隔内的辐出功率 反映物体在某温度下辐射某种波长的能力 如果要反映物体在某温度下对各种波长的辐射能力? 如果要反映物体在某温度下对各种波长的辐射能力? 定义2: 定义 : 总辐出度

M (T ) = ∫ M λ (T )d λ
M = aM B
虽然实际物体不是黑体, 虽然实际物体不是黑体,但可以设计黑体模型 设想, 设想,用不透明材料制成一个 空腔并开一小孔。 空腔并开一小孔。
光线从小孔射入,很难出去( 光线从小孔射入,很难出去(腔 壁多次反射吸收)。 )。带有小孔的空 壁多次反射吸收)。带有小孔的空 腔物体就是黑体, 腔物体就是黑体,小孔相当于黑体 表面。 表面。
o

面积
λm
T ↑ λm ↓ T ↑ 面积 ↑ M (T ) ↑
M λ (T )
{
实验得出两个重要公式:
λmT =b
b = 2.898 ×10−3 mK
σ =5.67 × 10-8TWm-2 K -4
λm3 λm1 λ
m2
——维恩位移定律 维恩位移定律
M λ (T )
Hale Waihona Puke M (T ) = σ T 4
∆ε = ∆nhν
由以上假设经推导可得 到普朗克公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档