《原子物理与量子力学》第十三章习题解答

合集下载

2018届高考物理一轮复习第十三章原子和原子核物理第3讲:原子核物理(答案)

2018届高考物理一轮复习第十三章原子和原子核物理第3讲:原子核物理(答案)

2018届高考物理一轮复习第十三章原子和原子核物理第3讲:原子核物理(参考答案)一、知识清单1. 【答案】2. 【答案】二、例题精讲 3. 【答案】BCD 4. 【答案】D【解析】α、β、γ射线穿过窄孔沿直线前进射到荧光屏上,打出一个亮点P .在小孔附近加一张薄纸能将α射线挡住,这是因为α射线的穿透能力很弱.γ射线是能量很大穿透能力很强的电磁波,在电场和磁场中不会偏转,仍沿原方向前进,打在荧光屏上的P 点.而β射线是带负电的电子流,穿透能力也较强,能够通过薄纸,并在电场或磁场中发生偏转,根据它的受力情况可知D 图正确.5. 【答案】 B【解析】据题意,在发生衰变前原子核处于静止状态,发生衰变时由于动量守恒,两个新原子核的动量大小相等,根据 ,则mv=qBR ,由于两圆半径之比为1:16,则可知大圆为电荷数较小的新核的轨迹,且向下运动,小圆为电荷数较大的新核的轨迹,且向上运动,所以可以判断这是β衰变,则选项A 错误,B 选项正确;据反应前后电荷数守恒,可以确定原静止核原子序数为15,C 选项错误;据T=2m/qB 可知,由于两个新核的荷质比不相同,所以周期也不相同,D 选项错误。

考点:带电粒子在匀强磁场中的运动。

【名师点睛】此题考查了放射性衰变以及带电粒子在匀强磁场中的运动问题;要知道衰变前后动量守恒,衰变后的粒子在匀强磁场中做匀速圆周运动,应用半径和周期公式解即可知道电荷数的关系;此题是一道综合题,考查学生对物理问题的综合分析能力.6. 【答案】A【解析】一个238 92U 原子核衰变为一个206 82Pb 原子核的过程中,发生α衰变的次数为(238-206)÷4=8次,发生β衰变的次数为2×8-(92-82)=6次,选项A 正确。

7. 【答案】C【解析】由半衰期公式m ′=m (12)t τ可知,m ′=m (12)328=116m ,故选项C 正确。

8. 【答案】A【解析】A 属于β衰变,B 属于裂变,C 是聚变,D 是原子核的人工转变,故选A 项。

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理习题解答

原子物理习题解答

原子物理习题解答1(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--原子物理学习题解答电子和光子各具有波长,它们的动量和总能量各是多少?解:由德布罗意公式p h /=λ,得:m/s kg 10315.3m 1020.0s J 1063.624934⋅⨯=⨯⋅⨯===---λhp p 光电 )J (109.94510310315.316-824⨯=⨯⨯⨯====-c p hch E 光光λν21623116222442022)103101.9(103)10315.3(⨯⨯⨯+⨯⨯⨯=+=--c m c p E 电电)J (1019.8107076.61089.9142731---⨯=⨯+⨯=铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为的光电子,必须使用多大波长的光照射?解:(1) 由爱因斯坦光电效应公式w h mv -=ν221知,铯的光电效应阈频率为: Hz)(10585.41063.6106.19.11434190⨯=⨯⨯⨯==--h w ν 阈值波长: m)(1054.610585.4103714800-⨯=⨯⨯==νλc (2) J 101.63.4eV 4.3eV 5.1eV 9.12119-2⨯⨯==+=+=mv w h ν 故: m)(10656.3106.14.31031063.6719834---⨯=⨯⨯⨯⨯⨯===ννλh hc c若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大(2)其相应的德布罗意波长是多少解:(1)由题意知,20202c m c m mc E k =-=,所以20222022/1c m c v c m mc =-=23cv =⇒ (2)由德布罗意公式得: )m (104.1103101.931063.632128313400---⨯=⨯⨯⨯⨯⨯=====c m h v m h mv h p h λ (1)试证明: 一个粒子的康普顿波长与其德布罗意波长之比等于2/120]1)/[(-E E ,式中0E 和E 分别是粒子的静止能量和运动粒子的总能量.(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长? (1)证明:粒子的康普顿波长:c m h c 0/=λ德布罗意波长: 1)/(1)/(2020204202-=-=-===E E E E c m hcc m E hc mv h p h c λλ 所以, 2/120]1)/[(/-=E E c λλ(2)解:当c λλ=时,有11)/(20=-E E ,即:2/0=E E 02E E =⇒故电子的动能为:2000)12()12(c m E E E E k -=-=-=)J (1019.8)12(109101.9)12(141631--⨯⨯-=⨯⨯⨯⨯-=MeV 21.0eV 1051.0)12(6=⨯⨯-=一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为710/-=∆λλ,试问该原子态的寿命为多长?解: 778342101061031063.6)(---⨯⨯⨯⨯⨯=∆⋅=∆-=∆=∆λλλλλνhc c h h E )J (10315.326-⨯= 由海森伯不确定关系2/ ≥∆∆t E 得:)s (1059.110315.32100546.1292634---⨯=⨯⨯⨯=∆≥=∆E t τ 一个光子的波长为300nm,如果测定此波长精确度为610-.试求此光子位置的不确定量.解: λλλλλλλλ∆⋅=∆≈∆+-=∆h h h h p 2,或:λλλλλνννν∆⋅=∆=∆-=∆+-=∆h c c h c h c h c h p 2)( m/s)kg (1021.2101031063.6336734⋅⨯=⨯⨯⨯=---- 由海森伯不确定关系2/ ≥∆∆p x 得:)m (10386.21021.22100546.1223334---⨯=⨯⨯⨯=∆≥∆p x 当一束能量为的α粒子垂直入射到厚度为5100.4-⨯cm 的金箔上时,探测器沿20°方向每秒纪录到4100.2⨯个α粒子.试求:(1)仅改变探测器安置方位,沿60°方向每秒可纪录到多少个α粒子?(2)若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?(3) α粒子能量仍为,而将金箔换成厚度相同的铝箔, 则沿20°方向每秒可纪录到多少个α粒子(金和铝的密度分别为cm 3和cm 3,原子量分别为197和27,原子序数分别为79和13.忽略核的反冲).解:由公式, )2/(sin /')()41('42220220θπεr S Mv Ze Nnt dN =)2/(sin /')2()41(422220θπεαr S E Ze Nnt = (1) 当︒=60θ时, 每秒可纪录到的α粒子2'dN 满足:01455.030sin 10sin )2/(sin )2/(sin ''44241412=︒︒==θθdN dN 故 241210909.210201455.0'01455.0'⨯=⨯⨯==dN dN (个)(2) 由于2/1'αE dN ∝,所以 413108'4'⨯==dN dN (个) (3) 由于2'nZ dN ∝,故这时:31211342442112441410/10/''--⨯⨯==A Z N A Z N Z n Z n dN dN A A ρρ 55310227793.19197137.2''4221421112444=⨯⨯⨯⨯⨯⨯=⋅⋅=dN A Z A Z dN ρρ(个)动能为40MeV 的α粒子和静止的铅核(Z=82)作对心碰撞时的最小距离是多少?解:由公式: ])2/sin(11[2412020θπε+=Mv Ze r m , 当对心碰撞时,πθ=,1)2/sin(=θ,则 m)(109.5106.11040)106.1(82210924115196219920---⨯=⨯⨯⨯⨯⨯⨯⨯==απεE Ze r m 动能为的质子接近静止的汞核(Z=80),当散射角2/πθ=时,它们之间的最小距离是多少?解:最小距离为:])2/sin(11[241])2/sin(11[41202020θπεθπε+=+=p p m E Ze v m Ze r m)(1060.1]45sin 11[106.11087.02106.180109131962199---⨯=︒+⨯⨯⨯⨯⨯⨯⋅⨯=)( 试证明α粒子散射中α粒子与原子核对心碰撞时两者间的最小距离是散射角为90°时相对应的瞄准距离的两倍。

大学物理13章习题详细答案(供参考)

大学物理13章习题详细答案(供参考)

大学物理13章习题详细答案(供参考)习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为SQ E 02ε=电势差为SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== 13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1)金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ;(2)金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知r E 01I 2πελ-=rE 02II 2πελ= 因此 AB BC 21ln :ln:R R R R =λλ 13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。

试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。

[解] 导体板内场强0=内E ,由高斯定理可得板外场强为故A 、B 两点间电势差为13-7.为了测量电介质材料的相对电容率,将一块厚为B A-Q/2Q/2Q/2Q/2A B -QQIII ⅠⅡⅢBA1.5cm 的平板材料慢慢地插进一电容器的距离为2.0cm 的两平行板中间。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

2018版高考物理知识复习与检测:第十三章 运动守恒定

2018版高考物理知识复习与检测:第十三章 运动守恒定

第3讲原子结构和原子核一、原子结构光谱和能级跃迁1.电子的发现英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”.2.原子的核式结构(1)1918~1911年,英国物理学家卢瑟福进行了α粒子散射实验,提出了核式结构模型.图1(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来”,如图1所示.(3)原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动.3.氢原子光谱(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类(3)氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R(122-1n2)(n=3,4,5,…,R是里德伯常量,R=1.10×118 m-1).(4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.4.氢原子的能级结构、能级公式(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.(2)几个概念①能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫做能级.②基态:原子能量最低的状态.③激发态:在原子能量状态中除基态之外的其他的状态.④量子数:原子的状态是不连续的,用于表示原子状态的正整数.(3)氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6eV.(4)氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.5.氢原子的能级图(如图2所示)图2二、原子核核反应和核能1.原子核的组成(1)原子核由质子和中子组成,质子和中子统称为核子.质子带正电,中子不带电.(2)基本关系①核电荷数=质子数(Z)=元素的原子序数=核外电子数.②质量数(A)=核子数=质子数+中子数.(3)X元素的原子核的符号为A Z X,其中A表示质量数,Z表示核电荷数.2.天然放射现象(1)天然放射现象元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)三种射线(3)放射性同位素的应用与防护①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.②应用:消除静电、工业探伤、做示踪原子等.③防护:防止放射性对人体组织的伤害.3.原子核的衰变、半衰期(1)原子核的衰变①原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.②分类α衰变:A Z X→A-4Z-2Y+42Heβ衰变:A Z X→A Z+1Y+__0-1eγ衰变:当放射性物质连续发生衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射.③两个典型的衰变方程α衰变:2389292U→23490Th+42Heβ衰变:23491Th →23491Pa +0-1e. (2)半衰期①定义:放射性元素的原子核有半数发生衰变所需的时间.②影响因素:放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件没有关系.(3)公式:N 余=N 原·(12)错误!未找到引用源。

原子物理和量子力学

原子物理和量子力学

原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。

大学物理第13章 量子物理习题解答

大学物理第13章 量子物理习题解答

习题13-1设太阳就是黑体,试求地球表面受阳光垂直照射时每平方米得面积上每秒钟得到得辐射能。

如果认为太阳得辐射就是常数,再求太阳在一年内由于辐射而损失得质量。

已知太阳得直径为1、4×109 m ,太阳与地球得距离为1、5×1011 m ,太阳表面得温度为6100K 。

【解】设太阳表面单位面积单位时间发出得热辐射总能量为0E ,地球表面单位面积、单位时间得到得辐射能为1E 。

()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失得质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔得辐出度为22、8 W/cm 2,试求炉内温度。

【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体得温度16000T = K ,问1350λ= nm 与2700λ= nm 得单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 得单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
7.4 任意方向自旋算符的本征值和本征函数(P241) 任意方向自旋算符的本征值和本征函数( ) 已知
(1)本征态 ) 久期方程
本征值方程
HUST
APPLIED PHY有
由归一化条件, 由归一化条件,得
HUST
APPLIED PHYSICS
4
ˆ ② S n 取 − h 2 时,有
第十三章
7.3 自旋算符 、y分量的本征态(P241) 自旋算符x、 分量的本征态 分量的本征态( ) (1)
本征值方程为
同理有: 同理有:
HUST
APPLIED PHYSICS
1
(2)S y 的本征值也为 ± h / 2 本征值方程为 )ˆ
同理有: 同理有:
HUST
APPLIED PHYSICS
HUST
APPLIED PHYSICS
9
(2) )
HUST
APPLIED PHYSICS
10
7.6 Bose子系的态函数(P241) 子系的态函数( 子系的态函数 ) (1)可能状态为 个(粒子数加 )。 )可能状态为4个 粒子数加1)
(2)态函数可表示为如下 种形式: 种形式: )态函数可表示为如下4种形式
HUST
APPLIED PHYSICS
5
(2)S z 的取值情况 应将以上求得的本征态向 ) ˆ 的取值情况: ˆ 展开有: S z 的本征态 χ 1、 χ − 1 展开有: 2 2
展开, ①ξ +向 χ 12、 χ − 12 展开,有:
HUST
APPLIED PHYSICS
6
ˆ 符合经典规律。 方向投影的平均值 S n 在z方向投影的平均值 S z 符合经典规律。
② ξ −向 χ 12、 χ − 12 展开,有: 展开,
HUST
APPLIED PHYSICS
7
HUST
APPLIED PHYSICS
8
7.5
任意态中轨道角动量和自旋角动量的取值( 任意态中轨道角动量和自旋角动量的取值(P241) )
氢原子归一化波函数为: 氢原子归一化波函数为:
(1)利用平均值公式,有: )利用平均值公式,
HUST
APPLIED PHYSICS
11
相关文档
最新文档