中点四边形问题总结
中点四边形问题总结

中点四边形规律总结规律总结:中点四边形: 如图,四边形ABCD 勺各边的中点,所构成的四边形 EFGH 叫做四边形ABCD 勺中点四边形。
三角形的中位线定理,矩形的对角线相等,菱形的对角线互 相垂直,正方形的对角线相等且互相垂直。
例1:无论四边形ABCD 勺形状怎么变化,中点四边形 EFGH 勺形状始终为。
请写出猜想,并证明。
已知,如图,四边形 ABCD 中, E 、H 、C 、G 分别为AB 、BC CD DA 中点 求证:四边形EFGH 是 ________________ .相关知识点: 任意四边形的中点四边形是“平行四边形” 任意平行四边形的中点四边形是“平行四边形” 任意矩形的中的四边形是菱形;任意菱形的中点四边形是矩形;任意正方形的中点四边形是正方形;D证明:连接AC,利用三角形的中位线定理和平行四边形的定义即可证明例2研究特殊四边形的中点四边形的形状。
使四边形ABCD 分别为平行四边形、 矩形、菱形、正方形和等腰梯形,研究中点四边形 EFGH 形状。
发现:中点四边形的形状有 _________________________________________ .① 顺次连接矩形各边中点所得到的四边形是什么四边形提出猜想,并说明你的 猜想是否正确② 顺次连接菱形各边中点所得到的四边形是什么四边形提出猜想,并说明你的 猜想是否正确。
例3、反之若.中点四.边形_.EFGH 分别为.矩形、菱形和正方形.,贝u 四边形ABCD 是否 一定分别为菱形、矩形(等腰梯形)、正方形观察下面图形。
问题:决定中点四边形EFGH 勺形状的主要因素是四边形ABCD 勺边角对角线 概括规律:决定中点四边形EFGH 勺形状的主要因素是 _______________________ 。
⑴ _______________________________ ,则四边形EFGH 为菱形;⑵ _______________________________ ,则四边形EFGH 为矩形;⑶ __________________________________ ,则四边形EFGH 为正方形例4.如图(1) (2) (3),最外面的矩形、菱形、正方形的面积为 1,则最里面的E CGD B中点四边形的面积图(3)。
四边形拓展—中点应用

四边形拓展练习——中点应用中点,特别是线段的中点是几何图形中的一个特殊点,直角三角形斜边中线、等腰三角形三线合一、中心对称图形、三角形中位线和梯形中位线等都有其身影.那么,如何恰当地利用中点和处理与中点有关的问题呢?关键在于:充分挖掘中点所包含的信息,合理联想构造含中点的图形来解决问题.一、利用中点构造三角形中线例1.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AE BD ⊥交BC 于点E .求证:2BE CE =.例2.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AM BD ⊥于M ,交BC 于点E .求CDE S ∆.【注】如果是等腰三角形的问题,则腰上的中点即为构造全等三角形创造了条件.三角形中线的性质是分三角形为两个面积相等的小三角形.在涉及求面积时,往往是常用的结论之一.二、利用中点构造中心对称三角形例3.如图,在梯形ABCD 中,90D ∠=︒,M 为AB 中点. 若 6.5CM =,17BC CD DA ++=,求梯形ABCD 的面积.BB例4.如图,在菱形ABCD 中,120ABC ∠=︒,F 是DC 的中点,AF 的延长线交BC 的延长线于点E .求直线BF 与DE 所夹的锐角的度数.【注】:在四边形问题中,若已知条件中有一边的中点,往往可利用中点构造中心对称的全等的三角形,从而把分散的条件相对集中,为解题创造有利条件.三、利用中点构造三角形中位线例5.如图,在ABC ∆中,7AC =,4BC =,D 为AB 的中点,E 为AC 上一点,且1902AED C ∠=︒+∠.求CE 的长.例6.如图,已知AD 为ABC ∆的角平分线,AB <AC ,在AC 上截取CE AB =,M 、N 分别为边BC 、AE 的中点.求证://MN AD .【注】:在四边形问题中,当已知条件中出现四边形对边的两个中点时,常见的方法是:另外作对角线的中点,再利用三角形的中位线来解题.EA四、利用中点构造直角三角形斜边中线和三角形中位线例7.如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为D ,E G 、分别为AD AC 、的中点,DF BE ⊥,垂足为F .求证:FG DG =.例8.如图,在ABC ∆内取一点P ,使PBA PCA ∠=∠,作PD AB ⊥于点D ,PE AC ⊥于点E .求证:DE 的垂直平分线必经过BC 的中点M .【注】:当题目的条件中涉及到三角形一边的中点和直角三角形时,常用的方法是:另取一边(一般取斜边)的中点,为沟通直角三角形斜边中线定理和三角形中位线定理架起一座桥梁.五、利用中点构造梯形中位线例9.在梯形ABCD 中,90ABC DCB ∠=∠=︒,AD 上有一点E 使得BE EC ⊥,且45CED ∠=︒.求证:AB CD BC +=.例10.如图,M N 、分别是四边形ABCD 边AB CD 、的中点,BN 与MC 交于点P ,AN 与MD 交于点Q .求证:BCP ADQ MQNP S S S ∆∆=+四边形.六、利用多个中点构造三角形和四边形例11.如图,在任意五边形ABCDE 中,M N P Q 、、、分别为AB CD BC DE 、、、的中点,K L 、分别为MN PQ 、的中点.求证://KL AE 且1=4KL AE .例12.在六边形ABCDEF 中,//AB DE ,//BC EF ,//CD FA ,AB DE BC EF +=+,1111A B D E 、、、分别是边AB BC DE EF 、、、的中点,且1111A D B E =.求证:CDE AFE ∠=∠.ABE1ADABCD配套练习:1.如图,在菱形ABCD 中,100A ∠=︒,M N 、分别是边AB BC 、的中点,MP CD ⊥于点P ,求NPC ∠的度数.2.如图,在ABC ∆中,D 为边BC 的中点,点E F 、分别在边AC AB 、上,且ABE ACF ∠=∠,BE 与CF 交于点O ,作OP AC ⊥,OQ AB ⊥,P Q 、为垂足.求证:DP DQ =.3.如图,在ABC ∆中,2A B ACB ∠+∠=∠,8BC =,D 为AB 的中点,且CD =,求AC 的长.BBD BAFE MABCDM4.如图,在ABC ∆中,2B C ∠=∠,AD BC ⊥于D ,M 为BC 的中点,求证:12DM AB =5.如图,在ABC ∆中,2ABC C ∠=∠,AD 平分BAC ∠,过BC 的中点M 作AD 的垂线,交AD 的延长线于F ,交AB 的延长线于E ,求证:12BE BD =.6.如图,已知五边形ABCDE 中,90,ABC AED BAC EAD ∠=∠=︒∠=∠。
顺次连接任意一个四边形各边的中点所得的四边形有什么特征

顺次连接任意一个四边形各边的中点所得的四边形有什么特征?
关于这个问题在各种平台上讲解的很多,但是不够具体全面,这实际上是数学课本课后的一个问题,下面杜老师详细的解答这个问题。
首先定义中点四边形:任意一个四边形中点顺次连接起来构成的四边形叫中点四边形
证明:如图,连接BD,
∵H,E分别是AD,AB的中点
∴HE是△ABD的中位线
∴HE平行且等于BD的一半(HE∥BD,HE=1/2BD)
同理GF平行且等于BD的一半(GF∥BD,GF=1/2BD)
∴HE∥GF,HE=GF
∴四边形EFGH是平行四边形
特殊图形的中点四边形
①若原四边形是平行四边形,则中点四边形是平行四边形
②若原四边形是矩形,则中点四边形是菱形
③若原四边形是菱形,则中点四边形是矩形
④若四边形是正方形,则中点四边形是正方形
写到最后:
①任意四边形,中点四边形是平行四边形
②对角线相等的四边形,中点四边形是菱形
③对角线垂直的四边形,中点四边形是矩形
④对角线垂直且相等的四边形,中点四边形是正方形。
中点四边形证明平行四边形-概述说明以及解释

中点四边形证明平行四边形-概述说明以及解释1.引言1.1 概述概述部分应该包括对本文主题的简要介绍和背景说明。
在这篇文章中,我们将探讨中点四边形与平行四边形之间的关系,并提出如何通过中点四边形来证明平行四边形的方法。
中点四边形是一个重要的几何概念,它可以帮助我们理解平行四边形的性质和特点。
通过本文的研究,我们将深入探讨中点四边形的定义、证明平行四边形的方法以及平行四边形的性质。
通过这些研究,我们可以更好地理解几何学中的重要概念,并提高我们的数学思维能力。
因此,本文旨在帮助读者更深入地了解中点四边形与平行四边形之间的关系,以及如何应用中点四边形来证明平行四边形的重要性。
1.2 文章结构本文将围绕中点四边形的定义、证明平行四边形以及平行四边形的性质展开讨论。
首先我们将介绍中点四边形的定义,引出证明平行四边形的方法。
接着我们将详细讲解如何通过中点四边形证明平行四边形的过程,并探讨平行四边形的一些重要性质。
最后,我们将总结中点四边形与平行四边形之间的关系,并强调应用中点四边形证明平行四边形的重要性。
通过本文的阐述,读者将能更深入地理解中点四边形与平行四边形的联系,以及如何运用中点四边形证明平行四边形的方法。
1.3 目的:本文的目的在于探讨中点四边形与平行四边形之间的关系,并通过证明和分析的方法,阐述中点四边形如何能够证明平行四边形的性质。
通过深入研究这一主题,我们可以更好地理解几何学中关于平行四边形的性质和特点,从而帮助读者提升对几何学知识的理解和运用能力。
同时,通过本文的撰写,也旨在引导读者重视中点四边形在证明平行四边形中的重要性,从而增加对中点四边形的认识和应用。
最终,我们希望通过本文的讨论和分析,使读者对中点四边形与平行四边形的关系有更深入的理解,为其学习和研究几何学提供有益的参考和启示。
2.正文2.1 中点四边形的定义:中点四边形是指在一个四边形中,如果连结相邻两边的中点,这些连线形成的新图形就是中点四边形。
专题中点四边形综合问题重难点培优八年级数学下册尖子生同步培优题典原卷版浙教版

八年级数学下册尖子生同步培优题典【浙教版】专题5.9中点四边形综合问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•兴宁市期末)若正方形ABCD各边的中点依次为E、F、G、H,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形2.(2021秋•成华区期末)顺次连接菱形四边中点形成的四边形是()A.矩形B.菱形C.正方形D.无法判定3.(2021春•霍林郭勒市校级月考)顺次连结对角线相等的四边形各边中点所得到的四边形一定是()A.菱形B.矩形C.平行四边形D.正方形4.(2021秋•和平区期末)顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形5.(2019秋•龙岗区期末)如图,四边形ABCD中,AC=BD,顺次连接四边形各边中点得到的图形是()A.菱形B.矩形C.正方形D.以上都不对6.(2021春•宣城期末)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③四条边相等的四边形是正方形;④顺次连接菱形各边中点形成的四边形一定是矩形.其中正确的个数是()A.4B.3C.2D.17.(2020秋•岐山县期中)如图,任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,连接AC,BD,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若AC=BD,则四边形EFGH为菱形B.若AC⊥BD,则四边形EFGH为矩形C.若AC=BD,且AC⊥BD,则四边形EFGH为正方形D.若AC与BD互相平分,且AC=BD,则四边形EFGH是正方形8.(2021春•武昌区校级期中)如图,顺次连接四边形ABCD各边中点得到中点四边形EFGH,下列说法中正确的是()A.当AC⊥BD时,四边形EFGH为菱形B.当AC=BD时,四边形EFGH为矩形C.当AC⊥BD,AC=BD时,四边形EFGH为正方形D.以上说法都不对9.(2018•临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1B.2C.3D.410.(2021春•遵化市期末)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上、11.(2021春•宜兴市月考)若顺次连接四边形各边中点所得的四边形是菱形,则原四边形.12.(2021秋•南海区月考)顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是.13.(2021春•泰兴市月考)四边形ABCD中,对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形为形.14.(2021秋•南海区月考)已知:在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,四边形EHFG是.15.(2020春•孝义市期末)如图,菱形ABCD的对角线AC,BD相交于点O,依次连接AO,BO,CO,DO的中点E,F,G,H,得到四边形EFGH,点M是EF的中点,连接OM,若AB=10,则OM的长为.16.(2021秋•榆阳区校级月考)点E、F、G、H分别是任意四边形ABCD中AD、AB、BC、CD各边的中点,对角线AC,BD交于点O,当四边形ABCD满足条件时,四边形EFGH是正方形.17.(2021•西城区校级开学)如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.18.(2021春•昆明期末)如图,某小区要在一块矩形ABCD的空地上建造一个如图所示的四边形花园EFGH,点E,F,G,H分别为边AB,BC,CD,DA的中点,若AB=10m,AD=20m,则四边形EFGH的面积为m².三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•海陵区校级期中)如图,O为∠BAC内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB=AC,AO平分∠BAC时,求证:四边形EFGH为矩形.20.(2020春•工业园区期末)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.21.(2021春•滦州市期末)已知:如图,四边形ABCD中,M、N、P、Q分别是AD、BC、BD和AC的中点.(1)求证:四边形MPNQ是平行四边形.(2)若满足AB=CD.试判断MN与PQ的位置关系(不用说明理由).22.(2021春•集贤县期末)在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN的形状,并证明你的结论.23.(2021春•盐城期末)如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、EH.(1)求证:四边形EFGH是平行四边形;(2)再加上条件后,能使得四边形EFGH是矩形.请从①四边形ABCD是菱形,②四边形ABCD 是矩形.这两个条件中选择1个条件填空(写序号),重新画图并写出证明过程.24.(2021春•泗阳县期末)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)当AB=CD,四边形EGFH是怎样的四边形?证明你的结论.。
四边形解题技巧

四边形解题技巧一、平行四边形应用举例平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用,现举例说明.1.求角的度数例1 如图,ABCD中.AD=2AB,点E、A、B、F在一条直线上,且EA=AB=BF,求∠DOC 的度数.例2 (2007·河北)如图,若ABCD与EBCF关于BC所在直线对称,∠ABE=90°,则∠F=______.2.求线段的长例3 如图,在四边形ABCD中,AB=6,BC=8,∠A =120°,∠B=60°,∠BCD=∠150°,求AD的长.例4 (2006·河北)如图,在DABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE、EC的长度分别为( )A.2和3 B.3和2 C.4和1 D.1和43.求周长例5 (2006·日照)如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF= 45°,且2,求ABCD的周长.AE+AF=24.求第三边的取值范围例6 (2006·双柏)如图,在ABCD中,对角线AC和BD相交于点0,如果AC=12,BD=10,AB=m,那么m的取值范围是( )A.10<m<12 B.2<m<22 C.l<m<ll D.5<m<65.综合计算题例7 如图,ABCD的周长为210 ,BC的长为35,AE⊥BC于E,AF⊥DC,垂足为36DC延长线上的点F,AE=3.求:(1)∠D的度数;(2)AF的长.6.探索题例8 如图,四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于点F,∠AD C的平分线DG交边AB于点G,且DG与CF交于点E.请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.二、添作中位线,妙证几何题三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.这是三角形的一条很重要的性质,它包含了位置与数量两种关系.在题中,若有线段的中点,可过中点作第三边的平行线或取另一边中点构造中位线,运用中位线定理,实现线段或角的转移,从而迅速找到解题突破口,往往会使得某些看似无法解决的几何题化难为易,迎刃而解.例9 如图,在△ABC中,AB<AC,点D在AC上,且有CD=AB,E、F分别是AD和BC的中点,连结EF并延长与BA的延长线相交于点G,求证:AE=AG.例10 如图,在四边形ABCD中,AC、BD相交于点O,且AC=BD,E、F分别是AD、BC的中点,EF分别交AC、BD于M、N.求证:∠OMN=∠ONM.例11 如图,△ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于点F,郑州郭氏数学内部资料;更多学习资料及学习方法、考试技巧请百度郭氏数学公益教学博客。
中点四边形是矩形的条件

中点四边形是矩形的条件好吧,今天咱们聊聊中点四边形是矩形的那些事儿。
这可不是随便说说的,里面可有不少学问。
不过,放心,咱们轻松点,咱们把数学说得简单点,就像喝水一样,别紧张。
首先呢,中点四边形,听起来是不是有点高大上?其实它就是一个四边形,四条边的中点连接起来的样子。
就好比你把一个大方块的边上各挖个小洞,然后把这些洞连起来,形成了个新形状。
哎呀,这个新形状可不简单,得看它是个什么玩意儿。
要是它是矩形,那就真是太棒了,咱们可得认真研究一下。
说到矩形,大家伙儿应该都知道,矩形就是长方形的那种,四个角都是直角,且对边相等。
简单点说,矩形就是个特别规矩的家伙,跟那些喜欢“偏差”的形状比起来,它可真是规规矩矩,安安分分。
咱们要判定一个中点四边形是不是矩形,有几个条件得满足。
比如说,得看看对角线的长度。
对角线长度相等的话,那这中点四边形基本上可以打包票是个矩形。
再说了,咱们还能通过中点四边形的斜边来判断它是不是矩形。
这就像你在操场上和朋友打球,大家分成两队,咱们就得看你们这两队的阵形。
如果这两队的阵形呈对称状态,那肯定是一场精彩的比赛,想想都觉得激动!同样的道理,如果中点四边形的两条对角线也对称,那它的“阵形”也一定是个矩形。
这可不是随便说说,真有道理。
然后啊,中点四边形还有一个特性,就是它的边和对角线的夹角。
咱们要看这些夹角是不是都是90度,要是都那么乖,那这小子八成是个矩形,嘿嘿,听上去可真不错呀。
就像咱们家里的方桌,四条腿直直的,放在哪儿都稳稳当当,这就是矩形的魅力所在。
简直就是稳如泰山,动也不动。
大家要记得,什么事情都有例外。
中点四边形可不一定都是矩形,遇上那些边长不一样的,就得小心了。
你看,人生也是这样,有时候你以为是方方正正的事,结果转个弯就变得复杂了。
好比你做饭,结果盐放多了,那就别想吃了,哈哈。
所以啊,咱们在判断的时候可得谨慎,别被表面现象给迷了眼。
接着说说,数学这玩意儿,就像一把双刃剑。
咱们看起来简单的几何图形,里面其实藏着无数的奥秘。
利用中点法解决平行四边形存在性问题

利用中点法解决平行四边形存在性问题平行四边形作为特殊的四边形,一直是中考试题中的主角。
尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高。
此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质;考查识图作图、运算求解、数学表达等能力;数形结合、分类讨论、函数与方程等数学思想。
学生在处理问题的时候,往往不能正确分类,导致漏解。
此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大。
如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线互相平分,即对角线的中点互相重合,来探究平行四边形的存在性问题就是一个很好的途径,简称“中点法”。
不需画图证明,跨越了复杂的推理过程和艰难的探索发现以及证明过程,学生的思路清晰明了。
一、已知三个定点,探寻平行四边形的第四个顶点。
此类题是解决平行四边形存在性问题的基础题。
由于有三个点A、B、C已经确定,在作图时,一般会分别选择AB、AC、BC为对角线来进行画图,根据平行四边形的中心对称的性质,灵活运用坐标对称来解决问题。
具体求解方法是利用平行四边形的对角线互相平分,即对角线的中点互相重合。
如果平行四边形ABCD的四个顶点的坐标分别为A(, )、B(,)、C(, )、D(, ),则,,化简为,。
即平行四边形每条对角线上两个顶点的横坐标之和相等,纵坐标之和也相等。
简称“中点法”。
例:如图1,抛物线交轴于,两点,交轴于点.若平面内有一点,使得以、、、为顶点的四边形是平行四边形,求点的坐标.图1解:先求出三个点坐标,A(-2,0)、B(4,0)、C(0,-4),再分别以三边为平行四边形对角线构造平行四边形,如图答-1:①以为对角线,,;同理=4,所以;②以为对角线,;③以为对角线,.综上所述,的坐标为.二、已知两个定点,另外两个点一般在抛物线上或抛物线对称轴上或x轴上或y轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中点四边形规律总结
规律总结:中点四边形:如图,四边形ABCD勺各边的中点,所构成的四边形EFGH 叫做四边形ABCD勺中点四边形。
任意四边形的中点四边形是“平行四边形”
任意平行四边形的中点四边形是“平行四边形”
任意矩形的中的四边形是菱形;
任意菱形的中点四边形是矩形;
任意正方形的中点四边形是正方形;
例1:无论四边形ABCD勺形状怎么变化,中点四边形EFGH勺形状始终为
________ 。
请写出猜想,并证明。
已知,如图,四边形ABCLfr, E、H、C、G分别为AB、BG CD DA中点求证:四边形EFGK.
证明:连接AC,利用三角形的中位线定理和平行四边形的定义即可证明
例2研究特殊四边形的中点四边形的形状。
使四边形ABC协别为平■行四边形、矩形、菱形、正方形和等腰梯形,研究中点四边形EFGK状。
发现:中点四边形的形状有 .
①顺次连接矩形各边中点所得到的四边形是什么四边形提出猜想,并说明你的猜想是否正确
②顺次连接菱形各边中点所得到的四边形是什么四边形提出猜想,并说明你的猜想是否正确。
例3、区之茬出以四边形_EFG.应别&您.形」左奥租也方应_,贝U四边形ABC既否一定分别为菱瓦而B (手腰时而、上方察TWfflio
问题:决定中点四边形EFGH勺形状的主要因素是四边形ABCD勺边角对角线概括规
律:决定中点四边形EFGH勺形状的主要因素是o ⑴,则四边形EFG的菱形;
⑵,则四边形EFG的矩形;
⑶,则四边形EFG的正方形
例4.如图(1) (2) (3),最外面的矩形、菱形、正方形的面积为1,则最里面的
中点四边形的面积
图(3)。