2021年九年级中考数学第三轮压轴题:四边形的综合 专题复习(含答案)

合集下载

2021年人教版数学九年级中考三轮冲刺:四边形压轴

2021年人教版数学九年级中考三轮冲刺:四边形压轴

2021年人教版数学中考三轮冲刺:四边形压轴1.(1)如图①,点E、F分别在正方形ABCD的边AB、BC上,∠EDF=45°,连接EF,求证:EF=AE+FC.(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF、AE、FC的数量关系,并说明理由.2.在▱ABCD中,点M为AB的中点.(1)如图1,若∠A=90°,连接DM且∠BMD=3∠ADM,试探究AB与BC的数量关系;(2)如图2,若∠A为锐角,过点C作CE⊥AD于点E,连接EM,∠BME=3∠AEM,①求证:AB=2BC;②若EA=EC,求的值.3.如图,将平行四边形OABC放置在平面直角坐标系xOy内,已知A(3,0),B(0,4).(Ⅰ)点C的坐标是(,);(Ⅱ)若将平行四边形OABC绕点O逆时针旋转90°得OFDE,DF交OC于点P,交y 轴于点F,求△OPF的面积;(Ⅲ)在(Ⅱ)的情形下,若再将平行四边形OFDE沿y轴正方向平移,设平移的距离为d,当平移后的平行四边形O'F'D'E′与平行四边形OABC重叠部分为五边形时,设其面积为S,试求出S关于d的函数关系式,并直接写出x的取值范围.4.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.5.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是;位置关系是;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.6.如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ 交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)求DE的长;(3)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B'PM,连接AB',当t为何值时,AB'的值最小?并求出最小值.7.如图,四边形ABCD是矩形,点E在AB边上,且BC=BE,连接EC、AC,过点B作BG⊥AC,垂足为G,BG分别交EC、DC于F、H两点.(1)如图1,若BC=2,∠ECA=15°,求线段EF的长.(2)如图2,延长AB到M,连接MF,使得∠BMF=∠FBC,求证:BF+FM=AC.(3)如图3,在(1)的条件下,点N是线段DC的三等分点,且DN<CN,点P是线段AD的中点,连接AN,将△ADN绕点D逆时针旋转α°(0≤α≤360)到△A'DN',连接PA',NA',当3NA'﹣PA'取最大值时,请直接写出△A'DH的面积.8.(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系,位置关系;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG 绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D 逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.9.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.10.如图,正方形ABCD和正方形DEFG有公共顶点D.(1)如图1,连接AG和CE,直接写出AG和CE的关系;(2)如图2,连接AE,M为AE中点,连接DM、CG,探究DM、CG的关系,并说明理由;(3)如图3,若AB=4,DE=2,直线AG与直线CE交于点P,请直接写出AP的取值范围:.11.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P'处,AB的中点为Q,直接写出P'Q的最小值.12.如图,四边形ABCD为矩形,点E为边AB上一点,将△ADE沿DE折叠,点A落在矩形ABCD内的点F处.(1)如图①,若AB=8,AD=6,点F恰好落在矩形的对角线BD上,求线段BF的长;(2)如图②,连接BF,若△BEF为等边三角形,求的值;(3)如图③,已知E为AB中点,tan∠ADE=,连接BF,FC,若△ADE的面积为S,求△BFC的面积.(结果用关于S的代数式表示)13.已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD边于点E,连接BE.(1)如图1,求证:BD平分∠EBC;(2)如图2,延长EO交BC于点F,当BF=2AE时,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于CD的线段.14.如图①,在长方形ABCD中,已知AB=20,AD=12,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,设点D关于AP的对称点为点E.(1)如图②,射线PE恰好经过点B,试求此时t的值.(2)当射线PE与边AB交于点Q时,①请直接写出AQ长的取值范围:;②是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.15.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.参考答案1.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°,如图①:延长BA,使AM=CF,连接MD,在△AMD和△CFD中,,∴△AMD≌△CFD(SAS),∴∠MDA=∠CDF,MD=DF,∵∠EDF=45°,∴∠ADE+∠FDC=45°,∴∠ADM+∠ADE=45°=∠MDE,∴∠MDE=∠EDF,在△EDF和△EDM中,,∴△EDF≌△EDM(SAS),∴EF=EM,∵EM=AM+AE=AE+CF,∴EF=AE+CF;(2)EF2=AE2+CF2,理由如下:如图②,将△CDF绕点D顺时针旋转90°,可得△ADN,由旋转的性质可得DN=DF,AN=CF,∠DAN=∠DCF=45°,∠CDF=∠ADN,∴∠CAN=∠CAD+∠DAN=90°,∴EN2=AE2+AN2,∵∠EDF=45°,∴∠CDF+∠ADE=45°,∴∠ADE+∠ADN=45°=∠NDE=∠EDF,在△EDF和△EDN中,,∴△EDF≌△EDN(SAS),∴EF=EN,∴EF2=AE2+CF2.2.解:(1)BC=AB,理由如下:∵∠BMD=3∠ADM,∴∠A+∠ADM=3∠ADM,∴∠A=2∠ADM,∵∠A=90°,∴∠ADM=45°,∴△ADM是等腰直角三角形,∴AD=AM,∵四边形ABCD是平行四边形,M是AB中点,∴AD=BC,AM=AB,∴BC=AB;(2)①取CD的中点N,连接MN并延长交CE于F,如图:∵四边形ABCD是平行四边形,M是AB中点,N是CD的中点,∴DN=CN=CD=AB=AM=BM,CD∥AB,∴四边形AMND、四边形BCNM是平行四边形,∴MN∥AD∥BC,∴=,∠AEM=∠EMF,∠CMF=∠MCB,∴EF=CF,∵CE⊥AD于点E,∴MN⊥CE,∴MF是CE的垂直平分线,∴ME=MC,∴∠EMF=∠CMF,设∠AEM=α,则∠EMF=∠CMF=∠MCB=α,∠EMC=2α,∵∠BME=3∠AEM,∴∠BME=3α,∴∠BMC=∠BME﹣∠EMC=α,∴∠BMC=∠MCB=α,∴BC=BM=AB,∴AB=2BC;②如图:由①知:AB=2BC,∴CD=2AD设ED=x,EC=y,则EA=y,AD=y﹣x,CD=2(y﹣x),Rt△CDE中,ED2+EC2=CD2,∴x2+y2=4(y﹣x)2,化简整理得:3x2﹣8xy+3y2=0,解得x=y或x=y,∵DE<AE,∴x=y,∴=,即=.3.解:(Ⅰ)∵A(3,0),B(0,4),∴OA=3,OB=4,∵四边形OABC是平行四边形,∴BC=OA=3,BC∥OA,AB∥OC,∴点C的坐标为:(﹣3,4);故答案为:﹣3,4;(Ⅱ)由旋转的性质,可得:OD=OB=4,OF=OA=3,∠ODF=∠OBA,∠OFD=∠OAB,∵∠BOD=90°,∴S△DOF=OD•OF=×4×3=6,DF===5,∵AB∥OC,∴∠OBA=∠BOC,∴∠ODF=∠BOC,∵∠OFP=∠DFO,∴△OFP∽△DFO,∴=()2=()2=,∴S△OPF=S△DOF=×6=;(Ⅲ)如图,重叠部分为五边形时,F′必须位于点B上方,∵OF=3,OB=4,∴d>1,当点C在D′F′上时,重叠部分不构成五边形,设此时直线D′F′的解析式为y=x+b,将C(﹣3,4)代入,得4=×(﹣3)+b,解得:b=,∴直线D′F′的解析式为y=x+,令x=0,得y=,∴F′(0,),∴OF′=,∴FF′=OF′﹣OF=﹣3=,∴d<,∴1<d<;∵=sin∠F′OC=,∴P′F′=F′O=(d+3),同理可得:P′O=(d+3),∴S△F′P′O=P′F′•P′O=×(d+3)×(d+3)=(d+3)2,∵=cos∠D′F′O=,BF′=d﹣1,∴HF′=(d﹣1),∵=sin∠D′F′O=,∴HB=HF′=×(d﹣1)=(d﹣1),∴S△HBF′=BF′•HB=×(d﹣1)×(d﹣1)=(d﹣1)2,∵OO′=d,∴O′G=OO′•sin∠BOC=d,OG=OO′•cos∠BOC=d,∴S△OGO′=O′G•OG=×d×d=d2,∴S=S△F′P′O﹣S△HBF′﹣S△OGO′=(d+3)2﹣(d﹣1)2﹣d2=﹣d2+d+,∴S=﹣d2+d+(1<d<).4.(1)证明:∵将△ABE沿BE折叠后得到△GBE,∴△ABE≌△GBE,∴∠BGE=∠A,AE=GE,∵∠A=∠D=90°,∴∠EGF=∠D=90°,∵EA=ED,∴EG=ED,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL);(2)证明:由折叠性质可得,AB=BG,∵AD∥BC,∠A=∠D=90°,∴四边形ABCD是矩形,∴AB=CD,∴BG=DC.(3)解:由折叠可知AB=GB,由(1)知Rt△EGF≌Rt△EDF,∴GF=DF,又∵∠C=90°,AB=CD,FD=CF,∴GB=2GF,BF+GF=3GF,∵BF2=BC2+CF2,∴(3GF)2=64+GF2,∴GF=2,∴CD=2GF=4.5.解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△ABE≌△ADG(SAS),∴BE=DG;如图2,延长BE交AD于Q,交DG于H,∵△ABE≌△DAG,∴∠ABE=∠ADG,∵∠AQB+∠ABE=90°,∴∠AQB+∠ADG=90°,∵∠AQB=∠DQH,∴∠DQH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H,∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴==,∠ABE=∠ADG,∴DG=2BE,∵∠AKB+∠ABE=90°,∴∠AKB+∠ADG=90°,∵∠AKB=∠DKH,∴∠DKH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M,∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得:EG==,∵AB=,∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上,如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,BE===2,由(2)知,△ABE∽△ADG,∴==,即=,∴DG=4.6.解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),解得:t=2,即t=2s时,△BPQ是直角三角形;(2)过P作PK∥BC交AC于K,如图1所示:∵△ABC是等边三角形,∴∠B=∠A=60°,AC=AB=6cm,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm);(3)连接AM,AB′,如图2所示:∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM===3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3,此时MP平分∠AMB,则点P到AM、BM的距离相等,∴=,又∵=,∴==,∴t=(6﹣t),解得:t=9﹣3,即当t为(9﹣3)s时,AB'的值最小,最小值为3﹣3.7.解:(1)如图1,过点F作FK⊥BC于K,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠BCE=∠BEC=45°,CE=BC=2,∵∠ECA=15°,∴∠BCA=∠BCE+∠ECA=60°,∵BG⊥AC,∴∠BGC=90°,∴∠CBG=90°﹣∠BCA=30°,∵FK⊥BC,∴∠CKF=∠BKF=90°,∴CK=FK•tan∠BCE=FK•tan45°=FK,BK===FK,∵CK+BK=BC,∴FK+FK=2,∴FK=3﹣,∴CF=FK=(3﹣)=3﹣,∴EF=CE﹣CF=2﹣(3﹣)=3﹣3.(2)如图2,延长MF交CD于T,过点T作TP⊥AB于P,∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠D=∠BCD=90°,∴∠BMF=∠CTF,∵∠BMF=∠FBC,∴∠CTF=∠FBC,∴∠TCF=∠BCD﹣∠BCE=90°﹣45°=45°,∴∠TCF=∠BCE,在△TCF和△BCF中,,∴△TCF≌△BCF(AAS),∴FT=BF,∵BG⊥AC,∴∠BGC=90°,∴∠BCG+∠FBC=90°,又∵∠BCG+∠ACD=90°,∴∠FBC=∠ACD,∵∠BMF=∠FBC,∴∠BMF=∠ACD,即∠TMP=∠ACD,∵TP⊥AB,∴∠APT=∠MPT=90°=∠BAD=∠D,∴四边形APTD是矩形,∴AD=PT,在△MTP和△CAD中,,∴△MTP≌△CAD(AAS),即FT+FM=AC,∴BF+FM=AC.(3)如图3,以D为圆心,DN、DA为半径作同心圆,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,∠ADC=∠BCD=90°,由(1)得:∠BCA=60°,∴∠CAD=∠BCA=60°,∴CD=AD•tan∠CAD=2•tan60°=6,∵点N是线段DC的三等分点,且DN<CN,∴DN=CD=×6=2,∵3NA'﹣PA'=(NA′﹣PA′),∴当3NA'﹣PA'取最大值时,NA′﹣PA′的值最大,∵DA′=DA=2,∴==,∵==,∴==,又∵∠A′DN=∠CDA′,∴△A′DN∽△CDA′,∴===,∴A′C=A′N,∴NA′﹣PA′=A′C﹣PA′≤PC,当C、P、A′在同一直线上时,NA′﹣PA′的最大值为PC,此时3NA'﹣PA'取最大值,作A′T⊥CD的延长线于T,则A′T∥DP,∴==,设A′T=x,在Rt△CDP中,PC===,∴==,∴A′C=x,CT=2x,∴TD=CT﹣CD=2x﹣6,在Rt△A′DT中,A′T2+TD2=A′D2,∴x2+(2x﹣6)2=(2)2,解得:x=,∴A′T=,由(1)知:∠CBG=30°,∴CH=BC•tan∠CBG=2×tan30°=2,∴DH=CD﹣CH=6﹣2=4,∴S△A′DH=•DH•A′T=×4×=.8.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.9.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴,,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB =90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则,由(2)可知.∴AB最小值为.10.解:(1)AG=CE且AG⊥CE,理由如下:∵四边形ABCD和四边形DEFG是正方形,∴∠ADC=∠GDE=90°,AD=CD,DG=DE,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∵∠ADC=∠GDE=90°由旋转可知:AG⊥CE;故答案为:AG=CE且AG⊥CE;(2)DM、CG的关系是:DM=CG,且DM⊥CG,理由如下:如图2,延长AD至H,使AD=DH,连接EH,∵∠GDE=∠CDH=90°,∴∠GDE﹣∠CDE=∠CDH﹣∠CDE,即∠CDG=∠HDE,∵CD=DH,GD=DE,∴△DGC≌△DEH(SAS),∴CG=EH,∵M是AE的中点,AD=DH,∴DM是△AEH的中位线,∴DM∥EH,DM=EH,∴DM=CG,∵∠GDE=∠CDH=90°,∴△DGC绕点逆时针旋转90°到△DEH,∴CG⊥EH,∴DM⊥CG;(3)由(1)可知:直线AG⊥直线CE,∴∠APC=90°,∴点P在以AC为直径的圆上运动,如图3,当P与F重合时,AP最小,此时A、P、F、G共线,Rt△AGD中,DG=2,AD=4,∴AG==2,∴AP=2﹣2;如图4,当P与F重合时,AP最大,同理得:AP=2+2,∴AP的取值范围是:2﹣2≤AP≤2+2.故答案为:2﹣2≤AP≤2+2.11.解:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∠D=∠BCE=90°,∵BE⊥MN,点M和点C重合,∴MD=BC=6,∠DMN+∠BCP=90°,∠CBE+∠BCP=90°,∴∠DMN=∠CBE,在△DMN和△CBE中,,∴△DMN≌△CBE(AAS),∴MN=BE,∵AN=4,∴DN=AD﹣AN=6﹣4=2,由勾股定理得:MN===2,∴BE=2,∵∠PBC=∠CBE,∠CPB=∠ECB=90°,∴△PBC∽△CBE,∴=,∴BP===,在Rt△BPM中,由勾股定理得:PM===;(2)线段AN、MB、EC之间的数量关系为:AN+EC=MB,理由如下:过点N作NF⊥BC于N,如图2所示:则四边形ANFB为矩形,∴AN=BF,NF=AB=BC,∵MN⊥BE,∴∠EBC+∠PMB=90°,∠MNF+∠NMF=90°,∴∠EBC=∠MNF,在△EBC和△MNF中,,∴△EBC≌△MNF(ASA),∴FM=EC,∴MB=BF+FM=AN+EC,即AN+EC=MB;(3)连接BD交AC于点O,如图3所示:则△BPN的直角顶点P在AC上运动,设点P与点C重合时,则点P′与点A重合;设点P与点O重合时,则点P′的落点为O′,∵AO=OB,∠AOB=90°,∴∠OAB=∠BAO′=45°,当点P在线段CO上运动时,过点P作PG⊥AD于点G,过点P′作P′H⊥AD交DA延长线于点H,连接PD,∵点P在AC上,∴BP=PD,在△BPC和△DPC中,,∴△BPC≌△DPC(SSS),∴∠CBP=∠CDP,∵∠CDA=∠MPB=90°,∴∠PDN=∠BMP,∵BC∥AD,∴∠BMP=∠PND,∴∠PDN=∠PND,∴PD=PN,∴BP=PN,∴∠PNB=45°,∴∠PNP′=90°,∴∠P′NH+∠PNG=90°,∵∠P′NH+∠NP′H=90°,∠PNG+∠NPG=90°,∴∠NPG=∠P′NH,∠PNG=∠NP′H,由翻折性质得:PN=P′N,在△PGN和△NHP'中,,∴△PGN≌△NHP'(ASA),∴PG=NH,GN=P'H,∵AC是正方形ABCD的对角线,∴∠PAG=45°,∴△AGP是等腰直角三角形,∴PG=AG,∴GN=AH,∴AH=P'H,∴∠P'AH=45°,∴∠P'AB=45°,∴点P'在线段AO'上运动;过点Q作QK⊥AO',垂足为K,则当P′与K重合时,P'Q最短,∵点Q为AD的中点,∴AQ=3,在等腰Rt△AKQ中,KQ=AQ=×3=,∴P'Q的最小值为.12.解:(1)如图①中,∵四边形ABCD是矩形,∴∠A=90°,∴BD===10,由翻折的性质可知,DA=DF=6,∴BF=BD﹣DF=10﹣6=4.(2)如图②中,∵△EBF是等边三角形,∴EB=EF,∠BEF=60°,由翻折的性质可知,EA=EF,∠AED=∠FED,∴∠AED=∠FED=60°,设AE=EF=BE=m,则AD=AE=m,∴AB=2m,∴==.(3)如图③中,过点F作FT⊥AB于T.设BT=a.由翻折的性质可知,DE⊥AF,AE=EF,∵四边形ABCD是矩形,∴∠EAD=90°,∴∠BAF+∠DAF=90°,∠DAF+∠ADE=90°,∴∠BAF=∠ADE,同法可证∠BAF=∠BFT,∴tan∠BFT=tan∠BAF=tan∠ADE=,∴FT=3a,AT=9a,∴AB=10a,∴AE=BE=5a,AD=3AE=15a,∵S△ADE=×15a×5a=S,∴a2=S,∴S△BCF=×15a×a=a2=S.解法二:三角形ADF和三角形BCF加起来等于矩形面积的一半,四边形ADFE面积好求,先求出△AEF的面积,△AEF面积是△ABF的一半.13.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,BO=DO.又∵OE⊥BE,∴BE=DE.∴∠EBD=∠EDB.∵AD∥BC,∴∠EDB=∠CBD.即BD平分∠EBC.(2)解:长度等于CD的线段有:AE、EO、FO、CF.理由:由(1)知:∠EBO=∠FBO,在△BEO和△BFO中,,∴△BEO≌△BFO(ASA).∴OE=OF,BE=BF.∵BF=2AE,∴BE=2AE.在Rt△ABE中,∵sin∠ABE=,∴∠ABE=30°,∵tan∠ABE=,∴AE=AB•tan30°=AB.∵四边形ABCD是矩形,∴AB=CD,OA=OB=OC=OD.∴AE=CD.∵∠EBF=90°﹣∠BAE=60°,∴△BEF为等边三角形.∴∠EBF=60°,∴∠EBO=∠FBO=∠EBF=30°.∴∠ABO=∠ABE+∠EBO=60°,∴△ABO为等边三角形.∴∠BAO=∠AOB=60°,∴∠EAO=∠EOA=30°,∴AE=OE.∵AD∥BC,∴∠OCF=∠OAE=30°.∵∠FOC=∠EOA=30°,∴∠OCF=∠FOC.∴OF=FC.∴OF=FC=OE=AE=CD.14.解:(1)如图1,∵AB∥CD,∴∠DPA=∠PAB,由轴对称得:∠DPA=∠EPA,∴∠EPA=∠PAB,∴BP=AB=20,在Rt△PCB中,由勾股定理得:PC===16,∴PD=4=2t,∴t=2;(2)①解法一:如图2,过点P作PH⊥AB于H,过点Q作QG⊥CD于G,∴PH=QG=AD=12,∵∠APQ=∠PAQ,∴AQ=PQ,∵PQ2=PG2+QG2=PG2+122=144+PG2,∴AQ2=144+PG2,∵AQ=DG=DP+PG,∴(DP+PG)2=144+PG2,∵PD=2t,∴(2t+PG)2=144+PG2,解得:PG=,∵AQ=PD+PG=2t+==t+,∵t+=(t﹣)2+2≥2=12,∴AQ=t+≥12,由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,∴12≤AQ≤20;解法二:由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,如图2,当PQ⊥AB时,E与Q重合,此时AQ=AD=12,∴12≤AQ≤20,故答案为:12≤AQ≤20;②存在,分两种情况:当点E在矩形ABCD内部时,如图3,∵QE=PQ﹣PE=PQ﹣DP=PQ﹣2t,∵QE=QB,PQ=AQ,∴QB=AQ﹣2t,∵AQ+BQ=AB=20,∴AQ+AQ﹣2t=20,∴AQ=10+t,由①可知:AQ=t+,∴t+=10+t,解得:t=3.6;当点E在矩形ABCD的外部时,如图4,∵QE=PE﹣PQ=DP﹣PQ=2t﹣PQ,∵QE=QB,∴BQ=2t﹣AQ,∴AB﹣AQ=2t﹣AQ,∴AB=2t,∴t==10(此时P与C重合),综上,存在这样的t值,使得QE=QB,t的值为3.6或10.15.解:(1)∵将△DCB绕点D顺时针方向旋转60°,得到△DAB′,∴BD=B′D,∠BDB′=60°,∴△BDB′是等边三角形;故答案为:等边三角形;(2)由(1)知,△BCD≌△B′AD,∴四边形ABCD的面积=等边三角形BDB′的面积,∵BC=AB′=1,∴BB′=AB+AB′=2+1=3,∴S四边形ABCD=S△BDB′=;(3)解:将△BDM绕点D顺时针方向旋转120°,得到△DCP,∴△BDM≌△CDP,∴MD=PD,CP=BM,∠MBD=∠DCP,∠MDB=∠PDC,∵△BDC是等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=∠DCB=30°,又∵△ABC等边三角形,∴∠ABC=∠ACB=60°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠PCD=∠NCD=∠MBD=90°,∴∠DCN+∠DCP=180°,∴N,C,P三点共线,∵∠MDN=60°,∴∠MDB+∠NDC=∠PDC+∠NDC=∠BDC﹣∠MDN=60°,即∠MDN=∠PDN=60°,∴△NMD≌△NPD(SAS),∴MN=PN=NC+CP=NC+BM,∴△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2+2=4.故△AMN的周长为4.。

【2021中考数学】四边形压轴题含答案

【2021中考数学】四边形压轴题含答案

2021年中考九年级数学:四边形压轴题1、解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且A D CED∠=∠+∠,求证://AB CD;(2)如图2,在正方形ABCD中,8DF=.AB=,6BE=,4①试判断AEF∆的形状,并说明理由;②求AEF∆的面积.2、如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,BC=10,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).(1)当MN∥AB时,求t的值;(2)试探究:t为何值时,△MNC为等腰三角形.3、如图1,已知矩形ABCD,连接AC,将△ABC沿AC所在直线翻折,得到△AEC,AE交CD于点F.(1)求证:DF=EF;(2)如图2,若∠BAC=30°,点G是AC的中点,连接DE,EG,求证:四边形ADEG 是菱形.4、如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.5、如图1,在ABCD中,以BC为边作等边BCP=.∆,交AD于点E,F,且AE DF (1)求证:四边形ABCD是矩形;(2)如图2,连接AP,AC,若1EF=,3BC=.①求证:AP PC⊥;②求AC的长.6、已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE=1,AE=,CE=3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=,求CN的长.7、如图1,在ABCD中,60ABC∠=︒,:7:8AB AD=,E为CD边上一点,8CE=,连接AE,BE,且AE AB=.(1)求证:EB平分AEC∠;(2)当:2:5CE ED=时,在AD上找一点P,使PB PE+的和最小,并求出最小值;(3)如图2,过点E作EF BE⊥交AD于点F,求DFDE的值.8、问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为______;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.9、如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.10、在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.11、已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.12、如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD 沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.13、如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).14、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为BE=AF (2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线的时候,直接写出线段AF的长.参考答案1、解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且A D CED∠=∠+∠,求证://AB CD;(2)如图2,在正方形ABCD中,8DF=.BE=,4AB=,6①试判断AEF∆的形状,并说明理由;②求AEF∆的面积.【解答】解:(1)延长AC至F,如图1,∠=∠+∠,∠=∠+∠,A D CEDFCD CED D∴∠=∠,FCD A∴;//AB CD(2)①如图2,延长AF交BC的延长线于点G,正方形ABCD中,8CF=,AB=,4∴==,DF CF4∠=∠=︒,AFD CFG∠=∠,D FCG90∴∆≅∆,()ADF GCF ASA∴=,AF FG8BE=,AB=,6∴,AE102810EG CE CG =+=+=,AE EG ∴=,EF AG ∴⊥,AEF ∴∆是直角三角形;②AEF ABE ADF CEF ABCD S S S S S ∆∆∆∆=---正方形11164868442222=-⨯⨯-⨯⨯-⨯⨯, 20=.2、如图,在梯形ABCD 中,AD ∥BC ,AD =3,DC =5,BC =10,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN ∥AB 时,求t 的值;(2)试探究:t 为何值时,△MNC 为等腰三角形.【解答】解:(1)如图1,过D 作DG ∥AB 交BC 于G 点.则四边形ADGB 是平行四边形.∵MN ∥AB ,∴MN ∥DG ,∴BG =AD =3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(2)分三种情况讨论:①当NC=MC时,如图2,即t=10﹣2t,解得:t=;②当MN=NC时,如图3,过N作NE⊥MC于E.由等腰三角形三线合一性质得EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cos C==,又在Rt△DHC中,cos C==,∴=.解得:t=;③当MC=MN时,如图4,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,当t=、t=或t=时,△MNC为等腰三角形.3、如图1,已知矩形ABCD,连接AC,将△ABC沿AC所在直线翻折,得到△AEC,AE交CD于点F.(1)求证:DF=EF;(2)如图2,若∠BAC=30°,点G是AC的中点,连接DE,EG,求证:四边形ADEG 是菱形.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,∵将△ABC沿AC所在直线翻折,得到△AEC,∴∠E=∠B=90°,CE=BC.∴∠D=∠E,AD=CE,∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS),∴DF=EF;(2)∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=90°,∵将△ABC沿AC所在直线翻折,得到△AEC,∴∠AEC=∠B=90°,CE=BC,∵∠CAB=30°,∴∠CAE=30°,∴CE=AC,∵点G是AC的中点,∴CE=AG=EG=AD,∴∠AEG=∠EAG=30°,∴∠DAE=30°,∴∠DAE=∠AEG,∴AD∥GE,∴四边形ADEG是菱形.4、如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.5、如图1,在ABCD中,以BC为边作等边BCP=.∆,交AD于点E,F,且AE DF (1)求证:四边形ABCD是矩形;(2)如图2,连接AP,AC,若1EF=,3BC=.①求证:AP PC⊥;②求AC的长.【解答】证明:(1)BCP ∆是等边三角形,60PBC PCB P ∴∠=∠=︒=∠,PB PC =,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,180A D ∠+∠=︒,60PEF PBC ∴∠=∠=︒,60PFE PBC ∠=∠=︒,PEF ∴∆是等边三角形,PE PF ∴=,PB PE PC PF ∴-=-,BE CF ∴=,又AB CD =,AE DF =,()ABE DCF SSS ∴∆≅∆,A D ∴∠=∠,180A D ∠+∠=︒,90A D ∴∠=∠=︒,∴平行四边形ABCD 是矩形;(2)①PEF ∆是等边三角形,1PE PF EF ∴===,PBC ∆是等边三角形,3PB BC PC ∴===,2BE CF ∴==,3AD BC ==,1EF =,AE DF =,1AE DF ∴==,2AF CF ∴==,1PF DF ==,又AFP CFD ∠=∠,()AFP CFD SAS ∴∆≅∆,90APC D ∴∠=∠=︒,AP PC ∴⊥;②AFP CFD ∆≅∆,AP CD ∴=,AB AP ∴=,又BC CP =,AC AC =,()APC ABC SSS ∴∆≅∆,30ACB ACP ∴∠=∠=︒,2AC AB ∴=,3BC =,AB ∴AC =6、已知:正方形ABCD ,等腰直角三角板的直角顶点落在正方形的顶点D 处,使三角板绕点D 旋转.(1)当三角板旋转到图1的位置时,猜想CE 与AF 的数量关系,并加以证明;(2)在(1)的条件下,若DE =1,AE =,CE =3,求∠AED 的度数;(3)若BC =4,点M 是边AB 的中点,连结DM ,DM 与AC 交于点O ,当三角板的一边DF 与边DM 重合时(如图2),若OF =,求CN 的长.【分析】(1)由正方形与等腰直角三角形的性质判断出△ADF≌△CDE即可;(2)设DE=k,表示出AE,CE,EF,判断出△AEF为直角三角形,即可求出∠AED;(3)由AB∥CD,得出===,求出DM,DO,再判断出△DFN∽△DCO,得到=,求出DN即可【解答】解:(1)CE=AF;证明:在正方形ABCD,等腰直角三角形CEF中,FD=DE,CD=CA,∠ADC=∠EDF =90°∴∠ADF=∠CDE,∴△ADF≌△CDE,∴CE=AF,(2)∵DE=1,AE=,CE=3,∴EF=,∴AE2+EF2=AF2∴△AEF为直角三角形,∴∠AEF=90°∴∠AED=∠AEF+DEF=90°+45°=135°;(3)∵M是AB中点,∴MA=AB=AD,∵AB∥CD,∴===,在Rt△DAM中,DM===2,∴DO=,∵OF=,∴DF=,∵∠DFN=∠DCO=45°,∠FDN=∠CDO,∴△DFN∽△DCO,∴=,∴=,∴DN=,∴CN=CD﹣DN=4﹣=7、如图1,在ABCD中,60CE=,连AB AD=,E为CD边上一点,8ABC∠=︒,:7:8接AE,BE,且AE AB=.(1)求证:EB 平分AEC ∠;(2)当:2:5CE ED =时,在AD 上找一点P ,使PB PE +的和最小,并求出最小值;(3)如图2,过点E 作EF BE ⊥交AD 于点F ,求DF DE的值.【解答】(1)证明:如图1中,四边形ABCD 是平行四边形,//AB CD ∴,ABE BEC ∴∠=∠,AB AE =,ABE AEB ∴∠=∠,BEC AEB ∴∠=∠,BE ∴平分AEC ∠.(2)解:如图1中,作的E 关于AD 的对称点M ,直线EM 交AD 于H ,交BC 的延长线于T ,连接BM ,PM .四边形ABCD 是平行四边形,:7:8AB AD =,∴可以假设7AB CD k ==,8AD BC k ==,60ABC D ∠=∠=︒8EC =,90T EHD ∠=∠=︒,60D ECT ∠=∠=︒,cos604CT EC ∴=︒=,sin 60ET EC =︒=,78DE k ∴=-,1(78)2DH k =-,8)EH k =-,198(78)422AH k k k =--=+, 在Rt AHE ∆中,222AE AH EH =+,222949(4)8)]2k k k ∴=++-, 解得2k =或4,:2:5CE DE =,2k ∴=时,不符合题意舍弃,4k ∴=,32BC AD ∴==,EH EM ==,32436BT ∴=+=,TM ==BM ∴=,PE PM =,PB PE PB PM BM ∴+=+, 1221PB PE ∴+,PB PE ∴+的最小值为.(3)解:如图2中,过点E 作EH AD ⊥于H 交BC 的延长线于T .由(2)可知,当4k =时,20DE =,10DH =,EH =4ET ==,36BT =. 90T EHF BEF ∠=∠=∠=︒,90BET FEH ∴∠+∠=︒,90FEH EFH ∠+∠=︒,BET EFH ∴∠=∠,BTE EHF ∴∆∆∽, ∴BT ET EH FH=,∴=, 103FH ∴=, 403DF FH DH ∴=+=, ∴4023203DF DE ==.当2k =时,6DE =,3DH -,EH =4CT =,ET =20BT ∴=,BTE EHF ∆∆∽, ∴BT ET EH FH=,∴=, 95FH ∴=,924355DF =+=, ∴244565DF DE ==, 综上所述,DF DE 的值为23或45.8、问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为BE+DF=EF;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【解答】解:(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.9、如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.【解答】(1)证明:∵四边形ABCD和四边形BEFG都是正方形,∴AB=BC,BE=BG,∴∠ABC﹣∠EBC=∠EBG﹣∠EBC,即∠ABE=∠CBG,在△BAE和△BCG中,,∴△BAE≌△BCG(SAS);(2)解:∵△BAE≌△BCG,∴AE=CG,∵四边形ABCD正方形,∴AB=AD=CD=8,∠D=90°,∴DE=CD﹣CE=8﹣5=6,∴AE===10,∴CG=10;(3)解:①当CG=FG时,如图1所示:∵△BAE≌△BCG,∴AE=CG,∵四边形BEFG是正方形,∴FG=BE,∴AE=BE,在Rt△ADE和Rt△BCE中,,∴Rt△ADE≌Rt△BCE(HL),∴DE=CE=DC=;②当CF=FG时,如图2所示:点E与点C重合,即正方形ABCD和正方形BEFG的一条边重合;③当CF=CG时,如图3所示:点E与点D重合,DE=5;∵点E与点D不重合,∴不存在这种情况;④CF=CG,当点E在DC延长线上时DE=CD+CE=16;综上所述,当△CFG为等腰三角形时.10、在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.【解答】解:(1)∵四边形ABCD是矩形,∴∠C=90°,∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∠C=∠BFE=90°,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFB=∠CBF=30°,∴∠CBE=∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△F AB∽△EDF,∴,∴AF•DF=AB•DE,∵AF•DF=10,AB=5,∴DE=2,∴CE=DC﹣DE=5﹣2=3,∴EF=3,∴DF===,∴AF==2,∴BC=AD=AF+DF=2=3.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=AD=BC,∵BC=BF,∴NF=BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BF A,∴,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=x.∴BF=BG+GF=2x+x=x.∴=.11、已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【解答】解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.12、如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD 沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.【解答】解:在Rt△PMN中,∵PM=PN,∠P=90°∴∠PMN=∠PNM=45°,延长AD分别交PM,PN于点G、H.过G作GF⊥MN于F,过H作HT⊥MN于T.∵DC=2cm,∴MF=GF=2cm,TN=HT=2cm.∵MN=8cm,∴MT=6cm.因此,矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况:(1)当C点由M点运动到F点的过程中(0≤x≤2),如图①所示,设CD与PM交于点E,则重叠部分图形是Rt△MCE,且MC=EC=x.∴y=MC•EC=x2(0≤x≤2).(2)当C点由F点运动到T点的过程中(2<x≤6),如图②所示,重叠部分图形是直角梯形MCDG.∵MC=x,MF=2,∴FC=DG=x﹣2,且DC=2,∴y=(MC+GD)•DC=2x﹣2(2<x≤6).(3)当C点由T点运动到N点的过程中(6<x≤8),如图③所示,设CD与PN交于点Q,则重叠部分图形是五边形MCQHG.∵MC=x,∴CN=CQ=8﹣x,且DC=2,∴y=(MN+GH)•DC﹣CN×CQ=﹣(8﹣x)2+12(6<x≤8).13、如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是DG=BE;②直线DG与直线BE之间的位置关系是DG⊥BE;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.14、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为BE=AF (2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线的时候,直接写出线段AF的长.【解答】解:(1)在Rt△ABC中,AB=AC=2,根据勾股定理得,BC=AB=2,点D为BC的中点,∴AD=BC=,∵四边形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴,∴BE=AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根据勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,当点E在线段BF的延长线上时,如图3,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根据勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为﹣1或+1.。

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。

2021年九年级中考数学第三轮解答题冲刺专题复习:四边形 综合练习(含答案)

2021年九年级中考数学第三轮解答题冲刺专题复习:四边形 综合练习(含答案)

2021年中考数学第三轮解答题冲刺专题复习:四边形综合练习1、如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.2、如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.3、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4、如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.5、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.6、如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?7、如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.8、如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)9、已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.10、如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.11、如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)12、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.13、如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s 的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm 长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.14、对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)15、如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2 cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.16、在菱形ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 ;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理). (3) 如图4,当点P 在线段BD 的延长线上时,连接BE ,若AB =2√3 ,BE =2√19 ,求四边形ADPE 的面积.图1图2图3图4参考答案2021年中考数学第三轮压轴题冲刺专题复习:四边形综合练习题1、如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.2、如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又 EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,3、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.4、如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【解答】解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S=××=.△ADF5、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.6、如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答】解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,=AE•FH=a(4﹣a),∴S△AEF=﹣(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.7、如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.【解答】解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=48、如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【解答】解:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.9、已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【解答】解:(1)∵2BM=AO,2CO=AO ∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=310、如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.【解答】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM.在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH.∵CD=BC,∴CE=CH\1∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上.∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME.∵∠EFD=45°,∴∠EFC=135°.∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD.∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC.∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°.∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.11、如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.12、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.13、如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s 的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为6cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm 长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.【解答】解:(1)∵四边形AOCB是矩形,∴OA=BC=16,∵动点P从点A出发,以3cm/s的速度向点O运动,∴t=,此时,点Q的运动距离是×2=cm,故答案为,;(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,过点P作PE⊥BC于E,过点Q作QF⊥OA于F,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10cm,∴62+(16﹣5t)2=100,∴t=或t=;(4)k的值是不会变化,理由:∵四边形AOCB是矩形,∴OC=AB=6,OA=16,∴C(6,0),A(0,16),∴直线AC的解析式为y=﹣x+16①,设运动时间为t,∴AP=3t,CQ=2t,∴OP=16﹣3t,∴P(0,16﹣3t),Q(6,2t),∴PQ解析式为y=x+16﹣3t②,联立①②解得,x=,y=,∴D(,),∴k=×=是定值.14、对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.15、如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2 cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= s ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan ∠DEA=tan ∠QPB , ∴=,解得x=,综上所述,当x=s 或时,直线AM 将矩形ABCD 的面积分成1:3两部分.16、在菱形ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 ;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理). (3) 如图4,当点P 在线段BD 的延长线上时,连接BE ,若AB =2√3 ,BE =2√19 ,求四边形ADPE 的面积.【解析】 (1)① BP=CE 理由如下: 连接AC∵菱形ABCD ,∠ABC=60°图1图2图3图4∴△ABC是等边三角形∴AB=AC ∠BAC=60°∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠BAP=∠CAE∴△ABP≌△ACE ∴BP=CE② CE⊥AD∵菱形对角线平分对角∴∠ABD=30°∵△ABP≌△ACE∴∠ACF=∠ABD=30°∴∠DCF=30°∴∠DCF+∠ADC=90°∴∠CFD=90°∴CF⊥AD 即CE⊥AD(2)(1)中的结论:BP=CE , CE⊥AD 仍然成立,理由如下:连接AC∵菱形ABCD,∠ABC=60°∴△ABC和△ACD都是等边三角形∴AB=AC ∠BAD=120°∠BAP=120°+∠DAP ∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠CAE=60°+60°+∠DAP=120°+∠DAP∴∠BAP=∠CAE∴△ABP≌△ACE ∴BP=CE ∠ACE=∠ABD=30°∴∠DCE=30°∵∠ADC=60°∴∠DCE+∠ADC=90°∴∠CHD=90°∴CE⊥AD∴(1)中的结论:BP=CE , CE⊥AD 仍然成立.(3) 连接AC交BD于点O , CE, 作EH⊥AP于H∵四边形ABCD是菱形∴AC⊥BD BD平分∠ABC∵∠ABC=60°,AB=2√3∴∠ABO=30°∴AO=√3 BO=DO=3∴BD=6由(2)知CE⊥AD∵AD∥BC ∴CE⊥BC∵BE=2√19BC=AB=2√3∴CE=√(2√19)2-(2√3)2=8由(2)知BP=CE=8 ∴DP=2 ∴OP=5∴AP=√52+(√3)2=2√7∵△APE是等边三角形,∴ PH=√7EH=√21∵S四ADPE=S△ADP+S△APE∴S四ADPE =12DP·AO+12AP·EH=12×2×√3 +12×2√7×√21=√3+7√3=8√3∴四边形ADPE的面积是8√3 .。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

2021年九年级中考数学三轮综合复习专题:四边形专项(三)

2021年九年级中考数学三轮综合复习专题:四边形专项(三)

2021年九年级中考数学三轮综合复习专题:四边形选择专项(三)1.如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣2.其中正确的有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD中,AB=4,点E是BA延长线上的一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有()个①MC⊥ND;②sin∠MFC=;③(BM+DG)2=AM2+AG2;④S△HMF=;A.1 B.2 C.3 D.43.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为20,BD=8,则tan∠HOD的值等于()A.B.C.D.4.如图,在平面直角坐标系中,四边形OABC是菱形,∠AOC=120°,点B的坐标为(6,0),点D是边BC的中点,现将菱形OABC绕点O顺时针旋转,每秒旋转60°,则第2021秒时,点D的坐标为()A.(,)B.(﹣,﹣)C.(,﹣)D.(﹣,)5.如图,在正方形ABCD中,点E,F分别是边AD,CD上的点,且AE=DF,AF与BE 交于点G,取BF中点H,连接GH,则下列结论:①AF=BE;②BF=2GH;③△ABG 与四边形EGFD面积相等,正确结论的序号是()A.①②B.①③C.②③D.①②③6.如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5 B.6 C.7 D.87.下列说法正确的有()①对角线相等且互相垂直的四边形是菱形;②邻边相等的平行四边形是正方形;③对角线相等且互相垂直平分的四边形是矩形;④顺次连接菱形各边中点所得的四边形是矩形;⑤有一个内角是60°的平行四边形是菱形.A.1个B.2个C.3个D.4个8.已知平行四边形ABCD中,∠A+∠C=110°,则∠B的度数为()A.125°B.135°C.145°D.155°9.如图,在正方形ABCD中,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,交AB于点H,则的值是()A.B.C.D.10.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形的周长为36,则AB的长为()A.6 B.9 C.12 D.411.如图,在菱形ABCD中,BC=10,点E在BD上,F为AD的中点,FE⊥BD,垂足为E,EF=4,则BD长为()A.8 B.10 C.12 D.1612.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等13.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.14.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=4,则梯形AECD的周长为()A.21 B.22 C.23 D.2415.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.20cm B.30cm C.40cm D.20cm 16.如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m,宽25m,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知AB=CD=1m,EF=GH=1m,记甲、乙地块的绿化面积分别为S1、S2,则S1、S2的大小关系是()A.S1<S2B.S1=S2C.S1>S2D.无法确定17.如图,在平行四边形ABCD中,点A、B、C的坐标分别为(2,0)、(0,1)、(1,2),则平行四边形ABCD的周长为()A.B.6 C.8 D.1018.▱ABCD中,AC、BD交于点O,再添加一个条件,不一能判定四边形ABCD是菱形的是()A.AB=AD B.AC⊥BD C.AC=BD D.AC平分∠BAD 19.平行四边形ABCD中,E点在BC上,P、Q两点在AD上,其位置如图所示.若PB 与AE相交于R点,QB与AE相交于S点,则下列三角形面积的大小关系,何者正确?()A.△PBE>△QBE,△PRE>△QSE B.△PBE<△QBE,△PRE<△QSE C.△PBE=△QBE,△PRE>△QSE D.△PBE=△QBE,△PRE<△QSE 20.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.参考答案1.解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC =3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵在Rt△OPC中,OC==,在Rt△ADE中,AE==,∴PC的最小值为﹣,故④错误,故选:B.2.解:设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF于T.∵四边形ABCD是正方形,∴AB=CB=DC,∠CBM=∠CBM=∠DCN=90°,∵AM=BN=1,∴BM=CN=3,∴△CBM≌△DCN(SAS),∴∠MCB=∠CDN,∵∠MCB+∠DCM=90°,∴∠DCM+∠CDN=90°,∴∠COD=90°,∴CM⊥DN,故①正确,∵MF∥DN,∴MF⊥CM,∴∠FMC=90°,∴∠AMF+∠CMB=90°,∵∠CMB+∠MCB=90°,∴∠AMF=∠MCK,∵BM=BK,∠MBK=90°,∴∠BKM=45°,∵AF平分∠EAD,∴∠EAF=∠EAD=45°,∴∠MAF=∠CKM=135°,∵AM=CK,∴△AMF≌△KCM(ASA),∴MF=MC==5,∵∠FMC=90°,∴∠MFC=45°,∴sin∠MFC=,故②正确,∵OH∥MF,∴∠OHC=∠MFC=45°,∴OH=OC==,∴CH=OC=,∵CF=CM=5,∴FH=FC﹣CH=,∵MT⊥CF,MF=MC,∴TF=TC,∴MT=FC=,∴S△FMH=•FH•MT=××=,故④正确,∵△NCO∽△NDC,∴CN2=NO•ND,∴ON=,∴DH=DN﹣ON﹣OH=5﹣﹣=,∵DG∥CN,∴=,∴=,∴DG=,∴AG=4﹣=,∴(BM+DG)2=(3+)2=AM2+AG2=1+()2=,∴(BM+DG)2=AM2+AG2,故③正确,故选:D.3.解:∵四边形ABCD是菱形,周长为20,∴AD=5,OA=OC,OB=OD=4,AC⊥BD,∴∠AOD=90°,∴OA==3,∵H为AD边中点,∴OH=DH=AH,∴∠HOD=∠HDO,∴tan∠HOD=tan∠HDO==;故选:C.4.解:如图,连接OD,过点C作CH⊥OB于H,∵四边形OABC是菱形,∠AOC=120°,点B的坐标为(6,0),∴OB=6,OC=BC,∠BOC=60°,∴△BOC是等边三角形,∴OC=OB=BC=6,∵点D是BC中点,∴OD⊥BC,BD=3,∴OD=BD=3,∵CH⊥OB,∠COB=60°,∴OH=BH=3,CH=OH=3,∴点C(3,﹣3),∵点D是BC中点,∴点D(,﹣),∵将菱形OABC绕点O顺时针旋转,每秒旋转60°,∴第1秒后,点D 1坐标为(0,﹣3),第2秒后,点D2坐标为(﹣,﹣),第3秒后,点D 3坐标为(﹣,),第4秒后,点D4坐标为(0,3),第5秒后,点D5坐标为(,),第6秒后,点D6坐标为(,﹣),…由上可知,点D的坐标每6个为一组依次循环着,∴2021÷6=371…5,∴第2021秒时,点D的坐标为(,),故选:A.5.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF,故①正确;∵△BAE≌△ADF,∴∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H是BF的中点,∴BF=2GH,故②正确;∵△BAE≌△ADF,∴S△ABG+S△AGE=S△AGE+S四边形EGFD,∴△ABG与四边形EGFD面积相等,故③正确;故选:D.6.解:如图,过点B作BF⊥CD于点F,设△ABE和△CDE的AB和CD边上的高分别为a和b,∴S△ABE=×AB×a,S△CDE=CD×b,∵a+b=BF,AB=CD,∴S△ABE+S△CDE=(AB×a+CD×b)=AB•BF,∵S平行四边形ABCD=CD•BF,∴S△ABE+S△CDE=S平行四边形ABCD,∵S△ABE+S△CBE+S阴影=S平行四边形ABCD,∴S△ABE+S△CDE=S△ABE+S△CBE+S阴影,∴S阴影=S△CDE﹣S△CBE=10﹣2=8.故选:D.7.解;①对角线相等且互相垂直的四边形是菱形,说法错误;②邻边相等的平行四边形是正方形,说法错误;③对角线相等且互相垂直平分的四边形是正方形,说法正确;④顺次连接菱形各边中点所得的四边形是矩形,说法正确;⑤有一个内角是60°的平行四边形是菱形,说法错误.故选:B.8.解:∵四边形ABCD为平行四边形,∠A+∠C=110°,∴∠A=∠C=55°,AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣55°=125°,故选:A.9.解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE==a,∴EF=a,∴AF=EF﹣AE=(﹣1)a,∵四边形AFGH为正方形,∴AH=AF=(﹣1)a,∴==.故选:A.10.解∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,在△ABD和△DCO中,,∴△ABO≌△DCO(SAS),∴OA=OB,∵∠AOD=90°,∴∠OAD=∠ODA=45°,∵∠BAD=∠CDA=90°,∴∠BAO=∠CDO=45°,∴∠BAO=∠AOB,∠CDO=∠COD,∴AB=BO=OC=CD,设AB=CD=x,则BC=AD=2x,由题意x+x+2x+2x=36,∴x=6,∴AB=6.故选:A.11.解:连接AC交BD于O,如图所示:∵四边形ABCD是菱形,∴OB=BD,AD=BC=10,AC⊥BD,∵FE⊥BD,∴FE∥AC,∵F为AD的中点,∴EF是△AOD的中位线,∴OA=2EF=8,∴OD===6,∴BD=2OD=12,故选:C.12.解:A.因为矩形的对角线相等,所以A选项错误,不符合题意;B.因为菱形的对角线互相垂直,所以B选项错误,不符合题意;C.因为正方形的对角线互相垂直且相等,所以C选项正确,符合题意;D.因为平行四边形的对角线互相平分,所以D选项错误,不符合题意.故选:C.13.解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.14.解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=9,CD=AB=6,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴BE=AB=6,∴CE=BC﹣BE=3,∵BG⊥AE,∴∠BGE=90°,AG=EG,∴EG===2,∴AE=2EG=4,∴梯形AECD的周长=AE+CE+CD+AD=4+3+6+9=22,故选:B.15.解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=20cm,在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∴△ABC是等腰直角三角形,∴AC=AB=20cm;故选:D.16.解:根据题意可知:中间部分甲图比乙图大,空白部分是大长方形﹣横向阴影﹣纵向阴影+中间重叠部分,所以S甲大于S乙.即图1中间长部分的平行四边形的面积>图2中间重合部分的平行四边形的面积,∴S1>S2.故选:C.17.解:∵点A、B的坐标分别为(2,0)、(0,1),∴OA=2,OB=1,∴AB==,过C作CE⊥y轴于E,如图所示:∵点C的坐标为(1,2),∴CE=1,OE=2,∴BE=1,∴BC==,∴AB+BC=+,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形ABCD的周长=2(AB+BC)=2+2故选:A.18.解:A、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项C符合题意;D、∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠ACB=∠BAC,∴AB=CB,∴▱ABCD是菱形,故选项D不符合题意;故选:C.19.解:①△PBE、△QBE如图所示:两个三角形有相同的底BE,∵四边形ABCD是平行四边形,∴AD∥BC,∵平行线之间的距离处处相等,∴△PBE、△QBE有相等的高,∴△PBE的面积=△QBE的面积;②∵△PBE的面积=△QBE的面积,∴△PRE的面积+△BRE的面积=△QSE的面积+△BSE的面积,由图可知:△BRE的面积>△BSE的面积,∴△PRE的面积<△QSE的面积.故选:D.20.解:如图,设BC=x,则CE=1﹣x,∵两个正方形,∴AB∥EF,∴△ABC∽△FEC,∴,即,解得x=,∴阴影部分面积为:S△ABC=×1=,故选:D.。

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021中考数学三轮复习专题:正方形及四边形综合问题一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形3. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.24. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.5. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.6. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 17. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.658. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.11. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.12. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.13. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.14. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三、解答题17. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.18. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.19. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.20. 已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.2021中考数学三轮复习专题:正方形及四边形综合问题-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】B3. 【答案】D[解析]由旋转的性质可知,△ADE ≌△ABF ,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D .4. 【答案】C[解析]连接EF .∵AE=AF ,∠EAF=60°,∴△AEF 为等边三角形,∴AE=EF .∵四边形ABCD 为正方形,∴∠B=∠D=∠C=90°,AB=AD ,∴Rt △ABE ≌Rt △ADF (HL),∴BE=DF ,∴EC=CF .设CF=x ,则EC=x ,AE=EF==x ,BE=1-x.在Rt △ABE 中,AB 2+BE 2=AE 2,∴1+(1-x )2=(x )2,解得x=-1(舍负).故选C .5. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x xx x +-=-+-,解得:x =154.故选B.6. 【答案】B【解析】∵AB =2,∴BF =2,又∵BM =12BC =1,由勾股定理得FM =FB 2-BM 2= 3.7. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CD DP CB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x 5∴DC =5,BC =5AB =10,△ABC 的斜边上的高=25454AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .8. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.10. 【答案】8[解析]∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠CAE+∠BAF=90°,又∠CAE+∠ECA=90°,∴∠ECA=∠BAF,则在△ACE和△F AB中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.11. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.12. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.13. 【答案】(3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图14. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】4[解析]如图,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.三、解答题17. 【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD是正方形,BD是角平分线,可想到连接CG,易得CG=AG,再由四边形CEGF是矩形可得AG2=GE2+GF2;(2)给出∠AGF=105°,可得出∠AGB=60°,再由∠ABG=45°,可想到过点A作BG的垂线,交BG于点M,分别在两个直角三角形中得出BM和MG的长,相加即可得出BG的长.解:(1)AG2=GE2+GF2;(1分)理由:连结CG,∵ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,(2分)∴AG=CG,又∵GE⊥DC,GF⊥BC,∠GFC=90°,∴四边形CEGF是矩形,(3分)∴CF=GE,在直角△GFC中,由勾股定理得,CG2=GF2+CF2,∴AG2=GE2+GF2;(4分)(2)过点A作AM⊥BD于点M,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,(6分)∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AMGM,∴GM=66,(8分)∴BG=BM+GM=22+66=32+66.(10分)18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF.即点E为线段DF的中点.①四边形ECFG为菱形时,CF=CE.∵CE=EF,∴CE=CF=EF.∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°. 故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE , ∴∠D=∠DCE=22.5°. 故填22.5°.19. 【答案】解: (1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a,∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′∵四边形ABCD 为正方形,∴BD CD BDC=45°.∴DB DE ′=BDCD, ∵∠EDB ′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BD CE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m 。

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,H是AF的中点,CH=3,那么CE的长是()A.3 B.4 C.D.2.如图,正方形ABCD中,AC、BD相交于点O,P是BC边上的一点,且PC=2PB,连接AP、OP、DP,线段AP、DP分别交对角线BD、AC于点E、F.过点E作EQ⊥AP,交CB的延长线于Q.下列结论中:①∠PAO+∠PDO+∠APD=90°;②AE=EQ;③sin∠PAC=;④S正方形ABCD =10S四边形OEPF,其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在菱形ABCD中,O、E分别是AC、AD的中点,连接OE,若AB=3,AC=4,则tan ∠AOE的值为()A.B.C.D.4.如图,已知菱形OABC的顶点O(0,0),C(2,0)且∠AOC=60°,若菱形绕点O逆时针旋转,每秒旋转45°,则第2020秒时,菱形的对角线交点D的坐标为)A.(3,﹣)B.(﹣1,﹣)C.()D.()5.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD 一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④6.如图,在平行四边形ABCD中,∠ABC=60°,过对角线BD上任意一点P作EF∥BC,GH ∥AB,且AH=2HD,若S=1,则S▱ABCD=()△HDPA.9 B.C.12 D.187.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当四边形ABCD的中点四边形EFGH是菱形时,则四边形ABCD也是菱形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=10cm,点P从点A出发,以1cm/s的速度向D运动,同时,点Q从点C以相同的速度向B运动.当点P运动到点D时,点Q 随之停止运动.若设运动的时间为t秒,以点A、B、C、D、P、Q任意四个点为顶点的四边形中同时存在两个平行四边形,则t的值是()A.2 B.3 C.4 D.59.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE 的度数为()A.22.5°B.27.5°C.30°D.35°10.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定11.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S=24,则OH的长为()菱形ABCDA.B.3 C.D.12.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和213.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,sinα等于()A.B.C.D.14.如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是()A.24B.30C.45 D.15.在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC,垂足为E,交BC于点E,若AC=,AE=2,则菱形ABCD的面积为()A.5 B.4 C.2D.316.某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16 个B.15 个C.14 个D.13 个17.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,OC=4,∠AOC=60°且以点O 为圆心,任意长为半径画弧,分别交OA、OC于点D、E;再分别以点D、点E为圆心,大于DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P.则点P 的坐标为()A.(4,2)B.(6,2)C.(2,4)D.(2,6)18.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE,添加一个条件,使四边形AEBD是菱形,这个条件是()A.∠BAD=∠BDA B.AB=DE C.DF=EF D.∠BDC=∠BAD 19.如图,五边形ABCDE中,AE∥BC,AC,BE交于点O,四边形OCDE是平行四边形,若△ABE的面积是5,四边形OCDE的面积是6,则△AOE的面积是()A.2 B.2.5 C.3 D.420.如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=5的点P的个数是()A.0 B.4 C.8 D.16参考答案1.解:连接AC,CF,如图,∵四边形ABCD和四边形CEFG为正方形,∴AB=BC=1,CE=EF,∠ACD=∠GCF=45°.∴∠ACF=45°×2=90°.∵H是AF的中点,CH=3,∴AF=2CH=6.在Rt△ABC中,AC=BC=.在Rt△ACF中,CF==.在Rt△ECF中,∵CE2+EF2=CF2,CE=EF,∴CE=CF==.故选:D.2.解:①∵∠POB=∠PDO+∠OPD,∠POC=∠PAO+∠APO,∠POB+∠POC=∠BOC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠PDO+∠OPD+∠PAO+∠APO=90°,∴∠PAO+∠APO+∠PDO=90°,∴①正确;②连接AQ,∵QE⊥AP,∴∠QEP=∠AEQ=∠ABQ=90°,∴A、Q、B、E四点共圆,∴∠AQE=∠ABE=∠ABC=45°,∴∠QAE=45°,∴AE=EQ,∴②正确;③过P作AC的垂线于点G,设BP=a,PC=2a,∴BC=3a,∴AP==a,∴AC=3a,∴AO=BO=a,∵BD⊥AC,PE⊥AC,∴BD∥PG,∴===,∴PG=×a=a,∴sin∠PAC==,∴③错误;④∵AD∥BC,∴△BEP∽△DEA,△PFC∽△DFA,∴BE:DE=1:3,CF:AF=2:3,∴BE:ED=1:1,OF:CF=1:4,设设S △BEP =s ,则S △OEP =s ,S △BPO =2s ,S △POC =4s ,∴S △OPE =s ,∴S △BCO =2s +4s =6s ,∴S 四边OPEQ =s +s =s ,S 正方形ABCD =4s ×6=24s ,∴④错误,综上①②正确,故选:B .3.解:连接OD ,如图所示:∵四边形ABCD 为菱形,∴AD =CD =AB =3,∵O 是AC 的中点∴OD ⊥AC ,OA =OC =AC =2, 由勾股定理得,OD ===,∵O 、E 分别是AC 、AD 的中点,∴OE 是△ACD 的中位线,∴OE ∥CD ,∴∠AOE =∠ACD ,∴tan ∠AOE =tan ∠ACD ==, 故选:B .4.解:连接AC 、OB 交于点D ,过A 作AE ⊥OC 于E ,如图所示: ∵C (2,0),∴OC =2,∵四边形OABC 是菱形,∴OA=OC,AD=CD,∵∠AOC=60°,∴△AOC是等边三角形,∴OA=OC=2,∵AE⊥OC,∴OE=OC=1,∴AE===,∴A(1,),∴D(,),∵菱形绕点O逆时针旋转,每秒旋转45°,45°×8=360°,∴转8秒回到原位置,∵2020÷8=252.5(周),即菱形OABC旋转了252周半,此时位于第三象限,∴此时菱形的对角线交点的坐标为(﹣,﹣),故选:D.5.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.6.解:由题意可得,四边形HPFD是平行四边形,四边形AEPH、四边形PGCF均为平行四边形,且它们的面积相等,四边形EBGP是平行四边形,∵S=1,△HDP∴S▱HPDF=2,∵AH=2HD,∴S▱AEPH=S▱PGFC=4,∴S▱EBGP=8,∴S▱ABCD=2+4+4+8=18,故选:D.7.解:连接AC,BD,∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形;(①正确)∵四边形ABCD是矩形,∴AC=BD,∵EF=AC,EH=BD,∴EF=EH,∴四边形EFGH是菱形;(②错误)∵四边形EFGH是菱形,∴AC⊥BD,∴四边形ABCD不一定是矩形;(③错误)∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴四边形EFGH是正方形.(④正确)∴正确的是①④.故选:B.8.解:A.t=2时,AP=2cm,PD=3cm,CQ=2cm,BQ=8cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;B.t=3时,AP=3cm,PD=2cm,CQ=3cm,BQ=7cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;C.t=4时,AP=4cm,PD=1cm,CQ=4cm,BQ=6cm,因AD∥BC,此时只构成一个平行四边形APCQ,不符合题意.D.t=5时,AP=5cm,CQ=5cm,BQ=5cm,则CQ=BQ=AD,因AD∥BC,此时有2个平行四边形:平行四边形ADCQ和平行四边形ADQB,符合题意.故选:D.9.解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°.故选:A.10.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.11.解:∵四边形ABCD是菱形,∴AC⊥BD,DO=BO,AO=OC,∵OA=4,∴AC=2OA=8,=24,∵S菱形ABCD∴8×BD=24,解得:BD=6,∵DH⊥BC,∴∠DHB=90°,∵DO=BO,∴OH=BD=6=3,故选:B.12.解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.13.解:如图,∵四边形ABCD和四边形EFGH是矩形,∴∠ADC=∠HDF=90°,CD=AB=2cm,∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°,∴△CDM≌△HDN(ASA),∴MD=ND,且四边形DNKM是平行四边形,∴四边形DNKM是菱形,∴KM=MD,∵sinα=sin∠DMC=,∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=KM=acm,则CM=8﹣a(cm),∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=(cm),∴sinα=sin∠DMC===,故选:B.14.解:过C作CH⊥AB于H,∵AB⊥AD,CD⊥AD,∴∠A=∠ADC=∠AHC=90°,CD∥AB,∴四边形ADCH是矩形,四边形ABCD是直角梯形,∴∠DCH=90°,CD=AH,∵∠BCD=120°,∴∠BCH=30°,设BC=x,则CD=12﹣x,∴AH=12﹣x,BH=x,CH=x,∴四边形ABCD的面积=(CD+AB)•CH=(12﹣x+12﹣x+x)×x,∴四边形ABCD的面积=﹣(x﹣8)2+24,∴当x=8时,四边形ABCD的面积有最大值24,即四边形ABCD的面积可能是24,故选:A.15.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,∵AE⊥BC,∴△ABC的面积=BC×AE=AC×OB,∴==,设BC=x,则OB=2x,在Rt△OBC中,由勾股定理得:(x)2﹣(2x)2=()2,解得:x=,∴BC=,∴菱形ABCD的面积=BC×AE=×2=5;故选:A.16.解:如图,根据题意可知:AB=7.5,BC≥4.5,∴AC≤3,当AC=3时,∵AD=GF=6,∴∠ADC=30°,CD=3,∴∠EFD=∠ADC=30°,∵DE=2.5,∴DF=5,设最多可以设置停车位x个,根据题意可得,∵S=DF•AC=5×3=15,平行四边形ADFGS=CD•AC=,△ADC∴15x+2×≤80×3,解得x≤14.96,所以最多可以设置停车位14个.故选:C.17.解:延长BC交y轴于E,如图所示:则BE⊥y轴,∴∠OEC=90°,∵∠AOC=60°,∴∠COE=30°,∴CE=OC=2,OE=CE=2,由题意得:OP平分∠AOC,∴∠AOP=∠COP,∵四边形OABC是平行四边形,∴OA∥BC,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴PC=OC=4,∴PE=PC+CE=6,∴点P的坐标为(6,2);故选:B.18.解:添加一个条件∠BDC=∠BAD,使四边形AEBD是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠C,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形,∵∠BDC=∠BAD,∠BAD=∠C,∴∠BDC=∠C,∴BD=BC,∵AD=BC,AD=BE,∴BD=BE,∴四边形AEBD是菱形;故选:D.19.解:连接EC,如图:∵AE∥BC,∴△ABE和△ACE同底等高,∴S△ACE =S△ABE=5.∵四边形OCDE是平行四边形,∴OE=DC,OC=DE.在△OCE和△DEC中,,∴△OCE≌△DEC(SSS).∴S△OCE =S△DEC=S四边形OCDE=×6=3,∴S△AOE =S△ACE﹣S△OCE=5﹣3=2.故选:A.20.解:作点F关于BC的对称点M,连接CM,连接EM交BC于点P,如图所示:则PE+PF的值最小=EM;∵点E,F将对角线AC三等分,且边长为,∴AC=15,∴EC=10,FC=5=AE,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=,同理:在线段AB,AD,CD上都存在1个点P,使PE+PF=5;∴满足PE+PF=5的点P的个数是4个;故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学第三轮压轴题:四边形的综合专题复习1、如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.2、如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM= AN.(1)求证:Rt△ABM≌Rt△AND;AD,求tan∠ABM的值.(2)线段MN与线段AD相交于T,若AT=143、如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.4、如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.5、如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.6、已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.7、如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.8、如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.9、如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .10、已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF 于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.11、问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.12、在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.13、已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.14、综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB ≠BC ),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 ; 拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB ′D 恰好为直角三角形时,BC 的长度为 .15、在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F .(1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌;(2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值;③当BP 9=时,求BE EF 的值.参考答案1、如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.2、如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM= AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=14AD,求tan∠ABM的值.【答案】解:(1)∵AD=AB,AM=AN,∠AMB=∠AND=90∘∴Rt△ABM≌Rt△AND(HL).(2)由Rt△ABM≌Rt△AND易得:∠DAN=∠BAM,DN=BM∵∠BAM+∠DAM=90∘;∠DAN+∠ADN=90∘∴∠DAM=∠AND∴ND//AM∴△DNT∽△AMT∴AMDN =DTAT∵AT=14AD,∴AMDN=13∵Rt△ABM∴tan∠ABM=AMBM =AMDN=13.3、如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.4、如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.【解答】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,∴∠FBB′=150°;(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在Rt△BB′H中,cos15°=,即BH=2×=,则BF=2BH=+.5、如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,=3×=9.∴S平行四边形BCFD6、已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC =AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.7、如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.【解答】(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.8、如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.9、如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= 3.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.10、已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF 于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.11、问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为 2 ;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.12、在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【解答】解:(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形,(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴,∴△DP'C∽△DF'B②当∠F′DB=90°时,如图所示,∵DF′=DF=BD,∴=,∴tan∠DBF′==,当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意,当∠DF′B=90°时,如图所示,∵DF′=DF=BD,∴∠DBF′=30°,∴tan∠DBF′=13、已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.【解答】解:(1)结论:DM⊥EM,DM=EM.理由:如图1中,延长EM交AD于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)如图2中,结论不变.DM⊥EM,DM=EM.理由:如图2中,延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(3)如图3中,作MR⊥DE于R.在Rt△CDE中,DE==12,∵DM=NE,DM⊥ME,∴MR=⊥DE,MR=DE=6,DR=RE=6,在Rt△FMR中,FM===如图4中,作MR⊥DE于R.在Rt△MRF中,FM==,故满足条件的MF的值为或.、14、综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为平行;②将△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为1:1或:1 ;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为4或6或8或12 .【解答】解:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为BD′∥AC,菱形;(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,②当矩形的长宽之比为:1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或:1;(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,如图3中,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=4,∴AD=×4=4,∴BC=4,当∠ADB′=90°,AB>BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=4,∴BC=AB=×4=6;当∠B′AD=90°,AB<BC时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′=4,∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=4,∴BC=AB ÷=8;∴已知当BC 的长为4或6或8或12时,△AB ′D 是直角三角形. 故答案为:平行,菱形,1:1或:1,4或6或8或12;15、在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F .(1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌;(2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值;③当BP 9=时,求BE EF 的值.(1)证明:在矩形ABCD 中,90,A D AB DC ∠=∠==,如图1,又AE DE =,图1ABE DCE ∆≅∆,(2)如图2,图2 ①在矩形ABCD 中,90ABC ∠=, BPC ∆沿PC 折叠得到GPC ∆ 90PGC PBC ∴∠=∠=,BPC GPC ∠=∠ BE CG ⊥//BE PG ∴,GPF PFB ∴∠=∠BPF BFP ∴∠=∠BP BF ∴=②当25AD =时,90BEC ∠=90AEB CED ∴∠+∠=,90AEB ABE ∠+∠=,CED ABE ∴∠=∠又90A D ∠=∠=,ABE DEC ∴∆∆∽AB DEAE CD ∴=∴设AE x =,则25DE x =-, 122512xx -∴=,解得19x =,216x =AE DE <9,16AE DE ∴==,20,15CE BE ∴==,由折叠得BP PG =,BP BF PG ∴==,//BE PG ,ECF GCP ∴∆∆∽EF CEPG CG ∴=设BP BF PG y ===, 152025yy -∴=253y ∴= 则253BP =在Rt PBC ∆中,3PC =,cos 10BC PCB PC ∠===③若9BP =,解法一:连接GF ,(如图3)90GEF BAE ∠=∠=,//,BF PG BF PG =∴四边形BPGF 是平行四边形 BP BF =,∴平行四边形BPGF 是菱形 //BP GF ∴,GFE ABE ∴∠=∠,GEF EAB ∴∆∆∽EF AB GF BE∴= 129108BE EF AB GF ∴==⨯= 解法二:如图2,90FEC PBC ∠=∠=,EFC PFB BPF ∠=∠=∠, EFC BPC ∴∆∆∽EF CE BP CB∴= 又90BEC A ∠=∠=,由//AD BC 得AEB EBC ∠=∠, AEB EBC ∴∆∆∽AB CE BE CB∴= AE EF BE BP ∴= 129108BE EF AE BP ∴==⨯= 解法三:(如图4)过点F 作FH BC ⊥,垂足为H BPFPFEG S BF BF S EF PG BE∆==+四边形 图4 1212BFC BEC S BF EF BC EF BE S BC ∆∆⋅===⨯ 912EF BE ∴= 129108BE EF ∴=⨯=。

相关文档
最新文档