中点四边形专题

合集下载

各种四边形各边中点形成什么图形

各种四边形各边中点形成什么图形

《各种四边形各边中点形成什么图形》专项练习中点四边形定义:顺次连接四边形各边中点所得的四边形解决办法:连接对角线,利用三角形中位线定理证明一、顺次连接四边形各边中点所得的四边形是平行四边形已知:四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是平行四边形(提示:连接AC)利用三角形中位线证明,两组对边分别平行的四边形是平行四边形二、顺次连接平行四边形各边中点所得的四边形是平行四边形已知:平行四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是平行四边形(提示:连接AC)利用三角形中位线证明,一组对边培训且相等的四边形是平行四边形三、顺次连接矩形各边中点所得的四边形是菱形已知:矩形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是菱形(提示:连接AC、BD)利用矩形对角线相等、中位线性质可得四边相等的四边形是菱形四、顺次连接菱形各边中点所得的四边形是矩形已知:菱形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是矩形(提示:连接AC、BD)利用菱形对角线垂直、中位线性质可得四个角是直角的四边形是矩形五、顺次连接正方形各边中点所得的四边形是正方形已知:正方形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是正方形利用正方形对角线垂直相等、中位线性质可得四边相等又有一直角的四边形是正方形六、顺次连接等腰梯形各边中点所得的四边形是菱形已知:梯形ABCD中,AD//BC AB=DC, 点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是菱形(提示:连接AC,BD)利用梯形对角线相等、中位线性质可得四边相等的四边形是菱形。

中点四边形模型(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)

中点四边形模型(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)

重难点专项突破:中点四边形模型(4种题型)【知识梳理】【考点剖析】题型一、利用中点求长度例1.如图,某花木场有一块四边形ABCD的空地,其各边的中点为E、F、G、H,测得对角线AC=11米,BD=9米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A.20米B.11米C.10米D.9米【答案】A【解析】∵E 、F 、G 、H 分别为四边形ABCD 各边的中点,∴EF 、FG 、GH 、HE 分别为△ABC 、△BCD 、△CDA 、△ABD 的中位线, ∴EF =12AC =112(米),FG =12BD =92(米),HG =12AC =112(米), HE =12BD =92(米),∴四边形EFGH 总长度=EF +FG +GH +HE =20(米), 故选:A .【变式1】在四边形ABCD 中,8AC BD ==,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则22EG FH +的值为( )A .18B .36C .48D .64【答案】D【解析】连接EF 、FG 、GH 、EH ,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴11//,//,,22EF AC HG AC EF AC FG BD ==,∴//EF HG ,同理//EH FG , ∴四边形EFGH 为平行四边形,∵AC BD =,∴EF FG =,∴平行四边形 EFGH 为菱形, ∴EG FH ⊥,2EG OG =,2FH OH =,()2222222221(2)(2)4448642EG FH OE OH OE OH EH BD ⎛⎫+=+=+==⨯== ⎪⎝⎭故选:D .【变式2】如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .C .D .25【答案】A 【解析】连接BD ,∵H 、G 是AD 与CD 的中点,∴HG 是△ACD 的中位线, ∴HG=12AC=5cm ,同理EF=5cm , ∵四边形ABCD 是矩形,∴根据矩形的对角线相等,即BD=AC=10cm , ∵H 、E 是AD 与AB 的中点,∴EH 是△ABD 的中位线, ∴EH=12BD=5cm ,同理FG=5cm ,∴四边形EFGH 的周长为20cm . 故选A .【变式3】如图,点O 为四边形ABCD 内任意一点,E ,F ,G ,H 分别为OA ,OB ,OC ,OD 的中点,则四边形EFGH 的周长为( )A .9B .12C .18D .不能确定【答案】C【解析】∵E ,F 分别为OA ,OB 的中点,∴EF 是△AOB 的中位线,∴EF=12AB=3, 同理可得:FG=12BC=5,HG=12DC=6,EH=12AD=4,∴四边形EFGH 的周长为=3+5+6+4=18, 故选C .题型二、利用中点求面积例2.如图,四边形ABCD 中,点E 、F 、G 分别为边AB 、BC 、CD 的中点,若△EFG 的面积为4,则四边形ABCD 的面积为( )A .8B .12C .16D .18【答案】C【解析】记△BEF ,△DGH ,△CFG ,△AEH 的面积分别为1234,,,S S S S ,四边形ABCD 的面积为S .连接AC .∵BF =CF ,BE =AE ,CG =DG ,AH =DH ,∴EF ∥AC ,1,2EF AC =GH ∥AC ,12GH AC =,∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形,∴S 平行四边形EFGH =2S △EFG =8,∵△BEF ∽△BAC ,∴11,4S S ABC =同理可得214S S ACD ,= ∴1211()44ABC ACD S S S S S +=+=, 同法可得3414S S S +=,∴123412S S S S S ,+++= ∴S 四边形EFGH =12S , ∴S =2S 四边形EFGH =16.故选C.【变式1】定义,我们把对角线互相垂直的四边形叫做和美四边形,对角线交点作为和美四边形的中心.(1)写出一种你学过的和美四边形______;(2)顺次连接和美四边形四边中点所得四边形是( ) A .矩形 B ,菱形 C .正方形 D .无法确定(3)如图1,点O 是和美四边形ABCD 的中心,E F G H 、、、分别是边AB BC CD DA 、、、的中点,连接OE OF OG 、、OH 、,记四边形AEOH BEOF CGOF DHOG 、、、的面积为1234S S S S 、、、,用等式表示1234S S S S 、、、的数量关系(无需说明理由)(4)如图2,四边形ABCD 是和美四边形,若4,2,5AB BC CD ===,求AD 的长.【答案】(1)正方形;(2)A ;(3)S 1+S 3=S 2+S 4;(4 【解析】(1)正方形是学过的和美四边形,故答案为:正方形; (2)顺次连接和美四边形四边中点所得四边形是矩形, 如图,四边形ACBD 中,对角线AB ⊥CD ,即为“和美四边形”, 点E 、F 、G 、H 分别是AC 、AD 、BD 、BC 的中点, ∴EF ∥CD ∥HG ,且EF=HG=12CD ,EH ∥FG ∥AB ,且EH=FG=12AB , ∴四边形EFGH 为平行四边形,∵AB ⊥CD ,∴EF ⊥EH ,∴平行四边形EFGH 是矩形;故选:A .(3)连接AC 和BD ,由和美四边形的定义可知,AC ⊥BD ,则∠AOB=∠BOC=∠COD=∠DOA=90°, 又E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,∴△AOE 的面积=△BOE 的面积,△BOF 的面积=△COF 的面积,△COG 的面积=△DOG 的面积,△DOH 的面积=△AOH 的面积,∴S 1+S 3=△AOE 的面积+△COF 的面积+△COG 的面积+△AOH 的面积=S 2+S 4;(4)如图,连接AC 、BD 交于点O ,则AC ⊥BD , ∵在Rt △AOB 中,AO 2=AB 2-BO 2,Rt △DOC 中,DO 2=DC 2-CO 2,AB=4,BC=2,CD=5,∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=AB 2+DC 2-BC 2=42+52-22=37,即可得AD =.【变式2】如图,在四边形ABCD 中,对角线AC BD ⊥,且8AC =,6BD =,E ,F ,G ,H 分别是四边的中点,则四边形EFGH 的面积为__________.【答案】12【解析】∵点E 、F 分别为边AB 、BC 的中点,∴EF ∥AC ,EF=12AC , ∵AC=8,∴EF=4,同理,HE ∥BD ,HE=1BD 32=, ∴四边形EFGH 是平行四边形, ∵EH ∥BD ,AC ⊥BD ,∴EH ⊥AC ,∵EF ∥AC ,∴EF ⊥HE ,∴四边形EFGH 是矩形, ∴矩形EFGH 的面积=HE ×EF=12. 故答案为:12.题型三、找规律问题例3.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A 、1B 、1C 、1D ,顺次连接得到四边形1111D C B A ,再取各边中点2A 、2B 、2C 、2D ,顺次连接得到四边形2222A B C D ,……,依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为( )A .162n−B .182n − C .412n −−D .不确定【答案】B【解析】∵四边形A 1B 1C 1D 1的四个顶点A 1、B 1、C 1、D 1分别为AB 、BC 、CD 、DA 的中点,∴A 1B 1∥AC ,A 1B 112=AC ,∴△BA 1B 1∽△BAC .∴△BA 1B 1和△BAC 的面积比是相似比的平方,即14. 即1114BA B S=S △ABC ,同理可证:1114DD C S =S △ADC , 1114AD A S =S △ABD ,S △CB 1C 114=S △BDC ,∴111112A B C D S =四边形S 四边形ABCD ,同法可证2222111112A B C D A B C D S S =四边形四边形,又四边形ABCD 的对角线AC =8,BD =4,AC ⊥BD ,∴四边形ABCD 的面积是16.∴四边形A n B n ∁n D n 的面积116822n n −==.故选:B .【变式1】如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C,3D ……以此类推,取11n n A B −−,11n n B C −−,11n n C D −−,11n n D A −−的中点n A ,n B ,n C ,n D ,根据信息填空:①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________. 【答案】(1)矩形,见解析;(2)①15,②5,③1152n − 【解析】(1)四边形1111D C B A 是矩形,证明:∵1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点, ∴11A B AC ,11C D AC ,∴1111A B C D ,同理可得1111A D B C ∥,∴四边形1111D C B A 是平行四边形,又∵AC BD ⊥,易得1111A B B C ⊥,∴四边形1111D C B A 是矩形; (2)①由题意可知:A 1B 1=12AC=3,A 1D 1=12BD=5,四边形1111D C B A 的面积=3×5=15;②由构图过程可得:A 2D 2=B 2C 2=12B 1D 1=12C 2D 2=B 2A 2=12A 1C 1=12可知四边形2222A B C D 为菱形,∴2222A B C D S =222212A C B D ⨯=111112A B B C ⨯=152;同理可求:3333A B C D S =154,4444A B C D S =158,…,n n n n A B C D S =1152n −,故当四边形n n n n A B C D 的面积为1516时,1152n −=1516,解得:n=5;③由②可知:用n 表示四边形n n n n A B C D 的面积为1152n −.故答案为:(1)矩形,见解析;(2)①15,②5,③1152n −题型四、中点综合问题例4.通过解方程(组)使问题得到解决的思维方式就是方程思想,已学过的《勾股定理》及《一次函数》都与它有密切的联系,最近方程家族的《一元二次方程》我们也学习了它的求解方法和应用。

(完整版)2014年几何专题训练中点四边形难题突破【原创】

(完整版)2014年几何专题训练中点四边形难题突破【原创】

中点四边形训练几何专题一.选择题(共5小题)1.顺次连接圆内接梯形四边的中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直C.对角线垂直B.对角线相等D.一条对角线平分另一条对角线3.如图,在四边形ABCD中,E,H,F,G分别是AB,BD,CD,AC 的中点,要使四边形EHFG为菱形,需要添加条件()A.AC=BD B.AD=CD C.AB=BC D.AD=BC4.下列说法正确的是()A.依次连接任意四边形各边中点可以得到一个矩形B.依次连接矩形各边的中点能得到一个矩形C.依次连接正方形各边的中点能得到一个正方形D.依次连接菱形各边的中点能得到一个菱形5.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.5二.解答题(共9小题)6.如图,在四边形ABCD中,AC=BD,且AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.则四边形EFGH是怎样的四边形?证明你的结论.7.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是菱形;(2)若AC=8,求EG2+FH2的值.8.如图1,在△ABC中,点D、E分别是边AC、AB的中点,BD与CE交于点O.点F、G分别是线段BO、CO的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若AO=BC,求证:四边形DEFG是菱形;(3)若AB=AC,且AO=BC=6,直接写出四边形DEFG的面积.9.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.(1)判断四边形EFGH的形状,并说明你的理由;(2)连接BD和AC,当BD、AC满足何条件时,四边形EFGH是正方形.(不要求证明)10.已知:如图,四边形ABCD中,对角线相交于点O、E、F、G、H分别是AD、BD、BC、AC的中点.(1)请说明四边形EFGH的形状,并证明你的结论;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.11.课题学习:(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是_________ 形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:_________ ;(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是_________ 形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:_________ ;(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是_________ 形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:_________ ;(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC 上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.12.如图,在四边形ABCD中,AB=CD,M、N、P、Q分别为AD、BC、BD、AC的中点.试判断线段MN、PQ的关系,并加以证明.13.如图,梯形ABCD中,AD∥BC,M、N、P、Q分别为AD、BC、BD、AC的中点.求证:MN 和PQ互相平分.14.证明:中点四边形的面积为原四边形面积的一半(不用相似三角形).。

四边形中点知识点

四边形中点知识点

四边形中点知识点四边形是一个拥有四条边的几何图形,它的四个顶点可以用直线相连,形成四个内角和四个外角。

在四边形中,中点是指连接两个非相邻顶点的线段的中点。

本文将通过逐步思考的方式,介绍四边形中点的一些基本知识点。

第一步:了解四边形和中点的定义四边形是一个几何图形,它有四条边和四个顶点。

四边形的中点是指连接两个非相邻顶点的线段的中点。

例如,如果我们有一个四边形ABCD,连接顶点A和C的线段AC的中点就是四边形中点。

第二步:了解四边形中点的性质四边形中点具有一些有趣的性质。

首先,连接四边形的相对边的中点会形成一个平行四边形。

例如,在四边形ABCD中,连接顶点A和C的线段AC的中点和连接顶点B和D的线段BD的中点所形成的线段会平行且等于彼此。

第三步:了解四边形中点的重要性四边形中点在几何学中有着重要的作用。

它可以帮助我们更好地理解四边形的性质和特征。

其中一个重要的应用是在证明四边形平行的问题中。

如果我们能够证明四边形的对角线中点连线平行,那么我们就能得出四边形是平行四边形的结论。

第四步:探索四边形中点的性质在四边形中,连接相对顶点的线段的中点被称为对角线中点。

对角线中点有一些有趣的性质。

首先,四边形的对角线中点相互连接会形成一个平行四边形。

其次,如果四边形的对角线中点互相连接,那么这两条线段的交点将是四边形的中点。

第五步:应用四边形中点的知识应用四边形中点的知识可以帮助我们解决一些几何问题。

例如,如果我们知道一个四边形的两个对角线的中点,我们可以通过连接这两个中点来构造一个平行四边形。

另外,我们还可以利用四边形中点的性质来证明四边形的平行性、相似性等等。

总结:通过逐步思考,我们可以了解到四边形中点的定义、性质和重要性。

四边形中点对于理解四边形的性质、进行证明和解决几何问题非常有帮助。

深入研究四边形中点的知识将为我们探索几何学的更多奥秘提供基础。

注:本文介绍了四边形中点的基本知识点,但未涉及Ai人工智能等字样。

中点四边形专题

中点四边形专题

《中点四边形》专题
班级 姓名
成名每在穷苦日,败事多因得意时。

四边形
梯形
直角梯形
平行四边形 四边形
梯形 矩形 正方形 菱形 等腰 直角
梯形 梯形
1、猜想连接任意四边形中点所得中点四边形是什么特殊的四边形?并说明理由。

已知:
求证:
证明:
2、如果把上面的任意四边形变成是平行四边形、矩形、菱形、正方形,它的中点四边形的形状又如何呢?大家分别探究一下。

※原四边形是平行四边形时:
依次连接平行四边形各边中点所形成的中点四边形是。

(备用图)
原四边形是矩形时:依次连接矩形各边中点所形成的中点四边形是。

(备用图)
原四边形是菱形时:依次连接菱形各边中点所形成的中点四边形是 。

(备用图)
原四边形是正方形时:依次连接正方形各边中点所形成的中点四边形是 。

(备用图)
3、反之若中点四边形EFGH 分别为矩形、菱形和正方形,则四边形ABCD 是否一定分别为菱形、矩形(等腰梯形)、正方形?
1:如图,梯形ABCD 中,AB ∥CD ,M 是AD 中点,N 是BC 中点,E 是CD 中点,F 是AB 中点。

(1) 若EF=MN ,则BD ⊥ME ; (2) 若AC=BD ,则EF=MN ; (3) 若AC ⊥BD ,则EF=MN 。

2:如图(1)(2)(3),最外面的矩形、菱形、正方形的面积为1,则最里面的中点四边形的面积。

B C B
D A
C。

中点四边形的证明

中点四边形的证明

中点四边形的证明人教版八年级数学在学完第19章《四边形》后有一个《数学活动》“中点四边形”,虽然仅仅是个数学活动,但是,在一些习题上经常出现有关这方面的题目,现把有关规律总结如下,望各位老师指正。

中点四边形和原四边形对角线关系密切,首先证明普通四边形的中点四边形。

1、四边形中点连线为平行四边形。

如图,在四边形ABCD中, E、F、G H为四边中点求证:四边形EFGH为平行四边形证明:如图T E、F为AD AB的中点••• EF//BD同理:HG//BD• HG//EF同理:EH//FG•四边形EFGH是平行四边形2、当一个四边形的两条对角线相等时,其中点四边形是菱形。

如图,在矩形ABCC中,E、F、G H为四边中点。

求证:四边形EFGH是菱形证明:T E、F为AD AB的中点• EF=1/2BD同理:HG=1/2BD••• HG二EF=1/2BD同理:EH=FG=1/2AC•四边形EFGH是平行四边形v AC=BD• 1/2AC=1/2BDB G C即:EF=GF•平行四边形EFG H是菱形3、当一个四边形两对角线互相垂直时,其中点四边形为矩形。

如图,在菱形ABCD中, E、F、G H为四边中点求证:四边形EFGH是矩形证明:v E、F为AD AB的中点•EF//BD同理:HG//BD• HG//EF同理:FG//AC; EH//FG•四边形EFGH是平行四边形v四边形ABC兎菱形•/ AOB=90•/ FNO h AOB=90•/ EFG M FNO =90•平行四边形EFGH是矩形4、当一个四边形的两对角线相等且互相垂直时,其中点四边形是正方形如图,在正方形ABCD K E、F、G H为四边中点求证:四边形EFGH是正方形证明:T E、F为AD AB的中点••• EF//BD; EF=1/2BD同理:HG//BD HG=1/2BD• HG//EFHG=EF=1/2BDB G C同理:EH//AC//FG; EH=FG=1/2AC•四边形EFGH是平行四边形T四边形ABC兎正方形•/ AOB=90AC=BD•/ FNO h AOB h FNO =901/2AC=1/2BD即:EF=GF•平行四边形EFGH是正方形所以说,中点四边形和原四边形对角线关系密切,事实上,中点四边形的形状是有原四边形的对角线决定的。

九年级数学中点四边形练习题

九年级数学中点四边形练习题

中点四边形练习题1.顺次连接四边形各边中点,所得的图形是;顺次连接平行四边形各边中点,所得的图形是;顺次连结矩形四边中点所得四边形是;顺次连结菱形四边中点所得四边形是;顺次连结等腰梯形四边中点所得四边形是。

由此猜想:顺次连结的四边形四边中点所得四边形是矩形,顺次连结的四边形四边中点所得四边形是菱形。

即新四边形的形状与原四边形的有关。

2.一个四边形ABCD的对角线为AC、DB,顺次连接各边中点M、N、P、Q,得到四边形MNPQ。

①若AC⊥BD,AC=3,BD=4则四边形MNPQ的形状为,周长为,面积为;②若四边形ABCD为矩形,则四边形MNPQ的形状一定为;③当四边形ABCD满足条件时,四边形MNPQ为矩形;④若四边形MNPQ为正方形,则四边形ABCD需满足条件。

3.已知四边形ABCD和对角线AC,BD,顺次连接各边中点得四边形MNPQ,给出以下六个命题:①若所得四边形MNPQ为矩形,则原四边形一定是菱形;②若所得四边形MNPQ为菱形,则原四边形一定是矩形;③若所得四边形MNPQ为矩形,则AC⊥BD;④若所得四边形MNPQ为菱形,则AC=BD;⑤若所得四边形MNPQ为矩形,则∠BAD=90°;⑥若所得四边形MNPQ为菱形,则AB=AD。

以上命题正确的是:() A.①② B.③④ C.③④⑤⑥ D.①②③④4. 如图1,E、F、G、H分别是四边形ABCD四条边的中点,要使EFCH为矩形,四边形ABCD应该具备的条件是()A. 一组对边平行而另一组对边不平行B. 对角线相等C. 对角线相互垂直D. 对角线互相平分5题5.如图,ABCD是面积为a2的任意四边形,顺次连结ABCD各边中点得到四边形A1B1C1D1,再顺次连结各边中点得到四边形A2B2C2D2重复同样的方法直到得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为。

6.如图2,在四边形ABCD中,E、F、G、H分别是边AB、BD、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由。

【初中数学】人教版八年级下册专题训练(二)中点四边形(练习题)

【初中数学】人教版八年级下册专题训练(二)中点四边形(练习题)

人教版八年级下册专题训练(二)中点四边形(146) 1.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.2.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于.3.如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.(1)当四边形ABCD是矩形时,四边形EFGH是形,并说明理由;(2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.4.如图,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点.(1)求证:EF与GH互相平分;(2)当四边形ABCD的边满足条件时,EF⊥GH.5.顺次连接对角线相等的四边形的各边中点,所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连接菱形各边中点所得到的四边形是()A.梯形B.矩形C.菱形D.正方形7.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是(填序号).9.如图,在四边形ABCD中,AD=CD,AB=CB,E,F,G,H分别是AD,AB,CB,CD的中点.求证:四边形EFGH是矩形.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,四边形ABCD的边AB,CD应满足的条件是.13.如图所示,E,F,G,H为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是()A.80B.40C.20D.1014.如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60∘,则四边形EFGH的面积为cm2.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.如图,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA 的中点,则EG2+FH2=.参考答案1.【答案】:如图,连接EF ,FG ,GH ,EH ,∵E ,H 分别是AB ,DA 的中点,∴EH 是△ABD 的中位线,∴EH =12BD =3. 同理可得EF ,FG ,GH 分别是△ABC ,△BCD ,△ACD 的中位线, ∴EF =GH =12AC =3,FG =12BD =3,∴EH =EF =GH =FG =3,∴四边形EFGH 为菱形,∴EG ⊥HF ,且垂足为O ,∴EG =2OE ,FH =2OH .在Rt △OEH 中,根据勾股定理得:OE 2+OH 2=EH 2=9,等式两边同时乘4得4OE 2+4OH 2=9×4=36,∴(2OE)2+(2OH)2=36,即EG 2+FH 2=36.【解析】:连接EH,HG,GF,FE ,根据题目条件提供的四个中点,结合中位线的性质,证明四边形EFGH 为菱形,再根据菱形的性质及勾股定理求出结果.2.【答案】:116【解析】:根据题意,结合图形寻找规律:第二、四、六、八个中点四边形为菱形,第一个菱形边长为12,第二个菱形边长为14,第三个菱形边长为18,第四个菱形边长为116,即为第八个菱形的边长3(1)【答案】当四边形ABCD 是矩形时,四边形EFGH 是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD .∵E ,F ,H 分别是AB ,BC ,AD 的中点,∴EF=12AC,EH=12BD,∴EF=EH.同理可得EF=GH=GF,∴四边形EFGH是菱形【解析】:利用矩形及中位线的性质,结合菱形的判定方法进行推导证明.(2)【答案】当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC.∵AC=BD,∴EF=EH=GH=GF,∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH,∴菱形EFGH是正方形【解析】:根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,得到四边形ABCD满足的条件.4(1)【答案】证明:连接GE,GF,HF,EH.∵E,G分别是BC,BD的中点,∴EG=12CD.同理FH=12CD,FG=12AB,EH=12AB,∴EG=FH,GF=EH,∴四边形EHFG是平行四边形.∴EF与GH互相平分【解析】:根据题中提供的四个中点,得到几组中位线,利用中位线的性质,及平行四边形的判定方法,推导出四边形EHFG是平行四边形,进而推导出结论(2)【答案】当四边形ABCD的边满足条件AB=CD时,EF⊥GH.【解析】:理由如下:当EF⊥GH时,四边形EGFH是菱形,此时GF=EG.∵EG=12CD,FG=12AB,∴AB=CD.∴当四边形ABCD的边满足条件AB=CD时,EF⊥GH5.【答案】:C【解析】:顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四边形EFGH为平行四边形.又∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.6.【答案】:B【解析】:利用菱形的性质、矩形的判定方法及中位线的性质推导出结果.7.【答案】:B【解析】:如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG.故可判定该四边形是矩形.故选B.8.【答案】:①④【解析】:如图四边形ABCD,连接AC,BD.∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形,故①正确.若四边形ABCD是矩形,则AC=BD.∵EF=12AC,EH=12BD,∴EF=EH,∴平行四边形EFGH是菱形,故②错误.若四边形EFGH是菱形,则AC=BD,但四边形ABCD不一定是矩形,故③错误.若四边形ABCD是正方形,则AC=BD,AC⊥BD,∴四边形EFGH是正方形,故④正确.∴正确的叙述是①④.9.【答案】:连接AC,BD,交于点O,如图.∵E,F,G,H分别是AD,AB,CB,CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=12BD,EH=FG=12AC,∴四边形EFGH是平行四边形.∵AD=CD,AB=CB,∴点D,B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴四边形EFGH是矩形【解析】:利用三角形的中位线解题.10.【答案】:D【解析】:若得到的四边形是矩形,那么邻边互相垂直,根据三角形中位线定理,故原四边形的对角线必互相垂直,由此得解.11.【答案】:C【解析】:若得到的四边形是菱形,那么四条边都相等,根据三角形中位线定理,故原四边形的对角线必相等,由此得解.12.【答案】:AB=CD【解析】:若四边形EFGH是菱形,则GH=EH,又根据题中条件所给的四个中点,利用中位线的性质推导出AB=2GH,CD=2EH,所以AB=CD.13.【答案】:B【解析】:∵E,F,G,H是四边形ABCD各边的中点,∴HG=EF=12AC,GF=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40 14.【答案】:9√3【解析】:连接AC,BD,相交于点O,如图所示, ∵点E,F,G,H分别是菱形四边的中点,∴EH=12BD=FG,EH∥BD∥FG, EF=12AC=HG,∴四边形EHGF是平行四边形.∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.∵四边形ABCD是菱形,∠ABC=60∘,∴∠ABO=30∘.∵AC⊥BD,∴∠AOB=90∘,∴AO=12AB=3cm,∴AC=6cm.在Rt△AOB中,由勾股定理,得OB=√AB2−OA2=3√3cm, ∴BD=6√3cm.∵EH=12BD,EF=12AC,∴EH=3√3cm,EF=3cm,∴矩形EFGH的面积=EF·EH=9√3cm2. 故答案为9√315.【答案】:12【解析】:∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90∘,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=1216.【答案】:50【解析】:连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴HG=EF=12AC=4,EH=FG=12BD=3,∵E,H分别是AB,AD的中点,∴HE∥BD,HE=12BD,同理FG∥BD,FG=12BD,∴四边形HEFG是平行四边形.∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2=52+52=50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各边中点,得四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点, 得到四边形A2B2C2D2……如此进行下去,得到四边形AnBnCnDn.
(1)四边形A1B1C1D1是_ __,
四边形A2B2C2D2是 ,
四边形A11B11C11D11是____;
A
(2)四边形A1B1C1D1的面积是____,
定理:三角形的中位线平行于第三边,
且等于第三边的一半.
A
∵DE是△ABC的中位线,
D
E
∴DE∥BC, DE 1 BC.
2
B
C
这个定理提供了证明线段平行以及线段成倍分关系 的根据.
顺次连结任意四边形的各边中点所组成
的四边形( 简称:中点四边形 )
你知 道 它是什么四边形?能证 明你的猜想吗?
猜想:是平行四边形 H D
1 2
AB
同理:NQ ∥AB,NQ= 1 AB
∴ MP∥NQ,MP=NQ2 ∴四边形MPNQ是平行四边形
∵MQ是△ADC的中位线
B
∴MQ=
1 2
CD
∵AB=CD
∴ MP=MQ
∴四边形MPNQ是菱形
∴MN与PQ互相垂直平分
AM D
P
Q
N C
如图,四边形ABCD中,AC=6,BD=8且AC⊥BD,顺次连接四边形ABCD
(1)试判断四边形ADEF的形状并证明。
(2)当
时,四边形ADEF为菱形。
(3)当 (4)当
时,四边形ADEF为矩形。 时,四边形ADEF为正方形。
谈谈你上了本 节课有何收获?
A
E
H
D
G
B F C
返回
A
E
B
H
F
D
G
C
返回
A H D
B E
F
C G
返回
A
E
B
H
F
D
G
C
返回
A
E
B
H
F
D
G
C
返回
珙县上罗中学 黄正军
在一块对角线垂直的四边形场地ABCD 各边 中点处栽了四棵树,再以这四棵树为顶点, 顺次连结出一个四边形.
猜想
A
H
D 四边形EFGH为神马四边形?
E
G
B
F
C
返回
知识回顾 1
四边形之间的关系
四边形
平行四边形
梯形
矩形 菱形
正方形
等腰梯形
直角梯形
知识回顾 2
三角形 中位线 的性质
有什么特征? (1)一个矩形; (2)一个菱形;
(3)一个正方形。
HD A
E
G
B
F
C
把你的想法与同伴交流。
结论:
(1)中点四边形的形状与原四边形的对角线有 密切关系; (2)只要原四边形的两条对角线 相等,就能 使中点四边形是菱形; (3)只要原四边形的两条对角线 互相垂,直就 能使中点四边形是矩形;
HD A
温馨提示:△DHG 的HG与 △ADC的哪一边有关系?
E
G
结论:中点四边形的
B
F
C 周长等于原四边形对
角线的和
(2007 湖南)
如图:在四边形ABCD中,AB=CD,M、N、P、Q 分别是AD、BC、BD、AC的中点。求证: MN与 PQ互相垂直平分
证明: ∵M、P分别是AD与BD的中点
∴MP∥AB,且MP=
(4)要使中点四边形是正方形,原四边形要符 合的条件是 相等且互相垂。直
如图,原ABC的面积与它的中点三角
形(连结三角形三边中点的线段组成的三
角形)△DEF的面积及周长之间有什么关
系吗?
A
答:△DEF的面积是原ABC
的面积的四分之一
D
F
答:△DEF的周长是原ABC
的周长的二分之一
B
EC
如图,原四边形的面积与它的中点
(1)一个平行四边形; (2)一个矩形 (3)一个菱形;
(4)一个正方形; (5)一个等腰梯形; (6)一个对角线相等的四边形; (7)一个对角线互相垂直的四边形; (8)一个对角线相等且互相垂直的四边形。
通过上述思考,你知道中点四边形的形状与
原四边形的什么有着密切的联系?要使中点
四边形EFGH是下列图形,原四边形ABCD需具
四边形EFGH的面积之间有什么关吗?
H D 温馨提示:△DHG的面积是
A
△ADC面积的多少?△BEF的
E
G 面积是△ABC面积的多少?那
么△DHG 与△BEF面积的和是
B
F
C 四边形ABCD的面积的多少呢?
结论:中点四边形的面积是原四边 形面积的一半.
如图,中点四边形EFGH的周长与原 四边形ABCD的什么量有关系?是什么关 系?能证明你的猜想吗?
A
E
G
B
F
C
A H D 证明:连接BD
E
G ∵ E,H是△ABD的两边中点
B
FC
任意四边形中
点连线所得的
四边形为平行
四边形
∴ EH∥B∥BD,且FG= 1 BD
2
EH∥FG,且EF=FG
∴ 四边形EFGH是平行四边形
当原四边形ABCD是下列图形时, 中点四边形EFGH是什么四边形?
A1
D2
D1
四边形A2B2C2D2的面积是____。 四边形AnBnCnDn的面积 ____;
B
D3
A2
C3
C2
D
A3
B3
(3)四边形A1B1C1D1的周长是_____。 B1
B2
C1
四边形A2B2C2D2的周长是_____。
C
如图:在△ABC中,点D、E、F分别是AB、BC、AC的中
点,连接DE和EF,得到四边形ADEF。
AE B
H
F
D
G
C 返回
A EB
H
F
D
G
C
返回
A
EB
F H
C G D
返回
H A
E
B
F
D G C
返回
相关文档
最新文档