单管正激式开关电源变压器设计

合集下载

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计

158·技术应用基于UC2845单端正激式开关电源设计李 祥 洪 浩 邱力军(西京学院控制工程学院,陕西 西安 710123)摘 要:本文论述一种采用UC2845为控制芯片的开关电源,介绍了正激式变压器的工作原理,并给出相关设计电路。

关键词:UC2845;单端正激;开关电源作者简介:李祥(1990.11-),男,西京学院控制工程学院,研究生。

开关电源是利用现代电力电子技术,控制开关管占空比来维持稳定输出电压的一种电源,其中高频开关式直流稳压电源具有效率高、小型化、输出稳定、高可靠性等突出优点,在工业设备、军工装备、科研仪器、LED照明等领域得到广泛应用。

1 UC2845芯片UC2845是一种高性能单端输出式电流控制型脉宽调制器芯片,为设计人员只需最少的外部器件就能获得成本效益高的方案。

该集成电路的特点包括可微调的振荡器、可精准控制占空比、参考欠压锁定、高效益误差放大器、电流取样比较器和大电流图腾柱式输出,采用固定工作频率脉冲宽度可控调制方式,是驱动功率MOSFET的理想器件。

2 开关电源设计⑴系统参数及电路设计。

本文设计的电路参数为:输入电压为市电220V/50HZ,输出电压为直流5V/40A,工作频率50~100KHz。

整个电路由EMI滤波电路、整流滤波电路、高频变压器、电流检测和反馈补偿电路等几部分组成,其原理图如图1所示:⑵单端正单端正激式变压器原理。

本文采用单端正激式。

所谓单端,是指高频变压器的磁芯仅工作在磁滞回线的一侧,磁同单向变化。

所谓正激,在开关功率管导通时,后级整流二极管D2导通,依同名端工作关系,初级线圈上的电能通过磁芯耦合传输给次级绕组,并通过后级整流二极管传递到输出端;在开关功率管关断时,续流二极管和储能电感构成放电回路,继续对负载供能。

⑶UC2845外围电路设计。

振荡器频率由接在UC2845的4脚上的电阻R20和电容C12决定,振荡器频率为:f=1.72/(R20*C12),假若工作频率小于20KHz进入音频范围,则噪声较大,纹波增大;若开关频率较高时,开关损耗增大,系统效率降低,且电路对EMC的要求增大。

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计高效率开关电源是一种能够将输入电源有效地转换为所需输出电源的电力转换装置。

在实际应用中,高效率开关电源已经取代了传统的线性电源,更广泛地应用于各个领域。

一种常见的高效率开关电源设计是基于单管正激式的设计。

该设计方案具有简单、成本低廉、效率高等特点。

该设计方案的核心元件是一只功率MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)。

该MOS管作为开关,能够根据控制信号开启或关闭,从而实现电源的稳定输出。

MOS管的导通损耗较小,能够在高频率下工作,因此能够提高电源的转换效率。

设计方案的第一步是根据需要确定输入电源的范围和输出电源的需求。

通过采集输入电源的直流电压,可以确定MOS管的工作区间,从而选择合适的MOS管。

接下来,设计师需要根据输出电源的需求确定转换电路。

转换电路的核心是开关频率发生器,用于控制MOS管的开关频率。

开关频率的选择需要考虑到输出电源的负载特性和所需的转换效率。

通常情况下,开关频率越高,转换效率越高,但开关损耗也会增加。

在设计过程中,还需要考虑到输出电源的稳定性和电源滤波的问题。

稳压器是非常重要的一个模块,用于确保输出电压的稳定性。

电源滤波是为了减少开关频率带来的干扰和噪音,提高输出电源的纯净度。

最后,设计师需要进行电路模拟和实验验证。

通过电路模拟软件,可以模拟不同工作条件下的电源转换效率和稳定性。

随后,可以通过实验验证电路的性能,并对其进行调整和优化。

总结起来,基于单管正激式的高效率开关电源设计是一项复杂但非常有挑战性的任务。

设计师需要充分了解输入电源和输出电源的需求,合理选择核心元件和电路拓扑,进行模拟和实验验证,最终实现高效率的电源转换。

这种设计方案在各个领域中都有着广泛的应用前景。

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计作者:李祥洪浩邱力军来源:《无线互联科技》2014年第12期摘要:本文论述一种采用UC2845为控制芯片的开关电源,介绍了正激式变压器的工作原理,并给出相关设计电路。

关键词:UC2845;单端正激;开关电源开关电源是利用现代电力电子技术,控制开关管占空比来维持稳定输出电压的一种电源,其中高频开关式直流稳压电源具有效率高、小型化、输出稳定、高可靠性等突出优点,在工业设备、军工装备、科研仪器、LED照明等领域得到广泛应用。

1 UC2845芯片UC2845是一种高性能单端输出式电流控制型脉宽调制器芯片,为设计人员只需最少的外部器件就能获得成本效益高的方案。

该集成电路的特点包括可微调的振荡器、可精准控制占空比、参考欠压锁定、高效益误差放大器、电流取样比较器和大电流图腾柱式输出,采用固定工作频率脉冲宽度可控调制方式,是驱动功率MOSFET的理想器件。

2 开关电源设计⑴系统参数及电路设计。

本文设计的电路参数为:输入电压为市电220V/50HZ,输出电压为直流5V/40A,工作频率50~100KHz。

整个电路由EMI滤波电路、整流滤波电路、高频变压器、电流检测和反馈补偿电路等几部分组成,其原理图如图1所示:⑵单端正单端正激式变压器原理。

本文采用单端正激式。

所谓单端,是指高频变压器的磁芯仅工作在磁滞回线的一侧,磁同单向变化。

所谓正激,在开关功率管导通时,后级整流二极管D2导通,依同名端工作关系,初级线圈上的电能通过磁芯耦合传输给次级绕组,并通过后级整流二极管传递到输出端;在开关功率管关断时,续流二极管和储能电感构成放电回路,继续对负载供能。

⑶UC2845外围电路设计。

振荡器频率由接在UC2845的4脚上的电阻R20和电容C12决定,振荡器频率为:f=1.72/(R20*C12),假若工作频率小于20KHz进入音频范围,则噪声较大,纹波增大;若开关频率较高时,开关损耗增大,系统效率降低,且电路对EMC的要求增大。

【我是工程师】单端正激双管式开关电源设计之变压器设计

【我是工程师】单端正激双管式开关电源设计之变压器设计

【我是工程师】单端正激双管式开关电源设计之变压器设计(cjhk完成于江苏泰州)最近电源网举行我是工程师这个活动,看到礼品这么丰富,我也忍不住想凑个热闹,准备把以前自己动手设计的一款电源贴出来和大家共享,其中借鉴了一些资料,难免会有一些差错,希望大家能及时指证。

因为有两个月左右的时间,所以我自己的规划是:首先分析单端正激式变换器拓扑结构,接着根据我自己的项目分析单端正激式电路的高频变压器设计方法,再其次是分析使用到的电源管理芯片的特性及功能,同时分析功率MOS的选择与计算功率损耗,最后是各功能电路的分析并贴出原理图。

整个项目大概的时长差不多1个半月。

主要是工作比较忙,只能抽晚上的时间来和大家分享,很多地方分析的会不到位,计算的公式以及原理什么的都只是自己的理解,会有错误,望大家及时指正。

单端正激式开关电源,一般适用与200W以下的开关电源(至于为什么是200W,我没有真正去验证过,找了好些资料,都是这么说的,希望有高手能解释一下为什么不能超过200W)。

我以前见过1200W的单端正激式开关电源,功率模块用的是IGBT,不过效率不高。

常见的单端拓扑结构,通常都是带有去磁绕组。

去磁绕组的圈数和初级绕组的圈数相同,主要目的是为了防止变压器磁饱和。

理想的正激拓扑结构的高频变压器磁芯是不需要有去磁绕组的,因为初级获得的能量都会完全传递到次级。

但是实际的情况是因为磁芯工作的区间的第一象限,每次初级获得能量在传递到次级时,磁芯都会有一些能量的残留,当残留的能量不断累加到达磁芯饱和的阙值点时,变压器发生磁饱和(磁通量为零,电流无穷大,至此变压器就会烧毁)。

为了防止变压器磁饱和,需要加入去磁绕组(也称复位绕组)。

去磁绕组的方向和初级绕组的方向正好相反,每次初级将能量传递到次级时,残余的能量和去磁绕组中的能量方向相反,正好抵消。

至于去磁绕组和初级绕组是如何绕制的,查了几本书,都说是紧密绕制。

在《变压器与电感器设计》(龚绍文翻译)这本书中写道是双线并绕,我想了很长时间没有搞懂。

单端正激式开关电源-主电路地设计

单端正激式开关电源-主电路地设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。

目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。

本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。

关键词开关电源;正激电路;变压器;脉宽调制;ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment.The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability.KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation目录前言 (1)1. 开关电源的发展及趋势 (2)1.1 开关电源的发展历史 (3)1.2 开关电源的发展趋势 (3)2. 开关电源概念及基本原理 (4)2.1 开关电源概念 (5)2.1.1 基本概念 (5)2.1.2 开关电源通常由六大部分组成 (5)2.2 开关电源各部分电路基本原理 (5)2.2.1 脉宽调制式开关电源的基本原理 (5)2.2.2 TOPSwitch—GX系列TOP244Y芯片 (6)2.2.3 单相二极管整流桥 (7)2.2.4 缓冲电路(吸收电路) (8)2.2.5 正激电路 (9)2.2.6 开关电源中的滤波电路 (11)3. 开关电源变压器的设计 (13)3.1 确定磁心的尺寸 (13)3.2正激式变压器的设计 (15)3.2.1 变压器匝数比的确定 (16)3.3 变压器的绕线技术 (17)3.3.1 绕组符合安全规程 (17)3.3.2 低漏感的绕制方法 (18)3.3.3 变压器紧密耦合的绕制方法 (19)4. 单端正激式开关电源主电路设计 (22)4.1 输入电路设计 (22)4.2 正激电路的设计 (22)4.2.1 复位电路 (22)4.2.2 导向电路和续流电路 (23)4.2.3 抑制阻尼振荡电路 (23)4.3 正激变压器设计 (23)4.4 输出电路的设计 (23)5. 实验结果 (24)5.1 空载试验 (24)5.2 带金属负载试验 (25)4)TOPSwitch漏源极之间电压Uds 波形为 (25)5.3 试验过程出现的问题及解决 (25)结论 (26)致谢 (27)参考文献 (27)前言本课题主要是研究基于TOPSwitch—GX系列芯片TOP244Y构成的,以脉宽调制PWM为控制方式的高频单端正激式开关电源。

开关电源:单管自激,反激,推挽,半桥,全桥

开关电源:单管自激,反激,推挽,半桥,全桥

图 2.4 单端正激式开关电源
单端反激式开关电源 反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励 时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的 激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式 开关电源。反激式开关电源是在反极性(Buck—Boost)变换器的基础上演 变而来的,它具有以下优点: 比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积 比正激式开关电源的要小,且成本也要低。
C18 Q5 C1815 22u50V
+
D17 R21 1N4148 12k
R27 1.5k
HW.79 94V-0
S-100N-R5
2000-11-21
+
C17 1u50V
MW
S-100-24 IN 110VAC 1.9A IN 220VAC 0.8A OUT 24VDC 4.5A
TL494 管脚功能及参数
+
R3 100R 2W 102 1kV FMX 1
C2
+V +V
1k 2W
C1 +
SCK054
TF-096
C3
D3S B-60 -0.5
N C10 4.7u50V T2 D7 R6 T028 15R
3A250V R13 580k 1/2W RT C6 220u 200V 470u 35V x5
开关电源:单管自激,反激,推挽,半桥,全桥
单端正激式开关电源 正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励 时,变压器的次级线圈正好有功率输出。它是在 BUCK 电路的开关管 Q 与续 流二极管 D 之间加入单端变压隔离器而得到的。它具有以下优点: 1) 正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方 便的实现交流电网和直流输出之间的隔离。 2) 正激变换器电路简单,成本很低,能方便的实现多路输出。 3) 正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求 比双端变换器低。

单端正激变压器的设计

单端正激变压器的设计

单端正激变压器的设计
是高频开关电源的核心元件。

其作用为:磁能转换、变换和绝缘隔离。

开关变压器性能的好坏不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和牢靠性。

高频开关变压器的设计主要包括两部分:绕组设计及磁芯设计。

本文将对应用在高频下的单端正激变压器的设计办法及磁芯的挑选给出较为具体的论述。

1 单端正激变压器原理
单端正激变压器的原理图1所示。

单端正激变压器又称"buck"转换器。

因其在原边绕组接通电源Vi的同时把能量传递到输出端而得名。

正激式变压器的转换功率通常在50~500 W之间。

输出电压Vo由匝比n、占空比D和输入电压Vi确定。

当控制器输出正脉冲,功率开关导通,变压器的初级绕组通过,此电流由两部分组成,一部分为磁化电流即流经等效开环上的电流,另一部
分足与输出电流等效的初级电流,他和初次级匝比成正比,和输出电
流成正比。

储存在电感上的能量必需在功率开关关断后下一次开启前
泄放掉,以便使磁通复位。

N3为去磁绕组。

2 变压器磁芯的选用原则
高频开关电源中的变压器从性能价格比考虑,MnZn功率铁氧体材料是最佳的挑选。

应用于高频开关电源变压器中的铁氧体应具有以下磁特性:高饱和磁通密度或高的振幅磁导率,在工作频率范围有低的磁芯
总损耗,较低的温度系数,较高的居里温度。

磁芯损耗Pc主要由磁滞损耗Ph和涡流损耗Pe(包括剩余损耗Pr)组成,即:
磁滞损耗Ph正比于直流磁滞回线的面积,并与频率成正比关系。

即:
第1页共4页。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。

这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。

以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。

输出功率通常以所需的输出电压和电流来计算,即P=V*I。

2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。

变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。

变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。

3.选择开关管:选择能够承受所需输出功率的开关管。

开关管的选择与其导通电阻、封装、耐压和工作频率相关。

常用的开关管有晶体管和功率MOSFET。

4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。

常见的整流电路包括单相桥式整流器和满桥式整流器。

整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。

5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。

常见的滤波电路包括电容滤波器和电感滤波器。

滤波电路的设计需要考虑所需的输出电压纹波和效率。

6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。

7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。

测试包括输出电压和电流的测量、纹波和效率的评估。

8.进行优化:根据测试结果进行设计的优化。

优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。

上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。

具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。

为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管正激式开关电源变压器设计
引言:
设计目标:
设计一个单管正激式开关电源变压器,输入电压为220V,输出电压
为12V,输出电流为1A。

主要的设计目标如下:
1.高能效:确保转换效率达到90%以上。

2.稳定性:在负载变化范围内,输出电压波动小于5%。

3.安全性:确保设计的变压器具有过载和短路保护功能。

4.成本:在满足以上要求的情况下,尽量降低设计成本。

设计过程:
1.计算变压器的变比:
由于输入电压为220V,输出电压为12V,所以变压器的变比为
220/12=18.33
2.计算次级电流:
输出电流为1A,因此次级电流为1A。

3.计算主磁环的Ae(过剩面积):
根据磁环材料的选择,可以得到主磁环的Ae值。

4.计算主磁环的直径D:
根据所选择的磁环材料的饱和磁感应强度,可以得到主磁环的直径D。

5.计算次级绕组的匝数:
次级绕组的匝数可以根据变比计算得出。

6.计算次级绕组的截面积:
由于次级电流和次级绕组匝数已知,可以计算出次级绕组的截面积。

7.选择铁芯截面积:
根据所需的变压器功率,可以选择合适的铁芯截面积。

8.计算输出电压波动:
根据设计目标的要求,计算负载变化时输出电压的波动范围。

9.设计过载和短路保护:
根据设计目标的要求,设计过载和短路保护电路,以确保变压器的安
全性。

设计要点:
1.磁环材料的选择:磁环材料应具有高饱和磁感应强度和低磁滞损耗,以提高变压器的效率。

2.绕组材料的选择:绕组材料应具有良好的导电性和低电阻,以减小
损耗和提高效率。

3.绝缘材料的选择:绝缘材料应具有良好的绝缘性能和耐高温性能,
以确保变压器的安全性和可靠性。

4.冷却系统的设计:变压器在工作中会产生一定的热量,需要设计合
适的冷却系统,以保持变压器的温度在安全范围内。

总结:
单管正激式开关电源变压器是一种常见的电源转换器,设计时需要考虑效率、稳定性、安全性和成本等因素。

在设计过程中,需要计算变压器的变比、次级电流、主磁环的Ae和直径、次级绕组的匝数和截面积,选择合适的铁芯截面积,设计合适的过载和短路保护电路,并选用合适的磁环材料、绕组材料和绝缘材料。

另外,还需考虑冷却系统的设计,以确保变压器的工作温度在安全范围内。

通过合理的设计和选择,可以设计出满足要求的单管正激式开关电源变压器。

相关文档
最新文档